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For general linear and non-linear models with stochastic regressors, we give simple exact bounds 
on the expected value of standard least-squares estimators of the disturbance variance. The 
bounds are valid for any correlation structure between the disturbances. We give simple condi- 
tions for residuals and variance estimators to have finite moments. In particular, for normal 
disturbances, all the moments exist. We also present analogous results for generalized least 
squares, simple and weighted Lp estimation, and maximum likelihood. In the latter case, we give 
an information inequality related to the estimation of the entropy of a distribution. 

1. Introduction 

In the context of the classical linear model, it is well known that the usual 
variance estimator s * = i;‘ii/( n - k) is unbiased while the maximum-likelihood 
estimator (assuming the normality of the disturbances) a^* = St/n is biased 
downward. On the other hand, when disturbances are correlated, both S* and 
a^* are usually biased. 

In this context, an important question is the direction of the bias. Several 
authors studied the expected value of S* when the disturbances are correlated. 
Watson (1955), Sathe and Vinod (1974) and Neudecker (1977,1978) obtained 
bounds for E(s2) in terms of the eigenvalues of the covariance matrix of the 
disturbances. Neudecker (1977,1978) also provided numerical evaluations of 
these bounds for the case where the disturbances follow a first-order auto- 
regressive [AR(l)] process. Again for AR(l) disturbances, Theil (1971, 
pp. 256-257) gave a simple approximation of E(s*) for a model with an 
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intercept and regressor, while (1972, pp. and Maddala 
pp. 282) similar results a model one regressor the 

last also assume the non-constant is generated an 
AR(l) More recently, the case observations with mean 
and David (1985) a simple bound for which is 
irrespective of covariance structure the observations, Dufour 
(1986) a similar for linear with fixed 
regressor matrix. 

above work concludes that bias of can be or 
negative, a negative appears somewhat frequent. This 
suggests that same conclusion for S2 a^2 = - k)/n]s2. 
However, the bias of 15~ is not explicitly discussed. 

All these results are limited to linear models with fixed regressors. They are 
based on studying the properties of the matrix [I - X( X’X))‘XIV, where X 

is the matrix of regressors and V is the covariance matrix of the disturbances 
(up to a scale factor). Very specific assumptions on the covariance matrix of 
the disturbances are needed to compute bounds on E(s2). For the case where 
the disturbances follow an AR(l) process, with autocorrelation coefficient p, 
Neudecker (1977, p. 1258) indicates: ‘For higher values of p the interval grows 
rapidly, given n. Here the practical use of the method becomes limited.’ 
Further, in non-linear models, it seems that similar methods would be difficult 
to apply. 

In this paper, we use a different approach based on exploiting the extremal 
properties of least squares and other estimation methods. We derive in a 
simple manner general small-sample results on the bias, the existence of 
moments and the distribution function of variance estimators in linear and 
non-linear models, with jixed or stochastic explanatory variables. We present 
four types of results. 

First, we give exact general upper bounds for the expected values of a^2 and 
s2, which are valid whenever a model is estimated by simple least squares. In 
particular, when the disturbances of the model have the same variance u2, we 
find that E(s2) I [n/(n - k)]a2 or, equivalently, E(S2) I u2 in all cases. This 
holds for both linear and non-linear models, possibly with linear or non-linear 
restrictions on the parameters, for any correlation structure between the 
disturbances and without any assumption on the form of the distribution 
(except finite second moments). The model may contain arbitrary stochastic 
explanatory variables, such as lagged dependent variables (e.g., autoregressive 
models) or endogenous variables (e.g., structural equations). We show also that 
a related property holds for misspecified regression and time-series models. 
Even though the proof of these results is remarkably simple, the latter do not 
seem to be known. In several cases, the upper bounds or the approximate 
expressions for E(s2) reported by previous authors [Johnston (1972) Maddala 
(1977), Neudecker (1977), Theil(1971)] are very close and may even exceed the 
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general bounds given here, despite the fact that they rely on much more 
stringent assumptions. 

Second, we consider the problem of the existence of finite moments for 
variance estimators in non-linear models with arbitrary stochastic regressors. 
No result seems currently available on this problem. We give a general 
sufficient condition which guarantees the existence of the moments of each 
estimated residual as well as those of variance estimators up to a given order: 
the condition depends only on the distribution of the disturbances, not on the 
form of the model or the nature of the stochastic explanatory variables. 

Third, when the disturbances are normally distributed, we show that the 
distribution function of the sum of squared residuals is bounded downward by 
a cl-ii-square distribution or by the distribution of a linear combination of 
independent cl&square variables. Consequently, estimated residuals and vari- 
ance estimators have moments of all orders. 

Fourth, we give analogous results for a number of alternative estimation 
methods: weighted (or generalized) least squares where parameters of the 
covariance matrix may be estimated jointly with the other parameters of the 
model, weighted and unweighted LP estimation (including least absolute 
deviations) and maximum likelihood. The results on generalized least squares 
apply to variance estimators based on several important non-linear estimation 
methods in regressions with autocorrelated errors (e.g., the Cochrane-Orcutt 
method and various extensions of it). For the maximum-likelihood method, we 
give an information inequality showing that a very natural estimator of the 
entropy of a distribution always tends to underestimate the true entropy if it is 
based on maximum likelihood. 

In section 2, we state our basic assumptions and, for the sake of mathemati- 
cal convenience, start by proving general propositions on weighted and 
unweighted LP estimation. Then, in section 3, we study in detail least squares 
methods (simple and weighted) and present the results on the estimation of the 
disturbance variance. Finally, in section 4, we consider estimation by maxi- 
mum likelihood and give the information inequality.’ 

2. Framework and basic propositions 

In the sequel, we shall consider models of the following form: 

Assumption A. Let Z be a matrix of observations in a space S. Z satisfies the 
equation 

4czP) = 24 0) 

‘In this paper, we do not study the variance of regression coefficient estimators or the effect of 
autocorrelation on test statistics. Under the general assumptions adopted here, deriving small- 
sample properties is a much more difficult task. All available results on this question are either 
approximate or require very specific assumptions. 
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p is a 1 vector of parameters in a parameter space 9, q( Z, j3) = 

[q,(Z, P), . * * 7 4,(Z? PN’ is an n X 1 vector function of (Z, /3) and u = 

(u 1,“‘, u,)’ is an n X 1 vector of random disturbances (n 2 1, k 2 1). 

The matrix Z includes stochastic variables but may also contain non-sto- 
chastic variables (e.g., fixed regressors). Frequently, Z has the form Z = [ y, X], 
where y is a vector of observations on a ‘dependent variable’ and X is a 
matrix of ‘explanatory variables’. Clearly, models of the form 

Y=wbP)+u, (2) 

where F( X, /3) is some non-linear function of (X, /?), or 

y=xp+u, (3) 

satisfy Assumption A. The matrix X may be fixed or random. In particular, X 
may include lagged dependent variables or endogenous variables. Note also 
that we put no restriction on the covariance matrix of u. More generally, 
regression models, structural equations and various dynamic models, either 
linear or non-linear, usually satisfy Assumption A. 

When var(ui)=uz2 i=l,..., n, we may wish to estimate u2. If p” is an 
estimator of /3, it is natural to estimate u2 with a^2 = t’ii/n, where i2 = q( Z, /I?), 
or by the corresponding estimator corrected for degrees of freedom s2 = 
C’iTi/(n - k). Below, we give simple sufficient conditions for the existence of 
the moments of ii, a2 and s2, and derive general bounds for the expected 
values of a^2 and s 2, when p is estimated by least squares. However, before 
studying estimators of the disturbance variance, it will be useful to derive 
more general results. 

Several estimation methods for /I (e.g., simple least squares, weighted least 
squares, least absolute deviations, LP estimation) are based on minimizing a 
function of q( Z, j3). Most of these objective functions can be viewed as special 
cases of a ‘weighted LP criterion’ (defined in Proposition 1). LP estimators, 
such as those obtained by minimizing the sum of absolute deviations (p = l), 
are especially useful for robust estimation [see Judge et al. (1985, pp. 836-837)]. 
Further, the minimized value of the objective function typically yields an 
estimate of a parameter characterizing the dispersion of the disturbance 
distribution (e.g., the absolute moment of order p of ui). In the following 
proposition, we present some general results on weighted LP estimation: 
simple conditions for the existence of the moments of estimated residuals and 
bounds for the expected value of the moment estimator based on the mini- 
mized LP criterion. Note that, in the proposition below as well as the rest of 
the paper, /3 refers to the true parameter value while 6 refers to any possible 
value in the parameter space L2. Further, in each proposition, we suppose 
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without statement (whenever required) that the relevant estimators (p^, a^ or 
fP) and residuals (ii or 8) are measurable functions of 2. 

Proposition 1 (weighted Lr estimation). Let Assumption A hold, let w be some 
subset of the parameter space 52 such that j3 E w, let 

where P(p) is an n x n matrix (which may depend on fi) and suppose that the 
function 

s,(P;z)= &u;(z,Bp> P’O, 
i=l 

has a minimum over the subset w ,tor each Z E S. Let @so p^ = p^( Z) bf an 
estimate of p which minimizes S+(p; Z) with respect to /3 E o, u^ = u(Z, /3) = 

(0 1 ,..., 5”) and Ti, = (C~_‘=,18ilr)/n. If E(luil”) < CO, i = l,..., n, where m > 
0, then 

E(l~il’) < 00, i=l ,...,n, for O<rlm, (5) 

E(q;) -z cc for O<rlm/p. (6) 

Further, if E(lu,(Z,p)IP)=yPi, i=l,..., n, then 

and, when E(lu,(Z,P)lp)=y,, i=l,..., n, 

E($,,) 5 Y,. 

Proof Since fi minimizes 5’,( h Z), we have S,( fi, Z) I S,( p^; Z) for all 
j? E w; in particular, 5’,( /i, Z) I SP( j3; Z) where j3 E w is the true parameter 
value. Hence 

where u = u( Z, p) = ( ul,. . . , u,,)‘. Using HGlder’s inequality [see Mitrinovic 
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1970, pp. 50-54)], we see easily that 

[ 1 t luil ‘5 C(n, r),$I[Oiir for r > 0, 
i=l 

(10) 

where C(n, r) = n’-‘, if r > 1, and C(n, r) = 1, if 0 I r-2 1. From (9) and 
(lo), we get 

Iul;lr= [Iu^yp I 

[ 1 
k IUiJP 

r/P 

i=l 

Further, since ui = pi( /3)/u where pi(p)’ = [ pil( p), . . . , pi,( /3)]’ is the i th row 
of P(p), we have 

lUilms t P”(P)’ [ j=l ‘J ]m’2[ !ly2 

02) 

henceE(Juilm)< co, i=l,..., n,becauseE(Iu,l”)< co, j=l,...,n[seeLo&ve 
(1977, p. 121)]. Thus E(lu;l’) < co for 0 < r I m, i = 1,. . . , n, and, by (111, 

E(Iu^,l’) < 00, i=l ,..‘, n, O<rlm. 

Using (10) with ui replaced by Bi, we also have 

[ 1 t Iu^JP r/p S C(n, r/p) 2 lGil’ for r>O. 
i=l i=l 

Hence 
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Finally,whenE(luilJ’)=ypi<cc, i=l,...,n,wegetfrom(9) 

which then reduces to (8) when y,, = y,, i = 1,. . . , n. 0 

In the above proposition, fi may be estimated under a set of linear or 
non-linear restrictions, which are represented by the subset w c 9, and the 
estimate p^ need not be unique. We simply require that the restrictions be true 
(/3 E w) and at least one value p E w minimize S( B, Z). The result thus holds 
if there is exact multicollinearity (in which case several values of p may 
minimize the objective function). The matrix P(p) can be a transformation 
matrix making corrections for heteroskedastic or autocorrelated disturbances. 
When P(p) = I,, we get the standard (unweighted) LP criterion. For example, 
with p = 1, this yields the sum of absolute deviations. For the standard L, 

criterion, we get the following important corollary of Proposition 1. 

Corollary 1.1 (LP estimation). Let Assumpti_on A hold, j3 E w _C 9, and sup- 

pose that the function S,( p; Z) = xL_1 I qi( Z, p) Ip, p > 0, has a minimum over 

the subset w, fo_r each Z E S. Let @ = p(Z) be an nestimate of ,8 obtained by 
minimizing S,( /3, Z) with respect to j3 E w, zi = q( Z, j?) and Tp = (c:=, I fiilP)/n. 

If E(J~,l”‘)<cc, i=l,..., n, wherem>O, then 

E(lfiil’) < 00, i= l,..., n, for O<rlm, (13) 

E(Ti) < co for O<r<m/p. (14) 

Further, if E( 1 U, 1”) = y,,, i = 1,. . . , n, then 

n 

E(Yp,) 5 C y,i/‘n, 
r=l 

(15) 

and, when E(luilP)=yp, i=l,..., n, 

E(Tp,) 2 Y,. 06) 

3. Least-squares estimation 

Since least squares (simple or weighted) are probably the most widely used 
estimation method in econometrics, it is worthwhile to study the latter in 
detail. In this case, the objective function is a quadratic form in q( Z, p) and 
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the minimized value of the objective function typically yields an estimator of 
the disturbance variance. We first consider weighted least squares (or gener- 
alized least squares) where the weights may be functions of model parameters. 

Proposition 2 (generalized least squares). Let Assump_tion A hold, _let w be 
some subset of the parameter space such that B E o, A(p) = P( p)‘P( /3), where 
P(B) is an n x n matrix, and suppose that the weighted sum-of-squares function 

S(k Z) =q(Z,@‘A(@q(Z&) 

has a minimum over the subset w, for each Z E S. Let p^ = p^( Z) be an estimate 
of p obtainined by minimizing S(j3, Z) with respect to BE o, fi = q(Z, p^), 
u^=P(@)G and a^*=iYA(&ii/n. If E(Iuilm)< 00, i=l,...,n, where m is a 
positive real number, then E(IGil’)<~, i=l,...,n, for O<r<m, and 
E(a^*‘) c 00 for 0 <r < m/2. If E(uu’)= a*V(P), where CT* and V(p) are 
scaled so that tr[ V( /3)] = n, then 

E(cf*) I ctr[A(/3)V(lc)l- (17) 

Further, when V( p^) is non-singular for all p E w and A( /I) = V( /3-l, 

E(a^*) s u*. 08) 

Proof The results on the finiteness of the moments F( I Gil’) and E( &2r) 
follow directly from Propostion 1 with p = 2 and S(/3; Z) = S,(p; Z). Fur- 
ther, since B minimizes S(p, Z), we have 

ii’A(&O~u’A(j?)u. (19) 

Thus, when E( uu’) = a*v( /3), 

E(a^*) = E[ii’A(b)ii/n] 

I ~E[u’A(/3)24] 

Finally, if we let A(P) = V(B)-‘, we find (18). 0 

Note here that the condition tr( V) = n is introduced to identify u * and thus 
involves no loss of generality: when the variances of the disturbances are all 
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equal, we have var(ui) = a*, i = l,..., n; when the disturbances are hetero- 
skedastic, we have u * = cy_ ,var( ui)/n. 

Usually, the functions q( *) and A( *) depend on different vectors of parame- 
ters: q( 2, p) = ij( 2, &) and A( /?) = A< p2), where j3 = (&, &)‘. Several im- 
portant estimation methods in econometrics are b_ased_ o,n minimizing a 
weighted sum of squares of the form S( j3; Z) = q( Z, &)‘A( &)q( Z, PI) by an 
iterative or a search method, e.g., the Cochrane-Orcutt and the iterative 
Prais-Winsten methods in linear regressions with AR(l) errors, the non-linear 
methods described by Pagan (1974) for regressions with AR(p) errors, etc.; 
for a general discussion, see Judge et al. (1985, ch. 8). 

For example, in linear regressions with stationary AR(l) disturbances, the 
covariance matrix is E( uu’) = a*[C(p)‘C( p)]-‘, where ]p] < 1 and C(p) is the 
n X n matrix 

C(P) = 

\/1- 0 . . . 0 0 

-p 1 . . . 0 0 
. . . . 

0 o... -pi 

For this case, the Cochrane-Orcutt method takes 

A(P) = [WP)l’[~C(PN7 
0 0’ II= 0 zn_1 ; [ 1 

hence, by Proposition 2, 

E(a^*) = E[S(j?; Z)/n] 

n-l * 
z-0 

n ’ 

or, equivalently, E( 3:) I u *, where 8: = S( @; Z)/( n - 1). Similarly, if we 
take the iterative Prais-Winsten method [which retains the term (1 - p*)uf in 
the sum of squares], it is easy to see that E(&*) 5 a*. The same results also 
hold if the regression is non-linear. Note, on the other hand, that the property 
given by Proposition 2 does not necessarily hold if p (more generally, the 
parameter vector of the error covariance matrix) is estimated separately by an 
arbitrary consistent method. 
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If we P(p) = I, in Proposition 2, the sum S( p, Z) becomes a simple 
(unweighted) sum of squares. The following corollary thus follows in a 
straightforward way from it: 

Corollary 2.1 (simple least squares). Let Assumption A hold and let w be some 
subset of the parameter space s2 such that p E w. Suppose that the sum-of-squares 

function S( @; Z) = q( Z, p”)‘q( Z, /?) h as a minimum over the subset w for each 

Z E S, let p = p(Z) be an estimate of p obtained by minimizing S(p, Z) with 
respectto/?Eo, andleta=q(Z,B). If E(luilm)<cc, i=l,...,n, wheremis 
a positive real number, then 

E(W) < 00, i=l , . .., n, for Ocrlm, (20) 

and the statistic 19~ = fi’t?/n has finite moments E(c?~‘) up to order m/2 

(0 < r < m/2), and similarly for the statistic s 2 = i’Yii/( n - k). If E( UU’) = u 2V, 

where (I 2 and V are scaled so that tr( V) = n, then 

0<E(a^2)~a2, 0 I E(s2) I 5,‘. (21) 

The sufficient conditions given above for the existence of the moments of ii 
and 13~ do not depend on the structure of the Z matrix or the form of the q( .) 
function. It is remarkable that the upper bounds on E(g2) and E(s2) hold 
exactly for highly non-linear models, irrespective whether the model contains 
lagged dependent variables or endogenous explanatory variables and for any 
correlation structure between the disturbances. In the simple least-squares 
case, the estimator a^2 always tends to underestimate (I 2. The expected value of 
s2 is bounded by [ n/(n - k)]a2: this does not preclude an upward bias but, 

for k/n small, the bound is very close to u2. The bias of s2, if it is positive, 
can never be greater than [k/(n - k)]u 2. In absolute value, the bias of s2 is 

never greater than u2max{ 1, [k/(n - k)]}. 

Given the practical importance of linear models, it may be useful to state 
the correpsonding result for the linear case (unrestricted): 

Corollary 2.2 (linear models). Let y be an n x 1 vector of observations such 

that 

y=xp+u, 

n 
where X is an n x k matrix and u is a vector of disturbances. Let p be any 
least-squares estimate of j3, ii = y - Xp^, G2 = fi’ii/n and so’ = iYi;/[ n - rank(X)]. 
If E!.(]~~]~)<oo, i=l,..., n, where m is a positive real number, then 

E(liiil’) < 00, i= l,..., n, for 0 < r<m, and 

E(g2’) < 00, E(s$) < w for O<rlm/2. 
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If E( UU’) = a2V, where a2 and V are scaled so that tr( V) = n, then 

and, provided rank( X) is a fixed integer with probability I, 

E(si)< {n/[n-rank(X)])u2. 

To define ~02, we use rank(X) rather than k because-the matrix X may not 
have full column rank. In this case, several values of p minimize the residual 
sum of squares but the minimal value of (y - XB)‘(y - Xfi) is unique. By a 
‘least-squares estimate’ of /3, we mean any of these values (each of which may 
be defined by using a different generalized inverse of XX). There is always at 
least one value p^ which minimizes the sum of squares. For further discussion, 

see Rao (1973, ch. 4). 
It is interesting to compare the bound on E(s’) with other available results 

on E(s 2, under dependence. Since the upper bound n/( n - k) for E(s 2)/u 2 
holds for all correlation structures, one should be able to obtain tighter 
bounds by assuming fixed regressors and a specific process on the dis- 
turbances. Neudecker (1977,1978) give such bounds for an AR(l) process on 
the errors. As expected, the upper bounds reported in table I of Neudecker 
(1977) are smaller than n/( n - k). However, in many cases, they are surpris- 
ingly close to n/(n - k): for example, for p = 0.8, n = 10 and k = 3, the up- 
per bound reported by Neudecker is 1.375 while n/(n - k) = 1.429, etc. 
Neudecker (1977, table II) also gives approximate bounds based on Anderson 
(1948, eq. 39): some of these bounds actually exceed the maximum possible 
value for all possible correlation structures. Theil (1971, pp. 256-257) supplies 
an approximate formula for E(s2) when the model has an intercept, one 
regressor generated by an AR(l) scheme (with coefficient r) and AR(l) 
disturbances (k = 2): 

E(s2) = & 
2 

n- - -2pr , 1-P 1 IPI < 1, Irl < 1. 
When p + -1 and r -+ +l, this yields E(s2)/02 + (n + l)/(n - 2) > n/(n 
- 2), e.g., with p = - 0.99 and r = 0.99, E(s2)/a2 = (n + 0.955)/(n - 2). 
Clearly, the latter is not a possible value of E(s2), irrespective of the sample 
size.2 Finally, the approximate expression given by Maddala (1977, p. 282) for 
a similar model with no intercept (k = 1) is always less than the upper bound 
a2[n/(n - l)] for 1 pi < 1 and Ir( < 1, but can be as close to it as one wishes 
(e.g., by letting p + 1 and r + 1). 

*Note also that, as p + 1, the same approximation yields a negative value for E(s*). Theil’s 
approximation is appropriate only when ) p 1 is relatively small. 
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Another useful implication of Corollary 2.1 deals with possibly ‘mis- 
specified’ regression and time-series models: 

Corollary 2.3 (misspeciJed regression and time-series models). Let (Z,: t E 
Z} be an m x 1 second-order stationary process, Y, a given component of Z,, 
and X, a (k - 1) X 1 vector made up of components of (Z,‘,,, . . . , Z;+q)‘, where 
p _< q and k 2 1. Consider the best linear predictor (in the mean-square sense) of 
Y, given X,, 

and the corresponding mean-square prediction error 

&=E[(Y,- t)‘]. 

Then, if we estimate the model 

r, = Yo + x:Y + u,, t=l,...,n, 

by ordinary least squares (OLS), we have 

0 I E(a^2) I a;,,, 

where a^’ = 20/n, s 2 = ii’ii/(n - k) and ii is the vector of OLS residuals. 

Suppose that a variable Y, follows an AR(2) stationary process but we fit an 
AR(l) model using n observations Y,, . . . , Y,. Then the disturbances of the 
‘misspecified’ model are serially correlated. Despite this complication, we can 
state from the latter corollary that a^2 tends to underestimate the mean-square 
prediction error of the linear projection of Y on Y,_,. 

If we assume that u has a multinormal distribution, it is possible to bound 
the cumulative distribution function of the residual sum of squares. The 
bounds are distributions of &i-square variables or linear combinations of 
independent &i-square variables. Consequently, all the moments of a^2 and s2 
are finite. In the following proposition, we prove this result for weighted least 
squares. 

Proposition 3 (bound on the distribution of a weighted sum of squares). Let the 
assumptions of Proposition 2 hold and suppose that u - N,[O, a2V((p)], where 
rank[V(‘(P)]=v,l~v~nand~~>O.Leth,,...,h,betheeigenvaZuesofV(~) 
numbered so that Ai > 0, i = 1,. . . , v, A, = diag(X,, . . . , A,) the matrix of the 
non-zero eigenvalues and Q, the matrix whose columns are corresponding eigen- 
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vectors (in the same order). Then E( 1 Oil ‘) < 00 and E( d2’) -C 00 for all r > 0, 
and 

P[ “Ajf)‘Sx]2P[~lplX,:ci], forallx, (23) 

where X:, . . . , X,” are independent random variables each following a x2(1) 
distribution, and pL1,. . . , pv are the eigenvalues of the matrix L$‘~Q;A(/?)Q~A\‘~. 

Proof As in the proof of Proposition 2, we have 0 I 0’6 = ii’A(/?)ii I 
u’A( /3)u. Since u is multinormal, u’A(P)u has moments of all orders, hence, 
for any r > 0, 

E[(o^‘u^)‘] -E{[B’A(&li]‘} ~E{[u’A(p)u]‘}, 

and 

E(g2’) < cc, E(]v^;]‘) < 00, i=l ,...,n. 

Since rank(V) = V, 1 I Y I n, we can write I/= QAQ’, where Q = [Q,, Q2] is 
an orthogonal matrix and 

A=diag(X,,...,X,)= 

when v=n, weset A=A,.Let ii=Q’~and A;“2=diag(X;‘/2,...,h;‘/2). 
Then U=(w’,O’)‘, where w=(ur ,..., u,)’ is a v x 1 vector such that w - 
N,[O, a2A,], and 

u’A( p) u = u’QQ’A( ,8)QQ’u = w’Q;A( ,B)Q,w = z’Dz, 

where D = A’(2Q;A(/3)QlA’(2 and z = A,‘/‘w - N,[O, a21V]. We can write 
D = RNR’, where N = diag(p.,, . . . , pL,), p,, . . . , pF1, are the eigenvalues of D 
and R’R = RR’ = I,. Then Rz and z have the same distribution and 

u’A(~)u=z’RNR’z=a2~p;X;, 
i=l 

where Xf, . . . , X,’ are independent X2(1) random variables. 0 

For unweighted least squares, an appreciably simpler result holds. The latter 
follows by considering the special case P(B) = A(p) = I, in Proposition 3. 
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Corollary 3.1 (bound on the distribution of the sum of squares). Let the 
assumptions of Corollary 2.1 hold and suppose that u - N,[O, a*V], where 
tr(V)=nand a*>O. Then E(liiil’)< cc, i=l,..., n,E(Z2’)< co foraffr>O, 
and 

P[~,,l,P[~1AjX~5x], forallx, (24) 

where Xf, , . . , X,’ are independent random variables each following a x*(l) 
distribution, and A,, . . . , h y are the non-zero eigenvalues of V. Further if V = I,, , 

P FSx kP[X*(n)lx], forall x, 
[ 1 

where X*(n) follows a X*(n) distribution. 

Again Proposition 3 and its corollary hold exactly for both linear or 
non-linear models, with stochastic and non-stochastic regressors. In the simple 
least-squares case with V = I,,, it is easy to see that (25) can be used to obtain 
conservative one-sided confidence intervals for u *: 

where P[X*(n) 2 Xi(n)] = a and 0 < (Y < 1. Note also that Proposition 3 
implies bounds on all the moments of 6*. 

4. Maximum-likelihood estimation 

All the above results apply when the model is estimated by a minimum-dis- 
tance method (least squares, weighted least squares, minimum Lr). In some 
cases, the latter methods are equivalent to maximum likelihood (ML) but this 
is not generally the case. Does a result similar to (8), (18) or (21) hold when 
the model is estimated by the maximum-likelihood method? 

Let f(y) be a density function, where y = ( y,, . . . , y,)‘. A general measure 
of dispersion associated with the density f is the entropy 

H(flf)= $n[f(v)lf(v)dy= -Et[lnf(Y)], 

where Y is a random variable with density f(y) If g(y) is any function such 
that /g( _v) dy I 1 and 

H(glf) = -@[g(u)lf(y)dy= -E&g@% 
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the following classical information inequality holds: 

H(U) I Hslf); (26) 

see Kullback (1959, pp. 14-15) and Rao (1973, sect. le.6). 
When the observations are independent and identically distributed, i.e., 

(27) 

where B is a vector of parameters and h(x; 19) is a density function, we have 

Ef[lnf(Y)l =E, k ln[h(Y,; @)] = -nH(h)h). 1 (28) 
i=l 

If fJ is an estimate of 8, it is natural to use 

ti= -i ,$ln[h(y,; e^)] (29) 
1=l 

as an estimate of the entropy H( h (h). For the case where 4 is a ML estimate 
of 8, we now show that fi always tends to underestimate H. 

Proposition 4 (information inequality). Let Y = (Y,, . . . , Y,,)’ be a vector of 

observations with density function f ( y; 8), where 8 E D is a vector of parameters 

and y E S. Suppose that f( y; 0) has a maximum with respect to 8 E D for all 

y E S, and let 8= t?(Y) be a maximum-likelihood estimate of 0. Then 

E{ln[f(Y; @I} kE{ln[f(Y; @>I}, (30) 

provided the relevant expectations exists, or equivalently 

WIf)~H(flf)? 

wheref=f(y; 0) andf”=f(y; 4). 

(31) 

Proof Follows directly from the observation 

ln[f(y,Q] 2ln[f(y,8)] forall ea, YES. 0 

Though it may seem at Grst sight that (26) and (31) are incompatible, this is 
not the case because /f(y) d y 2 /f(y) d y = 1. When (27) holds, we see 
immediately from Proposition 4 that 

E( Ei) I Z-Z, (32) 
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where H and Z!? are defined by (28) and (29). Thus II? always tends to 
underestimate fhf entropy of the probability density h. Finally, it is interesting 
to note that H( fjf) I H( flf ) is a converse of the inequality H( flf ) I H( glf ). 
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