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LINEAR WALD METHODS FOR INFERENCE 
ON COVARIANCES AND WEAK EXOGENEITY 

TESTS IN STRUCTURAL EQUATIONS 

ABSTRACT 

Inference about the vector of covariances between the stochastic explana- 
tory variables and the disturbance term of a structural equation is an im- 
portant problem in econometrics. For example, one may wish to test the 
independence between stochastic explanatory variables and the disturbance 
term. Tests for the hypothesis of independence between the full vector of 
stochastic explanatory variables and the disturbance have been proposed 
by several authors. When more than one stochastic explanatory variable is 
involved, it can be of interest to determine whether all of them are inde- 
pendent of the disturbance and, if not, which ones are. We develop simple 
large-sample methods which allow us to construct confidence regions and 
test hypotheses concerning any vector of linear transformations of the co- 
variances between the stochastic explanatory variables and the disturbance 
of a structural equation. The main method described is a generalized Wald 
procedure which simply requires two linear regressions. No nonlinear estima- 
tion is needed. Consistent tests for weak exogeneity hypotheses are derived 
as special cases. 

1. INTRODUCTION 

Inference about the vector of covariances between the stochastic explana- 
tory variables and the disturbance term of a structural equation is an impor- 
tant problem in econometrics. For example, one may wish to test whether 
a set of stochastic explanatory variables are statistically independent of the 
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disturbance of a structural equation, i.e., whether the stochastic explanatory 
variables considered can be treated as “exogenous” (or “predetermined”). 
In particular, it is well known that independence between explanatory vari- 
ables and disturbances is usually needed to ensure that standard inference 
procedures, like ordinary least squares or F-tests, are appropriate in linear 
models. Furthermore, a number of economic hypotheses can be formulated 
in terms of the independence between stochastic explanatory variables and 
disturbances.2 

Tests for the hypothesis of independence between a vector of stochas- 
tic explanatory variables and a disturbance term were proposed by sev- 
eral authors; see Durbin (1954), Wu (1973, 1974), Revankar and Hartley 
(1973)) Farebrother (1976), Hausman (1978), Revankar (1978)) Kariya and 
Hodoshima (1980), Richard (1980), and Holly and Sargan (1982).’ These 
articles deal especially with the problem of testing whether the full vector 
of stochastic explanatory variables is independent of the disturbance. When 
more than one stochastic explanatory variable are involved, it is often nec- 
essary to determine whether all of them are independent of the disturbances 
and, if not, which ones are. This can be useful, for example, to check the 
specification of a simultaneous equation model (e.g., block recursiveness as- 
sumptions) and to get more efficient estimators for such models. 

Tests for the hypothesis of independence between a subset of stochastic 
explanatory variables and the disturbance in a structural equation have been 
proposed by a number of authors: Hwang (1980) and Smith (1984) studied 
likelihood ratio (LR) tests, Hausman and Taylor (1981a), Spencer and Berk 
(1981) and Wu (1983b) p ro p osed extensions of the tests previously studied 
by Wu (1973) and by Hausman (1978), while Engle (1982) derived Lagrange 
multiplier (LM) tests. 

Each of these procedures has important drawbacks, either practical or 
theoretical. Some of them require nonlinear estimation, e.g., LR tests and 
certain forms of the LM tests. All of them require a separate estimation for 
each null hypothesis tested. It is difficult to construct confidence intervals 
for the covariances of interest because covariance estimates or their standard 
errors are not typically produced. 

2 See Wu (1973). For an example of a structural equation where the stochastic 
explanatory variables can be treated as "exogenous”, see Zellner et al. (1966). 

’ Further useful discussions and extensions of these tests are provided by Bron- 
sard and Salvas-Bronsard (1984), Engle (1982, 1984), Gouriéroux and Trognon 
(1984), Hausman and Taylor (1980, 1981a,b), Holly (1980, 1982a,b, 1983), Holly 
and Monfort (1982), Nakamura and Nakamura (1980, 1981), Plosser et al. (1982), 
Reynolds (1982), Riess (1983)) Ruud (1984), Tsurumi and Shiba (1984), Turking- 
ton (1980), White (1982), and Wu (1983a). 
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. 

Hausman-type tests are better viewed as consistency tests. By com- 
paring an efficient estimator under the null hypothesis with a consistent 
estimator under the alternative hypothesis, one checks whether the con- 
strained estimator is consistent (see Holly, 1982a,b; Hausman and Taylor, 
1980,198lb). When testing exogeneity, this is not equivalent to testing inde- 
pendence between possible endogenous variables and the disturbance term: 
the condition tested is weaker (unless special assumptions hold) and the test 
may not be consistent. (This is easy to see from Hausman and Taylor (1980, 
1981b) and Wu (1983b).) E ven though this condition may be sufficient to 
ensure the consistency or the efficiency of the constrained estimator, it is 
not generally sufficient to guarantee the validity of inferences obtained from 
the model by treating the regressors whose exogeneity is in doubt as being 
exogenous: tests and confidence intervals pertaining to the various coeffi- 
cients of the model may not have the correct levels, even asymptotically.4 
In many if not most practical situations, the relevant hypothesis is whether 
one can treat some stochastic explanatory variables as being exogenous for 
all purposes of inference (i.e., the independence assumption), 

In this paper, we consider a single linear structural equation and develop 
a class of linear Wald-type procedures which allow us to construct confidence 
regions as well as to test any set of linear restrictions on the vector of covari- 
antes between the stochastic explanatory variables and the disturbance term 
in the equation. Besides a set of instrumental regressions, all that is needed 
is a simple linear regression which yields consistent estimates of both the 
structural coefficients in the equation and the relevant vector of covariances. 
The asymptotic covariance matrix of the coefficients is then easily obtained. 
Using these results, one can test any set of linear restrictions on the co- 
variances and construct confidence regions. Cross-restrictions between the 
structural coefficients and the covariances may also be tested. Special cases 
of this family of tests include tests of zero restrictions on the covariances, 
either for individual covariances or subvectors of covariances. In particular, 
one can compute in a routine way asymptotic “t-values” for each covariance, 
an especially convenient instrument to explore the recursiveness properties 
of a model. All the tests suggested are consistent. 

. 

Because they are based on consistent asymptotically normal estimators 
different from the maximum-likelihood estimators (Wald, 1943), the tests 
developed here should be viewed as generalized Wald tests rather than Wald 
tests in the usual sense (see Stroud, 1971; Szroeter, 1983). We will not need 
the information matrix associated with the maximum likelihood estimators. 
As we shall see below, the tests proposed can be obtained as a byproduct of 

4 See White (1982, p. 16), and Breusch and Mizon (comment to Ruud, 1984, p. 
249). 
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the estimation of a structural equation by any instrumental-variable method 
(including two-stage least squares). They thus have a natural complemen- 
tary with the latter estimation method. 

In Section 2, we formulate the model considered and the assumptions 
used. In Section 3, we describe the procedures proposed and formulate 
the theorems underlying them. In Section 4, we examine three important 
special situations: the case where we want to test independence between the 
full vector of stochastic explanatory variables and the disturbance term, the 
one where a subset of stochastic explanatory variables is taken a priori as 
being exogenous and the case where the matrix of instruments includes all 
the fixed (or exogenous) regressors in the equation considered. In Section 5, 
we discuss econometric applications. Finally, in Section 6, we provide the 
proofs of the theorems. 

2. FRAMEWORK 

We consider the model described by the following assumptions. 

ASSUMPTION 1: 
y = yp + 217 + u, (2.1) 

where y is a 2’ x 1 random vector, u is a 2’ x 1 vector of disturbances, Y 
is a 2’ x G matrix of stochastic explanatory variables, 21 is a 2’ x Ki non- 
stochastic matrix of rank Ki, /3 and 7 are G x 1 and Ki x 1 vectors of 
coefficients. 

ASSUMPTION 2: 
Y=ZI-I+V, (2.2) 

where 2 is a 2’ x K non-stochastic matrix of rank K, II is a K x G matrix 
of coefficients and V is a 2’ x G matrix of disturbances. Furthermore, we 
will denote by yk, Ilk and wk the lath columns of the matrices Y, lI and V 
respectively (1 5 k 2 G): 

Y = [Yl,... d/G], n= [l-h,-,nG], v= [wl,...,wG]. (2.3) 

ASSUMPTION 3: The rows (ut, vi), t = 1,. . . ,T, of the matrix [u : V] 
are independent and normally distributed with mean zero and non-singular 
covariance matrix 

6=( ~01,402,~~., OOG)‘, c22 = [bjk] j, k=l,..., G. P-5) 
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ASSUMPTION 4: Let 2 = [Zrr : 221 and II = [II:, : II;]‘, where 2s 
is the 2’ x Ks matrix of non-stochastic variables excluded from equation 
(2.1) , II2 is the G x Ks corresponding matrix of coefficients, Zrr is a set of 
variables included in 21, so that Y = ZrlIIrr + &II, + V, rank(IIz) = G 
andT>2G+Kr. 
[This condition ensures identification of the coefficients of equation (2.1); see 
Fisher (1966, p. 53). Note also that Zr is not constrained to be a submatrix 
of 2.1 

ASSUMPTION 5: The matrix T LZ’Z converges, as T -+ 00, to a positive 
definite matrix 9.. 

ASSUMPTION 6: The matrices $ZiZ, and *Z’& converge, as 2’ --+ 00, 
to the matrices Qrr and Qr respectively, where Qrr is positive definite. 

We want to test some set of linear restrictions on the parameter vector 
6, i.e., a hypothesis of the type 

Ho : H6 = do, (2.6) 

where H is an r x G matrix of rank t 5 G and do is a fixed r x 1 vector. Since 
the vectors (ut, ui)‘, t = 1,. . . , T, are i.i.d. normal, we obtain by regressing 
ut on Vt: 

u=Va+e, (2.7) 
where a = I=&lS and the vector e is N[O,oz1~] independent of all the ele- 
ments of V.5 Then, substituting (2.7) into (2.1), we get 

y=YB+Zly+Va+e, (2.8) 

. 

where the disturbance vector e is independent of all the regressors. The lat- 
ter formulation illustrates clearly that the existence of correlation between 
some of the regressors and the disturbance term in an econometric relation- 
ship, as generated, for example, by simultaneous equations, may be viewed 
as a problem of omitted variables. If the matrix V were observed, we would 
test any set of linear restrictions on the coefficients p, 7 and a in equation 
(2.8) by standard F-tests, and these tests would be exact in small samples. 
In particular, linear hypotheses regarding the parameter vector a could be 
tested by using the least squares estimate & obtained from (2.8). Further- 
more, if Cs2 were also known, the transformation S = &au would allow 
one to test H 0 : H6 = do by a standard F-test. The difficulty, of course, is 
that neither V nor Css are known. We also note that, although hypothe- 
ses regarding S have relatively direct and intuitive interpretations (e.g., in 

’ This transformation is also used by Revankar (1973), Revankar and Hartley 
(1973) and Reynolds (1982). 
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terms of independence), the auxiliary parameter vector a = CTzib itself may 
be of interest. One may wish to test linear restrictions on a directly in the 
reparameterized model (2.8). I n any event, we will deal with both problems. 

We will first consider the problem of testing arbitrary linear restrictions 
on the parameter vector o = (/3’, 7’, a’)’ and then restrictions on the covari- 
ante vector 6. In each case, we will first define a vector of linear consistent 
asymptotically normal estimators, derive the asymptotic covariance matrix 
and propose generalized Wald tests. In particular, we will derive the asymp 
totic distribution of the covariance estimator 6 under both the null and the 
alternative hypotheses. As a special case, it will be straightforward to test 
zero restrictions on 6, for example, Ho : 61 = 0 where 6 = (6:, 64)‘. In the 
context of the model considered here, the hypothesis 61 = 0 is equivalent 
to the independence between Yr and u, where Y = [Yl:Y2], or the weak 
exogeneity of Yi inside equation (2.1).6 Further, from the same results, it is 
easy to construct a confidence region for any element or subvector of 6 or o. 

3. DESCRIPTION OF THE TESTS 

In equation (2.8), replace the disturbance matrix V by the corresponding 
ordinary least squares (OLS) residuals 

by-z@ (3.1) 

where fi = (Z/Z)-‘Z’Y. We obtain in this way the equivalent equation 

y=Yp+Z17+Va+e* =Xa+e*, P-2) 

where X = [Y : 21 : p], cr = (@‘, 7’, a’)’ and 

e* =Z(fi-Il)a+e. (3.3) 

Under Assumptions 2 through 6, we have 

Z’V 
plim 7 = 0, plim 22, = Czz (3.5) 

6 For a general discussion of exogeneity and related notions, see Engle et af. 
(1983). 
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(where plim refers to the probability limit as T + oo), hence 

X’X 
Q5 = plimy = QP 911 0’ 

1x22 0 c22J 

and 

Q 
Z’X 

ax - - plim T - = [QJI : Ql : 01, (3.7) 

where rank(Q,) = L = 2G + Kr. Consider the OLS estimate of a! obtained 
from (3.2): 

d = (x/x)-lx/y. (34 

Under the assumptions made, this estimate is unique with probability one. 
Further, the asymptotic distribution of d is given by the following theorem. 
(The proofs of the theorems are given in Section 5.) 

Theorem 1. Suppose that Assumptions 1 through 6 are satisfied, and let 
matrix Q5 defined in (3.6) b e non-singular. Then the estimator & given in 
(3.8) is consistent for cx and fl(8 - Q) has a normal limiting distribution 
with mean zero and covariance matrix 

& = Q,l[a,aQx + ~8:,6,~Qzx] 9,’ 

= o,“Q,’ + PQ,‘Q:,Q,‘Q.~Q,~, 

where Qa2 is given by (3.7) and 

P = a’C22a = S’Ii$6. 

Further, the statistics 

B; = (y - XS)‘(y - X&)/T 

and 

w 

(3.10) 

(3.11) 

2, = (g-l [&f (7) +$(Ez) (g-l (cz)] (y-l 
(3.12) 

are consistent estimators of CJ~ and II,, where b = iL’Z&&, fi22 = v’p/T 
and ii is the estimate of a from &. 
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We can test any set of linear restrictions on the vector cr, such as Ma! = 
mc, where M is a u x L matrix of rank v 5 L and me is a Y x 1 fixed vector, 
by using a critical region of the form {S(M, me) > c}, where 

S(M,mo) = T(M& - mo)‘(M&JM’)-l(M& - mo) (3.13) 

and c is a constant which depends on the level of the test. The asymptotic 
distribution of the test statistic S(M, mo) is chi-square with u degrees of 
freedom under the null hypothesis. 

Since the coefficient a is of special interest here, it will be useful to 
summarize the asymptotic properties of ir by the following corollary. 

Corollary 1.1. Under the assumptions of Theorem 1, the subvector & of 
& = (fit,?‘, &‘)I is a consistent estimator of a and @(a - a) has a normal 
limiting distribution with mean zero and covariance matrix: 

c 0 = 4 [dQ= + pQ:,Q,‘Qm] A’,, 

where A2 = plim(C2) and Cz is the G x (2G + Kr) matrix such that 

(q-l= [;;I. (3.15) 

Further, the submatrix 

in (3.12) is a consistent estimator of C,. 
Of course, tests of linear restrictions on a are special cases of the tests 

given by (3.13). H owever, if our interest lies in 6 rather than a = Eitb, the 
estimator directly relevant to us is not ii. We need an estimator of 6. Since 
6 and fizz are consistent estimators of a and X22, 8 = &2h is a consistent 
estimator of 6. The asymptotic distribution of 6 is given by the following 
theorem. 

Theorem 2. Under the assumptions of Theorem 1, the estimator b = 222ii 
is consistent for 6 and the vector @(i-S) h as a normal limiting distribution, 
as T -+ 00, with mean zero and covariance matrix 

X6 = ~22zz~22 + PC22 + is’, (3.17) 
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where C, is given by (3.16). Further, a consistent estimator of & is provided 
bY 

5, = k&k22 + & + 2, (3.18) 

where 1; and 2 22 are defined in Theorem 1. 

Consequently, we can test the hypothesis HO : HS = do, where H is a 
r x G matrix of rank t 5 G and do is a fixed r x 1 vector, by using a critical 
region of the form {W( H, do) 2 c}, where 

W(H, do) = T(H8 - do)t(Hk,Ht)-1(H8 - do) (3.19) 

and c depends on the level of the test. The asymptotic distribution of the 
statistic W(H, do), under HO, is chi-square with r degrees of freedom. Again, 
this test is valid for large samples. 

Concerning the power of the above tests, we can make the important 
observation that they are consistent whenever Ma! # mo or HS # do (see 
Section 6.5) .7 Besides, by considering complements of the critical regions 
described above, we can obtain confidence regions for Mcr or HS, for example 
confidence intervals for the individual covariances in S. 

3. SPECIAL CASES 

We will now examine three cases of special interest. First, consider the 
situation where the null hypothesis is Ho : S = 0 or equivalently, HA : a= 0. 
Under HO, we can rewrite equation (3.2) as 

y=Yp+Zl7+lhz+e, (4.1) 
where e follows a N[O, (r,21T] distribution and is independent of both Y and 
9. Then the standard F-statistic for testing a = 0 is 

F = iit(ftMli+i/G 
2’2/(T - K1 - 2G)’ 

where Ml = IT - Xi(X:Xr)-‘Xi and X1 = [Y : Zl]; under HO, F follows a 
Fisher distribution with (G, T - K1 - 2G) degrees of freedom. The resulting 
test is exact rather than asymptotic .8 It is not equivalent (even asymptot- 
ically) to the test of a = 0 based on the statistic Se = T~?‘fi;~&, obtained 

7 This property is especially important in view of Holly’s (1982a) discussion of 
Hausman-type tests. 

8 One can see easily that this test is equivalent to a test suggested by Wu (1973, 
T2 statistic) and, in a different form, by Hausman (1978, eq. 2.23), except that 
Zl is not necessarily a submatrix of Z. On alternative forms of the Wu-Hausman 
test, see Nahamura and Nahamura (1981). 
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from (3.13). The main difference is that 4 is set to zero in the estimator of 
C, in (3.16). This restriction is justified under HO, for then p = a’C22a = 0. 
If we write F in the form 

where 

(4.3) 

(4.4 
we see easily that the statistics F and Se/G are asymptotically identical 
under Ho (since p + 0). Nevertheless, under the alternative, this equivalence 
does not hold because j? does not, in general, converge to zero. 

The second problem we wish to examine is to test whether a subset of 
the variables in Y are independent of u, conditional on the assumption that 
the others are independent of u. More precisely, given Y = [Yr : Yz], we 
want to test whether Yi and u are independent, knowing that Y2 and u 
are independent. To do this, we can simply include Yz in Z1 and reshape 
equation (2.1) accordingly: 

Y = w1+ Z373 + u, (4.5) 

where Zs = [Yz : Zl], 73 = (&,7’)‘, and p = (pi,&)’ is the partition of ,8 
corresponding to [Yi : Yz]. We then proceed as previously on the transformed 
model. 

Finally, consider the important case where the matrix Zi is a submatrix 
of Z, say Z = [Zi : Zz]. This is probably the most frequent situation 
when (2.1) is viewed as a “structural equation” (presumably inside some 
system of equations) and (2.2) re p resents the “reduced-form equation” for 
the endogenous variables appearing on the right-hand side of (2.1). In this 
case, the estimates fi and 9, obtained from the regression given by (3.3), are 
the two-stage least squares (SSLS) es imates of /I and 7. To see this, rewrite t 
equation (3.2) as 

y = Pp + Zi7 + ria* + e’, (44 

where a* = a + p. By the orthogonality relations V’Y = 0 and Q’Zi = 0, 
the estimates of p and 7 obtained by OLS from (4.6) are identical to those 
obtained from the regression 

y = Pj9 + Zi7 + et*. P-7) 

They are thus identical to the 2SLS estimates of /3 and 7, showing clearly 
that the linear Wald tests described above have a natural complementary 
with the estimation of a structural equation by 2SLS. 



LINEAR WALD METHODS FOR INFERENCE ON COVARIANCES 327 

In the same special case, the estimate 6 used in Theorem 2 may be 
derived in a second interesting manner. Using again the orthogonality rela- 
tions, we see that 

hence 

and 

k = +y - e,,p. 

Further, substitute (2.2) into (2.1) to get the reduced-form equation for y: 

y = znp + z17 + m, 

where ue = VP + u. If we denote the tth element of 210 by trot = u# + ut 
and define wc = E[utvot], we have 

6 = c30 - C22B. 

Since 00 can be consistently estimated by & = +Q’&, where 80 is the vector 
of residuals from the regression of y on Z, this suggests the following estimate 
of 6: 

s”+j, - - E22P, 

where a is a consistent estimate of ,f3. Then, if we take /? = 6, the 2SLS 
estimate of /3, we see that 

- 1 
fi = -P’y - e,,j = 8, 

T (4.8) 

which shows that the estimator % can be generated in a second natural 
manner. 

5. ECONOMETRIC APPLICATIONS 

As previously indicated, assumptions concerning the independence of 
various stochastic explanatory variables in a structural equation and the dis- 
turbance term can have important implications for the appropriate choice 
of method of inference. On the one hand, if all the stochastic explanatory 
variables are correlated with the disturbance term, OLS does not usually 
provide consistent estimates of the structural coefficients in the equation 
and, even more generally, standard inference techniques (like F-tests) are 
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not valid; one should use a simultaneous equations technique (e.g., instru- 
mental variables). On the other hand, if they are all independent of the 
disturbance term, standard linear regression techniques (OLS, F-tests) are 
appropriate. Furthermore, between these two extremes, several intermediate 
cases are possible. If some but not all stochastic explanatory variables are 
independent of the disturbance term, standard inference techniques are not 
generally valid. However, we can exploit this information to get a more effi- 
cient method. In particular, if we split the matrix of stochastic explanatory 
variables into two submatrices Y = [Yi : Yz], where Y2 is independent of 
u, we can get more efficient consistent estimators and more powerful tests 
by treating Y2 as exogenous: in particular, this can be done by using Y2 as 
an additional set of instruments or, at least, by not replacing Y2 by Y2 (see 
Maddala, 1977, pp. 477-478). 

The procedures developed above allow one to test the exogeneity of each 
stochastic explanatory variable included in a given equation by looking at 
asymptotic t-values. It is easy to compute these in a routine way while 
estimating the equation by an instrumental-variable method. In this manner, 
one can get automatic indications on the simultaneity properties of a model 
and possible ways of improving estimation efficiency. 

Finally, we may observe that a number of economic hypotheses can be 
formulated in terms of the independence between certain stochastic explana- 
tory variables and the error term in an equation. Wu (1973) described a 
number of such cases, such as the permanent income hypothesis, the ex- 
pected profit maximization hypothesis, and the recursiveness hypothesis in 
simultaneous equation models. 

6. PROOFS 

6.1 Proof of Theorem 1 

First, from (3.2), (3.3) and (3.8)) we have the identity: 

where 

- LX’e+ 
eT- fi 

(64 

Moreover, we can see that 

(I? - Il)a = (Z’Z)-‘Z’Va; 
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hence E[(fi - ll)a] = 0 and 

E[(A - II)aa’(fi - II)‘] = p(Z’Z)-l, 

where p = a’E22a, for, from Assumption 3, it is easily verified that 
E[vaa’v’] = PIT. consequently, 

d!F(fi - ll)a - N b,p(y)-l]. (64 

Also, since e is independent of Y, the distribution of -&X’e, conditional on 

Y, is N[O,r7,2(9)]. 
Consider the characteristic function of eT, 

in’ fi(fi - II)a] } , 

where r E RPGSKl and i = fl. In order to get an explicit expression for 
+T(T), we first compute the expected value of exp{ir’eT} conditional on Y. 
Since fl AX’e is normal for given Y, we have 

RT(T) G E[exp(ir’eT) ] Y] = R$f)(r)Rf)(r), 

where 

RF) (7) = exp 

and 

R$?)(r)=exp[ir’(y)@(fi-II)a]. 

. Then, using (3.6) and (6.2)) we see that 

plim R$) (T) = exp { -+‘T’Q~T}. 

Also, from (3.7)) (6.2) and Assumption 5, we have 

R$?(r)A exp{ir’B}, 
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where B N N[O, PQ:,Q,~Q~~I and 5 refers to convergence in distribution 
as T --+ 00. Consequently, 

RT (7) 5 exp (- io:,‘Qxr) exp(i#B); 

hence, by the Helly-Bray Theorem, 

for all 7. Since #T(T) = E{RT(~)}, it f 11 o ow8 that $T (7) converges to the 
characteristic function of the N[O, afQx+pQ:,Q-lQ1z] distribution. There- 
fore, 

eT + N[“, +i?X + &d?;‘&] (6.3) 

and, using (6.1), 
dq& - 4 - w, Ll, (6.4 

where C, is given by (3.9). Th e consistency of & follows from (6.4). Con- 
cerning the estimator $2, we can write 

hence 
e”e’ 

plim $2 = plim 7. 

Moreover, by the definition of e’ in (3.3)) we have 

e*‘e* -= 
T 

!f+!! + 2a’(fi - n)‘F + a’@ - II)’ 
( > 

y (fl- H)a; 

hence, since plim (Z’e/T) = 0 and plim (fi - ll)a = 0, 

t 
plim 6: = plim y = 0:, 

which shows that 62 is a consistent estimator of 02. Finally, we can see that 
fi, is a consistent estimator of C, by considering the definitions of Qx and 
Q dz, and by noting that j and dz are consistent for p and 0,“. Q.E.D. 
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6.2 Proof of Corollary 1.1 
The consistency of & follows from the consistency of 6. The asymptotic 

distribution of &!(a - a) follows from the identity 

fi(ii - a) = C2 (-&X’e*) (W 

and from (6.3). The consistency of 2, follows from the consistency of 2, 
and the definition of AS. Q.E.D. 

6.3 Lemma 

In order to obtain the asymptotic distribution of 8 = Z&&4 we will need 
the following lemma. 

Lemma 1. Suppose that Assumptions 2, 3 and 5 are satisfied. Let ai and 
5: be the ith rows of C22 and $22, respectively (i = 1,. . . , G), and 

u= a;,‘&.. ( .,a&)‘, 8= (t?:,&; )...) iI+&)‘. 

Then, the vector @(a - a) has a normal limiting distribution, as T --+ 00, 
with mean zero and covariance matrix 

(6.6) 

where V& = aij&z + a&. Furthermore, the vector @(&,s - &)c, where 
c is any fixed G x 1 vector, has a normal limiting distribution with mean 
zero and covariance matrix 

9% = (c’~22c) c22 + (X224 (X224’ * (6.7) 

Proof. Let 8i = M,wi, where wi is the ith column of the matrix V and 
M, = IT - Z(Z’Z)-‘Z’. The (i,j)th element of 222 has the form $‘;j = 
&i&j/T; hence 

Let Zij = wiwj/T,Zi = (z:ir,zis,. . . ,gi~)‘, i, j = 1,. . . , G, and 2 = 

( i5:,iF;, . . . ’ ,‘G> ‘. Then, using Assumptions 3 and 5, we get 

~(~~j-cTij)-~(~~j-~~j) 1 ~0, i, j= l,...,G. 
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Thus, the vectors fi(& - a) and 1/!?(6 - a) have the same limiting distri- 
bution. 

Let wit be the tth element of w; and define Sit = (witwIt, witwzt, . . . , w;t 
wGt)‘, i = 1,. . . ,G, St = (Si,,S&, . . .,S,&)‘, t = 1,. . .,T. It is clear that 
thevectors&,t=l,..., T, are independent and identically distributed with 
mean 0. Furthermore, since 

for all t (see Anderson, 1958, p. 39)) the covariance matrix of St is C,, as 
given in (6.6). Thus, since 

Jm - a) = & t=l &s -a), t 

and using the Multivariate Central Limit Theorem (see Anderson, 1958, 
Theorem 4.2.3)) we can conclude that the limiting distribution of @(Z - a) 
is N[O, C,]. Furthermore, for any G x 1 fixed vector c, 

ti(&, - &)c = (IG @ c’) fi (G - a), 

where IG is the identity matrix of order G and @ refers to the Kronecker 
product. Since fi(& - a) is asymptotically N[O, C,], we can conclude that 
the vector fi(A 22 - Cz2)c is asymptotically normal with mean zero and 
covariance matrix 

+,c - (IG @ c’) c, (IG @ c) 

= [ct~jcli, j=l,...,G * 

We see easily that tJc reduces to the expression in (6.7). Q.E.D. 

6.4 Proof of Theorem 2 

First, note that the vector fi($ - S) can be decomposed as follows: 

fi(i - 6) = &?322@ - a) + fi(fi22 - C22)a 

=k22C2[-&X’e+(~)fi(fi-~)a] 

+ fi (fi22 - cl2) a, 

where we have used (6.5) and (3.3). Let 

WT = C22A2 --)+X’e + Q:,fi(l? - I’$] + fi (222 - X22) a. 
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Since plim(&C,) = l&A2 and plim(X’Z/T) = Q’,,, we have plim[&‘(i - 
S) - WT] = 0; fl($-6) and WT must have the same asymptotic distribution 
(see Billingsley, 1968, p. 25, Theorem 4.1). Consider now the characteristic 
function of WT, 

4~ (r) = E { exp [ir’w~]} , 

where 7 E RG. Since e is independent of Y, -&X/e N N[O, a:(y)] for Y 
fixed and, by taking the expected value of exp(ir’WT) conditional on Y, we 
get 

ST(~) = E{exp (ir’WT) 1 Y} = S~)(r)#)(r), 

where 

S$?)(r)=exp ’ 2 ’ --per C22A2 (3 A:x22r} 

and 

S$?(r) = exp {ir’&2A&:,J?;(fI - II)u + ir’@ (e,, - x22) U} . 

Furthermore, using (3.6), 

plim S&l) (T) = exp -~~~&22A2QzA~~22~ = S@)(T). (64 

Consequently, by the Helly-Bray Theorem, 

(6.9) 
where the expectation E is taken over Y. 

Each column fi, of I? is independent of each column & of P, since 
E[(i& - l-Ii)tC6] = 0, j, k = 1,. . . ,G. Therefore, fi and $22 are independent 
and 

E { S$?(T)} = E {exp [ir’&~A&b,fi(fI - I+] } 

x E {exp [i#fi (222 - ~22) o]} 

-1 

= exp -;p&22A2Q;s Qa&d 1 
x E{exp[ir’~(~22-~22)al), (6.10) 

where the second identity comes from (6.2). By Lemma 1, 
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where r(r = (a’C22a)C22 
we see that $J = p&z 
dm22 - &~)a is 
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+ (&~u)(&~cz)‘. Since p = a’&20 and 6 = &2u, 
+ 66’. Thus, the limit characteristic function of 

$rir E {exp [i#fi (222 - X22) a]} = exp -:#$v . [ 1 (6.11) 

Using (6.8)-(6.ll), we obtain 

= exp -+’ [C22A2 (g:Qz + PQ:,Q,'Q.~) 4x22 + $1 r} , 
which implies that the asymptotic distribution of fi($ - S) is normal with 
mean zero and covariance matrix C6 =-&2$X22 + $J, where C, is giyen 
by (3.14). Finally, the consistency of 6 = X226 follow! from that of II22 
and ii for Cl2 and a respectively, and the consistency of C6 follows from the 
consistency of &, 2, and 4 for X22, C, and $J respectively. Q.E.D. 

6.5 Asymptotic Power 

We will now show that the tests discussed above are consistent. The 
statistic S(A4, mc) used to teat Ma = me, where A4 is a v x L matrix of 
rank Y, can be decomposed in the following way: 

S(M, m0) = Sl(M, a) + @S2(W a, m0), 

where 
Sl(M, a) = T(M;Y - Ma)‘(Mfi,M’)-‘(Mel - Ma) 

converges to a chi-square distribution with u degrees of freedom and 

S2 (M a, m0) 

= 
[ 
2fiM(& - a) + &(Ma - mo)]’ (MA,M’)-l (Ma - mo). 

We will show that plim &(M, a, mo) = +oo, whenever Ma # mo. 
Consider first the case where all the elements of the vector Ma - mo 

are different from zero. In the sum [2@M(& - a + @(Ma - mo)], the 
second term always dominates as T + 00 and - a) has a limiting 
distribution. Consequently 

plim &(M, a, mo) = plim &(Ma-mo)’ (ME,M’)-1 (Ma-mo) = +w, 
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where the fact that plim (M&M’)-’ = (M&M’)-1 is positive definite 
has been used. Second, for the case where Ma # mo but some elements of 
(Ma - mo) are zero, we can assume without loss of generality that these 
constitute the lower vector of (Ma - mo): 

Ma - mo = (d:,O’)‘, 

where all the elements of the ~1 x 1 vector dl are different from zero. Further- 
more, let us partition (a - a) and (Mfi,M’)-1 conformably with (d’,,O’)‘: (& - 41 All A12 

&-a= [ 1 , (MI&M’)-’ = 1 1 2 
@ - a)2 A21 A22 

where (& - a)1 is a ur x 1 vector and All is a ur x ur positive definite matrix. 
Then 

Since plim (A 11 ) is a positive definite matrix and @(& - a) has a limiting 
distribution, we have 

plim &(M, a, mo) = +oo. (6.12) 

Thus, (6.12) holds whenever Ma # mo, 

plim S(M, mo) = plim 
[ 
Sl(M, a) + fiSs(M, a, mo) = +oo, 1 

whenever Ma # mo, and 

lim P [S(M,mo) 2 c] = ‘, if Ma = m” 
T-W0 1, ifMa#mo, 

(6.13) 

where e is the level of the test. This proves the consistency of the tests pro- 
posed for linear hypotheses regarding a. The consistency of tests regarding 
S can be shown in a similar way. 
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