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UNBIASEDNESS OF PREDICTIONS FROM ESTIMATED
AUTOREGRESSIONS WHEN THE TRUE ORDER IS UNKNOWN!

By JEAN-MARIE DUFOUR

1. INTRODUCTION

AUTOREGRESSIVE MODELS have become more and more widely used for the purpose of
making forecasts in econometrics and other fields. A question which comes out naturally
here is whether the forecasts obtained in this way are “unbiased.” By an unbiased
forecast, we mean a forecast such that the prediction error has mean zero or, if the mean
does not exist, has median zero.

It is well known that minimum mean-square-error predictors yield unbiased forecasts,
at least when their functional form is either unconstrained or linear (see Kendall and
Stuart [20, Chapters 26-28], Box and Jenkins [9, Chapter 5]). Derivation of such optimal
predictors usually requires exact knowledge of the joint distribution of the variables
involved, or at least some of its parameters. However, when parameters must be esti-
mated, it is not clear that the same property holds, or any of the standard properties of
optimal forecasts.? In the important case of the classical linear model (with strictly
exogenous regressors), unbiasedness can indeed be proved using the unbiasedness of least
squares estimates and the exogeneity of the regressors (see Theil [27, pp. 122-124]). But in
more complex situations where unbiased coefficient estimates are not usually available
(e.g. models with lagged dependent variables), such simple proofs seem precluded.

In this paper, we will consider the case of estimating the parameters of an autoregres-
sive model by ordinary least squares. It is well known that the coefficient estimates
obtained by this method are generally biased (see Hurwicz [19], White [28], Shenton and
Johnson [26], Orcutt and Winokur [22], Sawa [24], Bhansali [7]). This leads one to expect
that the forecasts obtained using such estimates will also be biased. But this is not always
the case: it can be shown that, for an autoregressive process of order one,

(1.1 x;=ay+ax,_;+e¢ (t=12,...),
= Xp (t=0),

the forecast errors obtained by estimating (1.1) with ordinary least squares have zero
mean (when the mean exists), provided the innovations ¢, are independent and identically
distributed random variables with zero mean, finite variance, and symmetric distribution,
and x, is a symmetrically distributed random variable independent of ¢,, t=1,2, ...,
with finite variance and some appropriate mean p. Specifically, Malinvaud [21, p. 582] has
stated this result for the case where oy = p = 0, when no constant is included in the fitted
model; on the other hand, Fuller and Hasza [17] have proved it for the following cases
(with a constant estimated): (i) |a;| < 1 and p = ag/(1 — «;); (ii) ag = p = 0; (iii) ag =10
and a; = 1 (with no othe- condition on x,, except independence from ¢, t=1,2,...).
The results of these authors were obtained under the assumption that the “true” model
and the estimated model are the same.
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2For a discussion illustrating the importance of this question in the context of “rational expecta-
tions” macroeconomic models, see Friedman [16).
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It is natural to ask whether the forecasts of an autoregressive model are unbiased when
the true and estimated models are different, notably when the model estimated is too
“parsimonious.” The main purpose of this paper is to give a rather weak condition,
namely a condition of “joint symmetry” of the distribution of the process (to be defined
more precisely below), under which an autoregressive model, of arbitrary order, estimated
by ordinary least squares, will yield unbiased forecasts. An important implication of this
result is that, under quite general circumstances, forecasts will be unbiased even if the
order of the autoregressive model estimated is Jower than the actual one. Further, the
same property will hold a fortiori when the order is correct or too high.

We may note also that the results presented below hold exactly, even in finite samples.
Previous studies of the properties of prediction errors from estimated time-series models
considered large-sample properties and focused on the mean squared error of prediction.
Work on these issues includes Davisson [13], Akaike [1], Box and Jenkins [9, Section
A7.3], Cleveland [10], Bloomfield [8], Bhansali [5, 6, 7], Schmidt [25], Yamamoto [30, 31],
Baillie [2, 3, 4], Phillips [23], Fuller and Hasza [17, 18], Davies and Newbold [12], and
Yajima [29]. Of course, the fact that an autoregressive model produces unbiased forecasts
does not imply it is “optimal,” in the sense of producing forecasts with minimum
mean-square error. However, the property of unbiasedness is a basic property of any
forecasting procedure and it is important to know that it will hold exactly under
surprisingly weak conditions and despite frequently encountered specification errors. On
the other hand, the mean-square prediction error will clearly be affected if the model
fitted contains either not enough or too many parameters. Incidentally, in finite samples,
the best strategy is not always to estimate the “right” model but may involve estimating a
more parsimonious model (see Bhansali [7, Section 6]). This is due to the possibility that
large noise is introduced by parameter estimation. Our result thus implies that, under
rather wide circumstances, choice of a more parsimonious model will not introduce any
bias in the forecasts. For further details on the impact of estimating a misspecified
time-series model on the mean-square prediction error, the reader may consult Davisson
[13], Cleveland [10], Bloomfield [8], Cogger [11], and Bhansali [7].

The basic definitions used in the paper are given and explicated in Section 2, while the
theorem is stated and proved in Section 3. The main conclusions are summarized in
Section 4.

2. FRAMEWORK

The condition we shall use in order to show that unbiasedness holds is that of joint
symmetry of a stochastic process about some constant. It is defined as follows.

DEFINITION: A stochastic process {x,: ¢t € I}, where I is a subset of the integers and x,
is real, is said to be jointly symmetric about a given constant p if and only if the processes
{x,—p:tel}and {p— x,:t € I} have the same joint distribution.

It is very easy to see that, if {x,: ¢ € I} is jointly symmetric about g, then {x,:t € I}
is also jointly symmetric about p for any subset I, C /. Further, when {x, : ¢t € I} contains
only one random variable, say x,, joint symmetry is equivalent to stating that x, has a
distribution symmetric about p. It is important to note that this condition is quite distinct
from that of “exchangeability” of random variables in the process (see Feller [15, p. 225]).
The random variables are ordered by the index set / and cannot generally be permuted
without the joint distribution being modified (unless special conditions hold); further-
more, the marginal distributions of the x,’s are not necessarily identical.

A simple case where the joint symmetry property holds is the one where {x,: —c0 < ¢
< + o0} can be expressed as a moving average of symmetrically distributed innovations,
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ie.,

0
x=p+ > O, (t=...,—-1,0,1,...),
i=0

where the variables ¢, are independent with distributions symmetric about zero. Clearly,
all stationary processes with independent and symmetrically distributed innovations (e.g.,
Gaussian stationary processes) are jointly symmetric. Similarly, if x,, 7= 1,2, ..., can be
expressed as an autoregression of order p (possibly infinite):

)4
x,=y.+2a,-(x,_,-—u)+e, (t=12...)
i=1
where €,¢,, ..., are independent with distributions symmetric about zero and
(X_p415 - - - » X) is jointly symmetric about p as well as independent of ¢, r =1,2, .. .,
then {x,:¢=1,2,...} is jointly symmetric about p. Further, we may note it is not

necessary to assume that the roots of the equation 1 — 32_, a;z° = 0 be outside the unit
circle. Thus, we are not limiting ourselves to covariance-stationary processes.

We shall now consider the problem of predicting a process symmetric about an
arbitrary constant p using an autoregressive model of order p > 1 estimated with an
intercept term.

3. THEOREM

Let {x,} be a process symmetric about some unknown constant p. Observations on x,,
t=-p+1,...,0,..., T, are available and we wish to predict xr,,, I=1,2,...,
using an autoregressive model of order p:

)4
@3] X, =oag+ > opx,_ g+ u (t=1,..., 7).
k=1
If the coefficient vector 8 = (ag,a’)’, where a =(ay, . .., a,), is estimated by ordinary
least squares, the estimate of B obtained is given by
B

(32 B.=(XtXr) Xix{,
where

X—T = [ir » Xt ],
(33) x1T= (xt—T+1 s Xf—T+2+ ¢+ x’)/, tZ T—P’

XT= [xTT—l ?xTT—Z? L) xTT—p]?
and iz =(1,1,..., 1) is the T X 1 unit vector. In what follows, we will assume that BT

exists with probability 1. Then the standard least squares forecast of x;; is
P
(34 2r() =87+ X &rir(I-k), 121,
k=1

where &, - (k=0,1, ..., p) is the kth component of B and
@3.5) 2r(l)=x744, if 1<0.
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We will now show that the errors of prediction x,,; — £7(/) have distributions symmetric
about zero and thus have mean zero (provided this mean exists).

THEOREM: Let the stochastic process {x,: —p+ 1<t < T+ L} be jointly symmetric
about a certain constant p. (p > 1, T >2, L > 1). Then, if the model (3.1) is estimated by
ordinary least squares, each error of prediction er(l)= x7,.;— %r(I), 1 <1< L, where
X7(1) is given by (3.2) and (3.4), has a distribution symmetric about zero. Furthermore, if
X4, and £1(I) have finite means, then

E[XT+[—)?T(I)]=0 (I=1,...,L).
ProOF: Let n=(x_,41,.-.,Xr4), M=T+ L+p, and iy, =(1,1,...,1) the
M X 1 unit vector. By the joint symmetry (about p) condition, the vectors n — iy, and

pips — M, have the same distribution. Further, by partitioning 8, = (& 7, &@7)’, we get

&y = (X7ArX7) ™ 'X7Arxf,

1 < 2
%7 = 1 > [xz -2 ak,Tx:—k]’
t=1 k=1
where & = (a1, . . ., & 1) and Ay = Iy — (1/ T)iriz. Defining
X~T=XT—W.TI;» & = x{ — pir,
we have
ApXp=ArXp,  ApRf = Apxf;

hence, using the fact that 4, is idempotent,
8 = (XA X7) "' RpAr] = ar(n — pin),
from which it is easy to see that d,-(+) is an even function of n — pipm:
(3-6) ar(n — pipg) = ar(pipy — m).
On the other hand,

)2
Gor=dr+tpl-> ‘ik,T]’

k=1

where

T )4
~ 1 o
Qor = 5 > [(xz W= > (o~ f")ak,T}
t=1 k=1
= dor(n — pin)-
We can see easily that @, r(-) is an odd function of 7 — piy,:

37 Gor(n — pipg) = — do 7 (pipg — m).
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Then, we can rewrite the forecasts (3.4) in the form:
A ~ p A A
(D) —p=3Gr+ > [£7(1— k) — pléy 7
k=1

EI:I("’_’UM) (=1...,0L).

For / = 1, it is clear, using (3.6) and (3.7), that F;(-) is an odd function of n — pi),; hence,
by induction,

Fy(n — pipg) = — Fy(ping — m) (=1...,L).
The forecast errors e;(!) = x4, ; — £7(I) can now be expressed as

er(1) = (xr+;— 1) — Fr(n — ping) = G (n — ping);
hence,

Gi(n — pip) = — Gy (pipg — m)-

Thus, from the symmetry condition, e;(/) and — e;(/) must have the same distribution,
i.e. er(/) has a distribution symmetric about zero. Furthermore, when the means of x,
and £(/) exist, this implies

Elxzy; — 2:(D]1=0 (=1,...,L).
Q.E.D

An important implication of the above theorem is that, for jointly symmetric processes,
any autoregressive model which includes an intercept term will yield unbiased forecasts,
when the coefficients of the autoregression are estimated by ordinary least squares. This is
stated in the following corollary.

COROLLARY: Let {x,} be a stochastic process having a representation (at least for t > 1)
of the form:

p*
X =B+ X Bexi—ite (t=12...)
k=1

where p* > 1. Assume that 2, B, + | whenever By + 0, let po be a real constant, and
4 k=1 P 0 2

r* r*
I-L=.Bo/(1—kglﬁk), if kglﬁk# 1,

p‘
= to, if 2 B=1 and By=0.
k=1
Let the random variables ¢, be independent with distributions symmetric about zero. Let also
P be a positive integer ( possibly different from p*), p = max{ p, p*} and (x _p, . . ., Xo) be
Jjointly symmetric about p as well as independent of {¢,:t=1,2,...}. Then, if an
autoregressive model of order p, as given in (3.1), is fitted to x, (t =1, ..., T) by ordinary

least squares, the errors of prediction xr,, — X7(I), where £r(I) is given by (3.4) and [ > 1,
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have distributions symmetric about zero. Furthermore, if xr ., and %(I) have finite means,

E[xT+1-—£T(l)]=0 (l=l,2,...).

PrOOF: The result follows from the Theorem and the observation that the stochastic
process {x,:t=—p+1,—p+2,...} is jointly symmetric about y. Q.E.D.

The above theorem holds for all values of p provided the autoregression estimated
contains an intercept term. When p = 0, similar results can be shown to hold when one
estimates an autoregressive model with no intercept (for a proof, see Dufour [14]).

4. SUMMARY

In this paper a wide class of stochastic processes enjoying a simple symmetry property
was first defined: we called these “jointly symmetric processes.” They include as special
cases: Gaussian stationary processes, processes representable as moving averages of
independent symmetrically distributed innovations and a large class of autoregressive
processes, stationary as well as nonstationary. Then, we showed that any autoregressive
model estimated by ordinary least squares yields unbiased forecasts when applied to a
jointly symmetric process. Specifically, for a process symmetric about an arbitrary
constant u, any autoregressive model of order p > 1 which includes an intercept will yield
unbiased forecasts: prediction errors have distributions symmetric about zero and thus
have zero mean (whenever the mean exists), when the model is estimated by ordinary least
squares. The proof of this property is based on showing that each prediction error is an
odd function of the centered process x, — p. A similar approach was used previously by
Fuller and Hasza [17], on predictors for the first-order autoregressive process when the
model estimated is correct; we show here that the unbiasedness property holds under
much weaker conditions and for a larger class of predictors. An important implication of
the theorem is that, for a symmetric autoregressive process, one will get unbiased forecasts
even if the order of the estimated model is lower than the actual one. These conclusions hold
exactly in finite samples. Furthermore, they do not depend on the usual normality
assumption.
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