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NONLINEAR HYPOTHESES, INEQUALITY RESTRICTIONS,
AND NON-NESTED HYPOTHESES: EXACT SIMULTANEOUS
TESTS IN LINEAR REGRESSIONS

BY JEAN-MARIE DUFOUR!

In the context of the classical linear model, the problem of comparing two arbitrary
hypotheses on the regression coefficients is considered. Problems involving nonlinear
hypotheses, inequality restrictions, or non-nested hypotheses are included as special cases.
Exact bounds on the null distribution of likelihood ratio statistics are derived. The bounds
are based on the central Fisher distribution and are very easy to use. In an important
special case, a bounds test similar to the Durbin-Watson test is proposed. Multiple testing
problems are also studied: the bounds obtained for a single pair of hypotheses are shown
to enjoy a simultaneity property that allows one to combine any number of tests. This
result extends to nonlinear hypotheses a well-known result given by Scheffé for linear
hypotheses. A method of building bounds induced tests is also suggested.

KEYWORDS: Linear regression, nonlinear hypotheses, inequality restrictions, non-nested
hypotheses, multiple testing, simultaneous inference, exact tests, bounds tests.

1. INTRODUCTION

IN THIS PAPER, we study the problem of testing completely arbitrary restrictions
on the coefficients of a standard linear regression. Let

y=XB+u, u~N [0, 021,,], (Assumption L)

where y is an n X 1 vector of observations on a dependent variable, X is an
n X k fixed matrix with 1 <rank(X)=k<n, B is a kX1 vector of unknown
coefficients, u is an n X 1 vector of random disturbances with unknown variance
62> 0. Let C be a ¢ X k matrix of rank ¢q (1 < g< k), I, a nonempty subset of
RY and , a nonempty subset of R*. We consider the problem of testing
H,: CB I, against H,: B € 2,. We also examine the related multiple testing
problems.

Many models in econometrics contain nonlinear restrictions, such as 8,8, =1
and, more generally, g(CB) =0 or h(B) =0, where g(-) and h(-) are vector-val-
ued functions. Economic theory often suggests inequality restrictions, such as
g(CB) =0 or h(B) > 0 (for example, sign, monotonicity, convexity, positive-def-
initeness assumptions), or leads to comparisons between non-nested hypotheses.
The general setup described above includes as special cases all possible hypothe-
sis pairs about B. Note that £, =R* corresponds to the case where B is
unrestricted under the alternative hypothesis. With ¢ =k and C = I, the null
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hypothesis can take any form. Clearly, H, and H; as given above can be
non-nested.
Let

(1.1)  S(B)=lly—XBII>=(»—XB)'(y - XB), BeRX,
(1.2) SS(A)=1nf{S(E):EeA}=Eln£s(/§), 3 +ACRk?

A widely applicable method for testing hypotheses on B is to reject the null
hypothesis when the logarithm of the likelihood ratio (LR) is too large. The
critical region for testing H,, against H, is then R > c(«), where

(1.3)  R=(n/2)log(S5,/S5,),

SS,=55(2,), i=0,1, 2,={B€R*: CBET,), and c(a) depends on the level «
of the test. Since (SS,— SS;)/SS, =exp(2R/n)—1, an equivalent critical re-
gion is given by (SS,— SS,)/SS, > d(a), where d(a)=exp[2¢(a)/n]—1. A
basic problem here is to determine the critical value that yields a test with the
desired level a.?

When the null hypothesis is a set of linear restrictions on B, ie. ;=
{BE€Rk: CB=1v,) for some y, € R (linear hypothesis), and when 2, = R¥, it is
well known that

(1.4) P[(SSy—S8,)/88,> qF,(q,n—k)/(n—k)] =«
when B € 2, F,(-) is defined by
(1.5) P[F(v,,v,) 2 F,(v,7,)] =a, 0<ax<],

where F(v,, »,) follows a central Fisher distribution with (»,, »,) degrees of
freedom (we set Fy(v,,»,) = + o0 and F(», »,) =0). On the other hand, when
the problem does not have this form (or the form of two nested linear hypothe-
ses), it is much more difficult to find an exact critical value. We shall call such
problems nonregular problems. Tests of nonlinear hypotheses such as #(8)=0
are typically based on asymptotic chi-square approximations (see Amemiya
(1983), Judge et al. (1985, Ch. 6), and Malinvaud (1981, Ch. 9)). Note that
various regularity conditions on the function A(-) are needed for the asymptotic
theory to apply. When inequality restrictions (linear or nonlinear) are involved,
the astymptotic distribution is not generally chi-square; it can take an apprecia-
bly more complex form, e.g., a mixture of chi-square distributions (see Gouriéroux,

% In this paper, 8 refers to the true coefficient vector while B refers to any possible value in R*. We
use the infimum operator (Inf) rather than the minimum operator (Min) because no special form is
imposed on the hypotheses: while the infimum is always defined (the function S(B) is bounded
downward), a minimum may not exist (e.g., in certain situations where A4 is open). Of course, when a
minimum does exist, it is equal to the infimum.

Note that, without additional conditions on the form of the hypotheses, alternative testing
methods, like the Wald or the Lagrange multiplier method, may be difficult to implement. For
example, a Wald test could be based on the difference B, — f§,, where f, is a value giving the
minimum of S, but the asymptotic covariance matrix and distribution of A, — 8, may be difficult to
derive without further regularity conditions.



NONLINEAR HYPOTHESES 337

Holly, and Monfort (1982)). In nonregular problems, algorithms to compute
exact critical values for LR statistics have been developed only in a few special
cases: problems with linear inequalities (see Farebrother (1986), Judge and
Yancey (1986), and Wolak (1987)) and comparisons between two linear non-
nested models (King (1985)). Even in these cases, the critical value depends on
the regressor matrix and a fair amount of computation may be required to find
the required critical value. No finite-sample results seem available for more
complex problems.

An important related difficulty is the problem of multiple testing. It is common
practice in statistical and econometric analysis to perform several tests on the
parameters of a model, either jointly or sequentially. This raises the issue of
controlling overall significance levels, and leads to so-called “induced tests” and
multiple comparison procedures. For linear hypotheses in the classical linear
model, several methods are available for multiple hypothesis testing; see Miller
(1966, 1977) and Savin (1980, 1984). However, when nonlinear hypotheses,
inequality restrictions, or non-nested hypotheses are involved, no exact results
seem available on multiple testing.

In this paper, we present a number of finite-sample results on the marginal and
joint distributions of likelihood ratio statistics for nonregular problems in the
classical linear model. We study in turn the problem of testing a single pair of
hypotheses, H,: CB €I, against H,: B€ £,, and the corresponding multiple
testing problems. For the single hypothesis pair problem, we show that, under
H,, the inequality

(16)  P[(SS,—SS,)/SS,>qF.(¢9.n—k)/(n—k)] <«

holds exactly, irrespective of the forms of the null and alternative hypotheses
(0 < a < 1). Consequently, the critical value Q, = gF,(q,n—k)/(n—k) is con-
servative (at level a) whenever the null hypothesis can be written in the form
CB €T,, where @ + I, C RY; there is no restriction on the type of the alternative
B € ,. Q, may be v1ewed as an upper bound on the (usually unknown) critical
value O, that yields a test of size exactly a (we call Q. a tight critical value).
Though the proof of this result is remarkably simple, it does not seem to be
known at all. Second, we show that the inequality (1.6) still holds if S, = SS(£,)
is replaced by S( B), where B is any estimator of B constrained by the alternative
hypothesis (BeQ 1)- The estimator ,B need not be consistent. This property can
be helpful when it is difficult to compute the minimum sum of squares under the
alternative. Third, we give a general sufficient condition under which one can
easily find a point Q/ such that

(1.7)  P[(SS,—SS,)/SS,> Q] >«

for all distributions in H|,. The latter can be viewed as a liberal critical value,
which gives a lower bound for Q,. For example, the condition obtains whenever
H, is nested in H, and the null hypothesis imposes some linear restrictions on S
(plus possibly a number of nonlinear constraints). When Q/, is available, one can
combine it with Q, and build an exact bounds test similar to the Durbin-Watson
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(1950) test. Fourth, we discuss the application of these results to problems with
linear inequalities and comparisons between two non-nested linear models. Given
that our bounds are very easy to compute, while the search for tight critical
values may require expensive calculations, the bounds can play a useful role even
in these relatively simple cases. We also discuss how to apply the results to
nonlinear problems.

With regard to multiple testing problems, we consider a collection of hypothe-
sis pairs {(,q, 2,):a€J, I,oCR? 2, CR*} and the associated LR tests.
The index set J may be finite or infinite, fixed or stochastic. For this case, we
have the inequality

(1.8)  P|Sup{(SS,0—SS.)/SSu}>qF.(q.n—k)/(n—k)|<a
aelJ

provided CB€N,.,T,, (with probability 1).* Thus, if I, cN,c,I,, (With
probability 1), the induced test that rejects CB € I}y when (SS,o — SS,,)/SS, >
Q, for some a €J has size not greater than «. This result includes as a special
case an important implication of the well-known result due to Scheffé (1953,
1959) for linear hypotheses. We find that the conservative simultaneous critical
bounds given by Scheffé for linear hypotheses on a vector y = Cf retain these
characteristics when applied to any collection of hypotheses on y. Second, we
observe that (1.8) still holds if SS,; is replaced by S(B,) where B, is any
estimator of 8 under the alternative hypothesis B € ,,. Third, we give a sufficient
condition under which a liberal bound, like the one in (1.7), can be obtained for a
family of tests. Fourth, when the latter is applicable, we describe a simple and
intuitive way of building bounds induced tests.

In Section 2, we derive two general theorems from which the other results
follow and we study in detail the problem of testing a single pair of hypotheses.
Section 3 examines a number of special cases of these results. Section 4 discusses
multiple testing problems. Section 5, finally, summarizes the main results and
concludes.

2. TESTS OF NONLINEAR HYPOTHESES

In this section, we study the problem of testing C8 € I, against 8 € 2,, where
I, RY and 2, c R* This includes as a special case the problem of testing
CB € I, against CB € I}, where I}, and I are two arbitrary subsets of RY.

To do this, we shall exploit the following general idea. Consider a family of
distributions indexed by the parameter vector § in some space w, and a
real-valued statistic T(w,, w;) for testing H,: 0 € w, against H,: 6§ € w,, where
w, € w and w, C w. Further suppose that we can find another statistic 7(6) such

* The expression “with probability 1 is used because the index set J may be stochastic. For
example, J is stochastic when the null hypotheses CB € I, (i.e., the indices a included in J) are
selected through a pre-testing process. When the distribution of J depends on a parameter, the
condition “with probability 1” must be uniform in this parameter.



NONLINEAR HYPOTHESES 339

that
T(‘*’Ov‘*’l)<T(0)
when 6 € w,, and
Py[T(0) >x] =G(x), Vx,

where the function G(x) does not depend on 6 and P, refers to the probability
measure associated with 8. Then we have

Py[T(wy, @) > x] <G(x), Vx,
when 0 € w,. If the function G(x) is tractable, we can use it to bound P,,[T(ﬂ) > x]

and obtain upper bounds on critical values for T(w,, ;). Similarly, if we can find
another statistic 7(8) such that

T(wy, w;) = ~(0) when 6 € w,,

P,[T(8) > x] =G(x), Vx,
where G(x) does not depend on 6, then

Py[T(wo, @1) > x] > G(x),

when 6 € w,. If G(x) is known, we can use it to obtain lower bounds on critical
values for T(w, w,).

It turns out that this approach can be applied fairly easily to deal with
nonregular problems in the context of the standard linear model. Using it, we
first prove a general theorem holding for collections of LR statistics.

Let

(21)  A(q,k)={(A4,B): ACR?, BCR* A+ &, B+ &}

represent the set of all possible comparisons of a null hypothesis on C8 with
some alternative hypothesis on B. Typically, the investigator is interested by only
a subset H C A(q, k) of the possible comparisons (one pair, for example). We
consider the family of LR statistics associated to a subset of these comparisons
H(J)={(I,,R2,):aceJ}c H. The index set J may be fixed or data-depen-
dent. Then the following theorem holds.

THEOREM 1 (Simultaneous conservative bound): Let Assumption L hold. Let C
be a q X k matrix of rank q (1 < q < k), H(J) and H nonempty subsets of A(q, k)
such that

H(J)={(T,,2,):a€J, T,,CRY, 2, R} cH

where the index set J may be stochastic, Q,,={BERI:CBET,,}, SS, =
SS(Q(I!) i= 01 Ta (S a0 1)/S al> andQ qFa(q’n—k)/(n_k)’0<
a< 1. Then, if CBEN, EJFGO (with probability 1), we have

(22) P[T,>Q.])<P[Sup(T,:acJ}>0Q,] <

where the index b can be chosen in J by any rule.
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PROOF: Let y=CpB, where B is the true value of the coefficient vector,
wy,={BER*: CB=1v}, and SS,= SS(w,). We suppose that the “null hypothe-
sis” is true, i.e. CB €N, ,I,, (when J is stochastic, it is assumed that this event
has probability 1). Then, for all a € J, we have y € I, w, C 2,, C R¥,

(2.3)  S5<S8S,,<SS,,

and

(2.4) SS <SS,

where SS = SS(R¥). From (2.3) and (2.4), we see that
(2.5)  T,=(SS.,~55.)/5S. < (55,~ SS)/SS
for all a € J, hence

(26) T,<Sup{T,:acJ)}<(SS,-SS)/SS

for any b € J. Since SS is the unrestricted minimum sum of squares for model L
while SS(w,) is the minimum sum of squares under the linear constraint C8 =y,
we have

(585, 5S)/SS~ qF(q,n—k)/(n—k)

under the null hypothesis. Thus, for any b € J (irrespective of the way b is chosen
in J),

P[T,> Q.]<P[Sup(T,:a€J}>Q,]
<P[(SS,-55)/85>Q,] =« Q.E.D.

This theorem has applications to simultaneous inference problems which will
be discussed in Section 4. In this section, we study the important case where only
one pair of hypotheses is considered. This can be done by taking H=H(J) =
{(I, £2,)} in Theorem 1. We then get the following corollary.

COROLLARY 1 (Conservative bound): Let Assumption L hold. Let C be a q X k
matrix of rank q (1 < q<k), I}y a nonempty subset of RY, 2, a nonempty subset of
R* Q,={B€R*:CB<ET,) and SS,=SS(R,), i=0,1. Then, if CBET,, we
have

(27)  P[(SS,~SS8,)/588,>qF.(q.n—k)/(n—k)] <«

forall 0<a< .

* In this paper, we do not discuss conditions under which the variables Sup(T,:a€J} and T, are
measurable functions of y (with respect to the profitability measure given by model L). Even if the
latter variables are not measurable functions of y, one can always interpret the operator P[-] in the
inequality (2.2) as the outer measure induced by the probability measure given by model L (where we
take into account the fact that (S5, — SS)/SS is measurable). A fortiori, P[-] could also be
interpreted as the corresponding inner measure. A similar remark applies to Corollaries 1, 1.1, and 3.
In the inequality (2.13) of Theorem 2, we can interpret P[] as the inner measure (or the outer
measure) induced by L, and similarly for Corollaries 2, 2.1, and 4. For further discussion of inner and
outer measures, see Cohn (1980, Ch. 1).
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In terms of the likelihood ratio statistic for testing H,: CB € I, against
H, : B € ©,, the inequality (2.7) can be written

(2.8)  P[(n/2)log(SSy/SS,) = (n/2)log(1+Q,)] <a, O0<axl,

where Q, = qF,(q, n —k)/(n— k). However, it is more convenient to work with
the equivalent statistic (SS, — S5,)/SS,. Note also that > can be replaced by >
in (2.2) and (2.7).6

The critical bound Q, has several attractions: it is exact, easy to compute, and
widely applicable. By taking £, = R¥, we can test any hypothesis that restricts
the value of a vector CB against the unrestricted model. By taking g=k
and C =1, we can consider any pair of null and alternative hypotheses on B.
Clearly, null hypotheses of the form H;:g(CB)=0, where g(-) is some
vector-valued function (nonlinear equality restrictions), or hypotheses of the form
H,: g(CB) > 0 (nonlinear inequality restrictions) are included as special cases.
Combinations of the two types of conditions may also be considered. Similarly,
the alternative hypothesis H; may involve any set of compatible restrictions on
the regression coefficients. A fortiori the critical bound is also applicable to null
hypotheses that involve linear inequality restrictions or linear models on which
we impose such restrictions.

In all cases, we can be sure that the result (SS;,— SS,)/SS;, > Q, is statis-
tically significant at level a. Note that ¢, > ¢, >1 implies ¢,F,(q,,n—k)>
q,F. (g5, n — k) for 0 < a < 1. Thus, one should seek to express the null hypothe-
sis so that g is as small as possible, since this leads to the smallest critical bound
Qo

Minimizing the sum of squares under nonlinear constraints can be costly.
When a cheaper estimator is available under the alternative hypothesis, it is
sometimes possible to draw a conclusion without finding the minimum sum of
squares under the alternative. This possibility is pointed out by the following
corollary.

COROLLARY 1.1: Let the assumptions of Corollary 1 hold and let B be any k x 1
random vector such that P[B € £,] =1 irrespective of the value of B. Then, if
CB € I,,, we have

29)  P[{sS,—S(B)}/S(B)=0.] <P[(SS,~58,)/85,>Q.] <a,
for all 0 < a <1, where Q,=qF,(q,n—k)/(n— k).

ProOF: The result follows from Corollary 1 and the observation that

(2.10)  SS,/S(B) <SS,/SS, with probability 1. Q.E.D.

®In this paper, we do not discuss computation methods for minimizing the sum of squares with
nonlinear and/or inequality constraints. On these problems, see Avriel (1976), Bezaraa and Shetty
(1979), Gill et al. (1981), Judge and Takayama (1966), Liew (1976), and Schmidt and Thomson
(1982).
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Q, is thus a general upper bound on the critical values of tests based on
statistics of the form [SS;— S( B)1/S(B) when B is any estimator of 8 that
satisfies the alternative hypothesis B € 2, with probability 1. Note that the
“estimator” 8 could be based on a sample different from the one used to obtain
SS,. Instead of (2.9), we can state

(211)  P[{sS,-S(B)}/S(B)<x|>P[F(g.n—k)<(n—k)x/q], V x.

Further, by (2.10), {SS, — S(8)}/S(8) > Q,, implies that (SS, — S5,)/SS; > Q...
A simple example of an estimator B to which the above corollary applies is the
case where f is the estimator of B at any step of the process by which the sum of
squares under H, is minimized iteratively (provided e Q).

The critical bound discussed in Corollary 1 is conservative in the sense that the
test which rejects H, when (SS,— SS,)/SS; is large is certainly significant at
level a.” A critical value Q, such that 0, < Q, and
(2.12)  Sup P[(SS,-SS,)/SS,> 0,] =«

Be &,
may exist but is typically more difficult to determine. In certain cases, it is also
possible to find a liberal critical value, i.e. a bound Q/ such that Q; < 0,:if we
observe (SS, — SS,)/SS; < Q/, we can be sure that the test is not sigmﬁcant at
level a. The two following propositions describe such cases. As for the conserva-
tive bound, we first give a general proposition holding for families of LR
statistics.

THEOREM 2 (Simultaneous liberal bound): Let Assumption L hold. Let C, be a
p X k matrix of rank p 1<p<k), 2 # 2,CR*(i=0,1), J an index set ( possi-
bly stochastic), H(J) and H nonempty subsets of A(k, k) such that

H(J)= {(240,924):a€J, 2,0 R, 2, CRY) cH,
Q,0C2y={BER*:C,B—v,,=0}, Vael,
2, ={BeR*:D(C,B—,)=0}CQ,, Vael,

for some vector y,0€R? and some p, Xp matrix D (1<p,<p). Let also
SSai = SS(Qai)’ i= 0’1’ Ta = (SSaO - SSal)/SSal’ and Q; = (P - d)Fa(P - d’
n—k+d)/(n—k+d), where d=rank(D) and 0<a<l. Then, if BE
N, e 2,0 (with probability 1), we have

(213)  P[T,>Q.]l=>P[Inf{T,:acJ}>Q.] >

where the index b can be chosen in J by any rule.

PRrOOF: Let SS,=SS(&,

), i =0,1. For all a €J, we have (with probability 1)
2,,c8,c,c,

N

7 For other examples of conservative tests (exact or asymptotic) based on a similar bounding
argument, see Durbin and Watson (1950), Varian (1985), and Epstein and Yatchew (1985).
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hence

SS(2,) < 5S(2,) <S5(2,) <55(2,)
and
(214)  (SS,0—55,1)/55, > (88, - 8S,)/5S;.
Thus, for any b € J,

T,>Inf{T,:acJ} > (SS,— SS,)/SS,.

SS, is the minimum sum of squares under the linear restriction C,8— y,o=0
and SS, is the minimum sum of squares under the weaker linear restriction
D(Clﬁ— Y10) = 0. Further rank(C,) =p and rank(DC,) = rank(D) = d, where
0 <d<p. In the first case, we have p linearly independent restrictions on f3
while, in the second case, there are only d linearly independent restrictions. Thus,
if we suppose that BN, ,2,, with probability 1 (i.e., under the “null
hypothesis”), we have

(8S,—58,)/88,~(p—d)F(p—d,n—k+d)/(n—k+d);
hence, for any b chosen in J,
P[T,>Q;]>P[Inf{T,:acJ} > Q]
> P[(SS, - SS,) /88, > Q;] = a. 0.E.D.

In the case of a single pair of hypotheses, we have H = H(J) = {(£2,,$,)} in
Theorem 2, which yields the following corollary.

CoroLLARY 2 (Liberal bound): Let Assumption L hold. Let C, be a p X k
matrix of rank p (1 <p <k), @, 2,, 2,, and @, four nonempty subsets of R*
such that

2, Q= {BER*:C,—v,,=0},

{BERk (CIB_YIO)=O}§91’
for some vector v, €R? and some p, X p matrix D (1 <p,<p), and let SS;=
SS(82,), i=0,1. Then, if B € ,, we have
(2.15) P[(SS,—SS,)/SS,>(p—d)E(p—d,n—k+d)/(n—k+d)] >a
for all 0 < a <1, where d = rank (D).

Note that > may be replaced by > in (2.13) and (2.15). A corollary
analogous to Corollary 1.1 also holds for Corollary 2. One finds that the liberal
critical bound given in the latter proposition remains applicable when SS, is
replaced by S( B), where B is any estimator of 8 under the null hypothesis (rather
than the alternative hypothesis, as assumed in Corollary 1.1).

COROLLARY 2.1: Let the assumptions of Corollary 2 hold and let B be any k x 1
random vector such that P[B € Q,] =1 irrespective of the value of B. Then, if
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B € Q,, we have
(2.16)  P[{S(B)-5S,}/8S,> QL] = P[(SS,~ §5,)/58,> Q.] > «

forall 0<a<1, where Q,=(p—d)F(p—d,n—k+d)/(n—k+d) andd=
rank (D).

PrOOF: The result follows from Corollary 2 and the observation that

S(B)/SS, > SS,/SS, with probability 1. Q.E.D.

Clearly, the critical bound given by Corollary 2 is not always applicable. In
particular, the two hypotheses must be nested (§2,C ;). An important case
where it can be used is the one where the null hypothesis imposes a number of
linear restrictions on B (plus possibly some nonlinear constraints), while the
alternative hypothesis relaxes all or some of these linear restrictions (and may
allow other possibilities). For example, let C; and C=[C{,C/] be p X k and
g X k full row rank matrices (1 < p < g < k), with C= C, when p =g, and let

(217) Q,={BeR*:C,B-v,,=0and CBET,},
Q2,={BeR*: D(C,B—7v,0) =00rBEw,},

where I'; C RY and w; € R* such that 2+ @. Then the conditions of Corollar-
ies 1 and 2 are satisfied and we have for 8 € 2,

(2.18)  P[(SS,— SS,)/SS,> 0,] <a<P[(SS,— SS,)/SS,> 0],

where Q, = qF,(¢,n—k)/(n—k) and Q,=(p—d)F(p—d,n—k+d)/
(n—k+d). It is easy to see that Q. < Q,. Let d<p (d=p implies Q. = 0). We
test H,: B € 2, against H,:fB € £, by rejecting H, when (SS,— SS,)/SS, is
greater than a given constant. If (SS, — SS,)/SS,; > Q,, we can be sure that the
test is significant at level a. If (SS; — SS,)/SS; < Q/, we can be sure that the test
is not significant at level a. Otherwise, the test may be viewed as inconclusive.
This suggests a bounds procedure similar to the one suggested by Durbin and
Watson (1950) for testing the autocorrelation of disturbances:

(2.19)  reject H, if (SS,— SS,)/SS, > Q..

accept H, if (SS, — SS,)/SS, < 0.,

test inconclusive, otherwise.
If D=0, we have 2, = R*: S5, is the unrestricted sum of squares. When d =0
and C,=C, we have p=¢q, d=0, Q= {BER*: C,f - v,,=0}, 2, =R*, and
Q0,=0.:(8SS,— SS,)/SS, follows a gF(p—d,n—k+d)/(n—k+d) distri-
bution under the null hypothesis and the bounds procedure becomes equivalent
to the usual F test. Table I gives some numerical values of the bounds Q, and
Q.. Further, it is straightforward to see that Q,— Q/ tends to zero as n — oo
(with k, g, p, and d fixed). Thus, if Q, is the tight critical value given by (2.12)
and

lim P[(SS,-SS,)/SS,>0,] =1 when B¢,
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TABLEI
ExaMPLES OF CRITICAL BOUNDS (a = .05)

n k q P d Q4 Qq
30 3 2 1 0 16 .25
4 2 1 0 16 .26
4 3 2 1 16 .34
5 2 1 0 17 27
5 3 2 0 27 36
S 3 2 1 16 36
60 3 2 1 0 .07 11
4 2 1 0 .07 11
4 3 2 1 .07 15
5 2 1 0 .07 12
5 3 2 0 12 15
5 3 2 1 .07 15

for all 0 < a <1, we have
lim P[(SS,— SS,)/SS,>Q,] =1 when B&Q,

(this follows from the inequality Q. < Q, < Q, and by observing that Q) — oo
when a — 0). In other words, the bounds procedure is consistent for B €& £,
provided the corresponding test based on a tight critical value is consistent.

Note that the basic characteristic of a bounds test is that it satisfies the
conditions

(2.20)  P[Rejecting Hy|H,] <a, P[Accepting Hj|H,] <1— a.
Rejection with a small value of a may be considered as a ““strong rejection” while

acceptance with a large may be viewed as a “strong acceptance.” For further
discussion of bounds procedures, see Dufour (1986).

3. SPECIAL CASES

To illustrate how the above results may be used, let k=5 in model L and
suppose we wish to test H,: 8,8, =1 against the unrestricted model. Then we
can set ¢=2 in Corollary 1 (because this nonlinear restriction involves two
coefficients only) and we have under H,,

P[(SS,— SS,)/SS,>2F,(2,n—=5)/(n-5)] <a.
We thus get easily an exact conservative critical value for the statistic
(SS,— SS,)/SS,. If instead we test H,: 8,B; < 1 against the unrestricted model,
we can use the same critical value (with SS, obtained under the restriction
B,B; < 1). Suppose now that we wish to test 8,=0 when B,8;=1 is a main-
tained restriction. This is equivalent to testing Hg*: B, =0 and B,8; =1, against
H¥*: —o0 < fB,< +00 and B,8; =1 (more simply, H*: 8,8, =1). Then we have
q =3 in Corollary 1 and we can also apply Corollary 2 with p =1 and d=0. We
thus get the conservative and liberal critical values Q,=3F,(3,n —5)/(n—5)
and Q. =F,(,n—15)/(n—>5). If we replace 8,8;=1 by B,8;<1 in Hy and
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H*, we can use the same critical values (with SS; and SS, obtained under the
inequality restriction f8,8; < 1).
To take a more complex example, consider the equation

2 .

yi=Bo+ X vx+8uxi+8,(2xuxn) +0pxi+u, (i=1,....n).

j=1

For example, this could be a translog production function or a unit cost function.
Since economic theory often suggests that such a function should enjoy a
concavity property, we may wish to test an hypothesis of the form H;: 4 <0
(4 negative semidefinite), where A =[§,]; ;_,, and &, =8,,, or equivalently
H,:8,,<0, 8,<0, and 8,,8,, — 8%, > 0, against the unrestricted model. Here
the null hypothesis imposes a nonlinear inequality and two linear inequalities.
Since k = 6 and the restrictions involve 3 of the parameters (g = 3), we can use
the conservative critical value Q,=3F,(3,n—6)/(n—6). Suppose now that
A < 0 is a maintained restriction under both the null and the alternative hypothe-
ses, and we wish to test the hypotheses Hj*: 8,, =0 and Hy*:vy, + v,=1. The
first problem is equivalent to testing Hg*: 6,, =0, 8;, <0, 8,, <0, and §,, 6,, —
8% >0, against H*:8,,<0, §,,<0, and 8,,8,,— 83, >0. Thus g=3 and Q, =
3F,(3,n—6)/(n— 6) is a conservative critical value while, by Corollary 2 (with
p=1and d=0), Q. =F,(1,n—6)/(n— 6) is a liberal critical value. The second
problem is equivalent to testing H**: v, +v,=1, 8;; <0, 8,,<0, and §,,8,, —
8% > 0, against H;*. Then ¢ = 4 (the restrictions can be formulated in terms of 4
different linear transformations of the model coefficients, i.e., v, +v,, 6,5, 85,
8,), Q,=4F,(4,n—6)/(n—06) is a conservative critical value, while Q/ =
F,(1,n—6)/(n— 6) is a liberal one.

As pointed out above, a critical value Q, may exist such that 0.<0Q, and
(2.12) holds (Q, is a tight critical value). Similarly, the inequality (2.15) may hold
for a critical bound larger than Q/. For nonlinear hypotheses, however, a tight
critical value (or points closer to it) may be very difficult to compute. In such
situations, the only exact critical bounds available are those given by Corollary 1
and, when applicable, by Corollary 2. Indeed, in cases that do not reduce to the
usual F test, tight critical values have been developed only for special problems.

An interesting situation where a tight critical value can be found (at least in
principle) is the problem of testing hypotheses that involve linear inequality
restrictions: H,: CB =, against H,: CB > v,, or H, against H,: B € R*, where
Yo is a ¢ X 1 fixed vector. Exact tests for such problems have been studied by
Gouriéroux and Monfort (1979), Yancey, Judge, and Bock (1981), Yancey,
Bohrer, and Judge (1982), Gouriéroux, Holly, and Monfort (1982), Farebrother
(1984, 1986), Hillier (1986), Judge and Yancey (1986), and Wolak (1987).® The
problem of testing hypotheses of the form H,: C,8 = v,, and C,B = v,, against

® These authors give finite-sample results for the classical linear model (in some cases, o2 is taken
as known). Further recent results on inference in linear models with linear inequalities are available in
King and Smith (1986) and Geweke (1987). For some asymptotic results applicable under more
general assumptions, see Gouriéroux, Holly, and Monfort (1980), Kodde and Palm (1986, 1987),
Rogers (1986), and Wolak (1985).
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H,: C,B > v,0 and C,8 = vy, or H, against H,: B € R¥, is also considered by the
same authors. In these problems, the null distribution of the LR statistic is
basically a mixture of Fisher (or chi-square) distributions. Except for special
cases where closed-form solutions are available (see Kudo (1963), Yancey et al.
(1981), Shapiro (1985)), the weights of the mixture must be obtained by evaluat-
ing multivariate normal probabilities (which depend on X and C). Algorithms to
find these weights are described by Bohrer and Chow (1978) and Farebrother
(1984, 1986). It is also possible to obtain approximate weights by using simula-
tion techniques (see Gouriéroux et al. (1982, p. 78)). However, these computa-
tions can be costly, especially when the number of linear inequalities is large.
Thus, even in the case of linear inequalities, the bounds given by Corollaries 1
and 2 may be useful. They are practically costless. When the weights are
relatively difficult to find, we recommend that the bounds be first checked; if the
result is inconclusive, a tighter critical value (or a p-value) may be computed by a
more costly method. Note also that tighter bounds could be derived from the
results of Perlman (1969) and Kodde and Palm (1986). For example, to test r
equalities and ¢ inequalities on linear functions of the parameters, the asymp-
totic null distribution of the statistic n[log(SS,/SS;)] is a mixture of the
chi-square distributions x3(r), x*(r + 1),..., x*(r + ¢), which is bounded by the
mixtures 1x2(r)+ 1x3(r +1) and 3x*(r+q— 1)+ 3x*(r + q); see Kodde and
Palm (1986). In finite samples, analogous bounds would involve Fisher distribu-
tions rather than chi-square distributions.

The problem of comparing two non-nested linear models is also noteworthy.
Consider the models

(3.1) Hy: y=XoBy+ uy, H:y=XB+u,

where X, is a fixed n X k; matrix with 1 <rank(X;)=k;<n, B; is a k;x1
coefficient vector and %, ~ N[0, 6?I,] with o >0 unknown (i=0,1). Suppose
also that X, =[X,, Z] and X, = [X,, Z] where Z is an n X m matrix of common
regressors (0 < m< k,;), and rank(X)=k=ky,+k; —m<n, where X=
[X,, X,, Z]. We wish to test H, against H,.

It is clear that H, and H, are special cases of the comprehensive model

(32) y=X8+u=X,8,+ X8, +Z8 +u,

where u ~ N[0, 62I,]: 8, =0 yields H,, and §,=0 yields H,. From Corollary 1,
we have under H,

(33)  P[(SS,—SS,)/SS,> (ky—m)E,(ky—m,n—k)/(n—k)] <a,
where §S; = Ming ||y — X,.E,.||2, i=0,1; or equivalently
(3.4)  P[(55,/55,)<C,] <a,

where C,= {1+ [(k,—m)F,(k,—m,n—k)/(n—k)]} ~1 The likelihood ratio
test for two non-nested linear models was studied recently by King (1985), who
points out that the test cannot be similar and shows how to compute the exact
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distribution function of the likelihood ratio.’ In this case, exact critical values
which are tighter than those supplied by Corollary 1 may be obtained by using
the Imhof (1961) algorithm. Note however that finding these critical values
(which depend on each particular regressor matrix) or computing p-values may
require a fair degree of computation. Before undertaking this operation, it is
certainly worthwhile to check whether the bound given by (3.3) or (3.4) yields a
significant result. Note that Corollary 2 is not applicable in this case.

As an illustration, consider critical regions of the form SS;/SS, < ¢, and take
k,=k,=2, m=1, and a =.05. Then, for n = 20, we find as lower bound on the
critical value C ;= 0.793; for three different regressor matrices with the same
dimensions, King (1985, Table 1) finds 0.8547, 0.8645, and 0.8334 respectively as
the critical values that yield tests of size .05. For n = 60, we find the lower bound
C s =0.934 while King finds the critical values 0.9537, 0.9573, and 0.9461. In
these examples, the lower bound and the tight critical values are remarkably
close. Though there is no general guarantee that this will be the case, this
proximity underscores the fact that the bounds can be quite useful in practice.
When computing tight critical values is considered costly, we thus recommend
that the bound on the critical value be first checked; if the test statistic is not
found significant, then the critical value (or the p-value) may be computed with
the method described by King (1985).

When the alternatives considered involve linear inequalities or non-nested
linear hypotheses, algorithms are available to compute tight critical values. In
these situations, the bounds given in Corollaries 1 and 2 can still be useful to save
computation costs. But clearly these are relatively regular situations. When
nonlinear hypotheses of a more complex form are involved, no algorithm seems
available. In all cases, the bounds given by Corollary 1 are applicable and, in an
important subset of cases, those of Corollary 2 can also be used.

4. MULTIPLE TESTING

The bounds given by Theorems 1 and 2 have another property which is not
shared by other exact critical values (if available): they can be used for simultane-
ous inference. In this section, we study this property.

Here, rather than a single LR statistic associated to (I}, £,), we consider a
family of LR statistics associated with a set of comparisons H(J) =
{(I,0,R,):a€J}C H. The index set may be fixed or data-dependent (as
happens, for example, if pre-testing is taking place), finite or infinite, countable
or uncountable. Clearly, in most practical situations, J is finite. From Theorem 1,

° The tests studied by Cox (1961, 1962) and the various extensions of these, e.g. Pesaran (1974),
Pesaran and Deaton (1978), Davidson and MacKinnon (1981), Fisher and McAleer (1981), Godfrey
(1983), or Mizon and Richard (1986), are not stricto sensu likelihood ratio tests (between two
non-nested hypotheses). For reviews of non-nested hypothesis tests, see MacKinnon (1983) and
McAleer (1987).
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the important result for simultaneous inference is the second inequality in (2.2).
From the latter, we see that

(41) P[T,>Q,, forsomeac]]<a.

This property has two basic interpretations.

The first interpretation allows one to construct finite-sample induced tests of
nonlinear hypotheses. Suppose that @ # I, N, I, (with probability 1) and
let Hy: CBE€ I, be a null hypothesis of interest. Then the induced test that
rejects H, when T, > Q, for at least one a € J, has size not greater than a.!° The
null hypotheses tested (or the contrasts considered) are typically chosen so that
IycN,c,; I, This choice may be influenced by the data (for example, through
pretesting to select the sets I',).

The second interpretation follows the spirit of multiple comparison methods.
Suppose that the collection of null hypotheses K(J) = {I,,: a€J} on CB may
contain both true and false hypotheses. Then using the critical value Q, makes
sure that the probability of rejecting a true hypothesis (or more) is not greater
than a. Or, equivalently, the probability that all the rejected hypotheses be false
is not smaller than 1 — a. The fact that this property is implied by (2.2) can be
seen as follows.

Let J,={a€J:CBET,,} theindices in J associated to true hypotheses (8 is
the true coefficient vector) and y = CB. Setting Sup {7,: a €J,} =0when J; = &,
the probability of rejecting a true hypothesis (or more) in K(J) is P[Sup {T,:
a€J,} > Q] Consider the collection of hypothesis pairs obtained by adding the
pair ({v},R¥) to H(J,):

H(J) = {(F, 24) :a€/} U {({v}.R*)} = {(L0.2): a€ ]},

where J, is the appropriately extended index set. Clearly J, CJ, and CB€
N, e 7L, with probability 1. Thus

(42)  P[Sup{T,:acJ)}> Q. <P[Sup({T,:a€]}>0,] <aq,

where the second inequality follows from Theorem 1.

Let us rewrite the criterion (SS,, — SS,,)/SS,; > Q, as (SS,, — SS,,)/s4 > S2,
where 52 = §S,,/(n — k) and S? = gF,(q, n — k). We see immediately that S, is
the critical value used in Scheffé’s multiple comparison procedure; see Scheffé
(1953; 1959, p. 69) and Savin (1984, p. 849). The relationship with Scheffé’s
method is indeed much deeper. Consider a linear hypothesis of the form
I!B=c,, where [,€ R* and c, €R, and let the alternative hypothesis be 2, =

b (B0 important to note here that the test statistics 7,, a € J, are not generally independent. If
they are independent and the distribution of each statistic under the null hypothesis is known, it is
easy to find a tight critical value for the corresponding induced test. For some interesting recent work
which exploits the independence of test statistics (for misspecification testing), see Phillips and
McCabe (1984) and Kiviet and Phillips (1985).
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R*. Then

(4.3) (S'Sa()_SSal)/szl= ]1/2 =t(la’ca)2

sli(xx)™,
where s2=||y — XB||>/(n— k) and f=(X'X)"'X’y. In this case, the signifi-
cance criterion for each a can be written |7(/,,c,)| > S,. Scheffé (1953, 1959)
showed that

(44)  P[le(1,IB) <S,VIEL)|=1-a
where L, is any linear subspace of R* with dimension ¢; or equivalently
(4.5)  P[Sup(|t(L,IB):1€L,}>S,] =a.
An important practical implication of (4.5) is
(4.6)  P[Sup{|z(,,I'B)|:leM}>S,] <a

for any nonempty subset M C L. The latter shows that S, may be used
as a simultaneous critical value for any collection of hypotheses of the form

H,y: ;B —c,=0, where /,€ L, against the unrestricted model. On the other
hand, Theorem 1 above shows that Scheffé’s critical values can be applied to any
collection of hypotheses of the form H,,: CB € I',,, where I,, € R There is no
other restriction on their form. Both the finite-sample and simultaneity properties
are preserved.

When we test a finite number of fixed linear hypotheses (say, m), it is also
possible to find a simultaneous critical value by using Bonferroni inequality. One
simply needs to use a/m as the level for each of the m separate ¢ tests: the
induced test that rejects the joint hypothesis when at least one ¢ statistic is
significant at level a/m has size no greater than a. When m is small, the critical
value obtained in this way (call it 7, ,,,) can be smaller than S,. However, it is
easy to see that ¢, ,, increases with m (while S, does not depend on m), so that
!4 ,m must be larger than S, for m large. For further discussion, see Miller (1966)
and Savin (1984). Note also that, for nonlinear hypotheses, exact Bonferroni
bounds are not available because the marginal distributions of individual LR
statistics are unknown.

The first inequality in (2.2) implies that the critical region 7, > Q, has size not
greater than a for testing CB € I, where I, N, _ ,I,,, irrespective of the way b
is selected in J. For example, if the test statistics associated with H(J) are
computed one after the other, b may be the first statistic greater than Q. This
observation can be useful from a computational point of view because, in this
case, one does not need to find the supremum of the test statistics.

Similarly, since minimizing the sum of squares under nonlinear restrictions can
be costly, the simultaneity property of Q, remains unaffected if SS, is replaced
by S(B ), where ,B is any estimator of B that satisfies the alternative hypothesis
§2,1- A precise statement of this observation is given by the following corollary of
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Theorem 1, which can be viewed as a generalization of Corollary 1.1 and follows
in the same way.

COROLLARY 3: Let the assumptions of Theorem 1 hold and let { B,:acH)}bea
family of k X 1 random vectors such that P[B, € Q,]1=1 for all a € H and for all
B. Then, if CB €N, I, (with probability 1), we have

@) P[{sS,0-5(8,)}/5( B,, >0.]
< P[Sup {[SS,0- ]/S ] :aeJ}>Q,,]
< P[Sup{T,: aeJ} 0.] <

where the index b can be chosen in J by any rule.

Theorem 2 gives a general sufficient condition under which a liberal critical
region may be obtained from a collection of test statistics (instead of only one
statistic). To understand its meaning, suppose that we want to test H,: B € 2,
where 2, N, ,;2,, (with probability 1), and consider the test that rejects H,
when Inf {7, : a € J} is large. If the conditions of Theorem 2 hold, we know from
(2.13) that the critical region Inf{7,: a €J} > Q/ has size not smaller than a.
Thus the result Inf(7,: a €J} < Q/, is certainly not significant at level a. When
J is finite, we can say also that the test which accepts H, when T, < Q/ for some
a € J has size not smaller than a. A similar interpretation holds for the modified
statistics considered in the following corollary of Theorem 2, which can be
viewed as a generalization of Corollary 2.1.

COROLLARY 4: Let the assumptions of Theorem 2 hold and let (B, ac H) bea
family of k X 1 random vectors such that P[B,€Q,]=1 forallac H and for all
B. Then, if B € ﬂae ;82,0 (with probability 1), we have

(48)  P[{S(B,) —SSn}/SSn> QL
> P[Inf [S(8,) - $S.]/SSu:acd}) >0l
> P[Inf{T,:acJ}>Q.] >«

where the index b may be chosen in J by any rule.

When Theorem 2 is applicable, it is natural to combine it with Theorem 1 and
seek a bounds induced test for H: B € 2,. However we must observe that there is
usually a nonzero probability that the events Sup{7,:a€J}>Q, and
Inf{T,: a€J} < Q. occur together. In other words, the two procedures could
give conflicting answers. There is a simple way to avoid this difficulty. Consider
the test that rejects H, when Inf{7,:a€J}> Q, or Sup{T,:a€J}>Q,.
Clearly

(49) P[Inf{T,:acJ}>QLorSup{T,:act}>Q,]
>P[Inf{T,:a€J}>Q.]>a

when B € 2,. Thus, the test that accepts H, when Inf{7,:a€J}<Q’, and
Sup (T,: a€J} < Q, has size not smaller than a.
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If 2,CN,c 2, (with probability 1), a bounds induced test of H,: B € @,
may be built as follows:

(4.10)  reject H,if Sup{T,:a€J} > Q,,
accept H,, if Sup {T,:a€J} < Q,and Inf{T,: a€J} < Q,
test inconclusive, otherwise.

When Theorem 2 applies, this procedure satisfies the same basic conditions as the
procedure in (2.19), namely

P[Rejecting Hy|Hy] <a, P[Accepting Hy|H,] <1 - a.

It can be viewed as a generalized bounds test (see Dufour (1986)). Clearly (2.19) is
a special case of (4.10) where J contains only one pair of hypotheses. When J is
finite, the procedure can also be described as follows:

(4.11)  reject Hyif T,> Q, for some a € J,
accept H,, if T, < Q, for all a € J and T, < Q/, for some b € J,

test inconclusive, otherwise.

When applicable, the bounds procedure is a natural modification of the conserva-
tive induced test. Even in the case of linear hypotheses, this possibility was not
apparently pointed out in the previous literature on simultaneous inference (see
Miller (1966, 1977) and Savin (1980, 1984)).

5. CONCLUSION

In this paper, we have shown that a critical value based on the central Fisher
distribution may always be used as a conservative critical bound for any
likelihood ratio test on the coefficients of a standard linear regression. The
bounds so obtained are exact, easy to compute, applicable to any pair of
hypotheses and enjoy a strong simultaneity property. Even when a problem is
highly nonregular, a bound is always available. Many difficult cases frequently
met in econometric work are covered: nonlinear hypotheses, inequality restric-
tions (linear or nonlinear), non-nested hypotheses, etc. Of course, one should seek
the smallest critical bound possible. In particular, it is advantageous to express
the null hypothesis in terms of a small number of linear coefficients, i.e. in terms
of a g X 1 vector y = CB where ¢ is as small as possible. In all cases, however,
the bound with g = k is valid. In certain situations (for example, nested hypothe-
ses where the null imposes some linear restrictions), it is also possible to find a
lower bound on the tight critical value. Then both an upper and a lower bound
on the null distribution of the likelihood ratio are available, and a bounds test
similar to the Durbin-Watson test may be used. Since they are very easy to
compute, the bounds may be useful even in those nonregular situations where
algorithms are available to compute tight critical values (linear inequalities,
non-nested linear models).
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The simultaneity property is analogous to the simultaneity of Scheffé’s (1953,
1959) critical values for ¢ statistics. Indeed our critical bounds are basically the
same as Scheffé’s: through a different (and simpler) method of proof, we have
found that the result given by Scheffé for collections of simple linear hypotheses
about a vector y = CB holds for any collection of hypotheses about y. Thus we
can control the level a of the induced test associated with any set of comparisons
between a null hypothesis about y and some alternative on y (or §). In this way,
for any family of hypotheses about y (some of which are true, some of which are
false), the probability that all the rejected hypotheses are false is not smaller than
1 — a. Finally, we have given conditions under which a bounds induced test can
be obtained.
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