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GENERALIZED CHOW TESTS FOR STRUCTURAL CHANGE:
A COORDINATE-FREE APPROACH*

By JEAN-MARIE DUFOUR!

|. INTRODUCTION

An important way of assessing the reliability of an econometric model, espe-
cially in view of making forecasts or policy simulations, consists in checking
whether it is stable over time (see Lucas [1976]). Frequently, this problem can
be formalized as one of testing whether the coefficient vectors in several regressions
(corresponding to disjoint subperiods) are equal. Namely, one considers a set
of m regressions:

(L.1) yi=XPit+u, i=1..m,

where y, is a n; x 1 vector of observations on a dependent variable, X; is a n; x k
nonstochastic matrix of explanatory variables having rank r;, 8;is a kx 1 vector
of coefficients and u; a n; x 1 vector of random disturbances (i=1,..., m). Itisalso
assumed that (u},..., u,)’ ~ N[0, ¢2I,], where n=37, n,. The null hypothesis
to be tested is Hy: B =+-=f,,.

To the extent of our knowledge, the above problem has never been considered
in its full generality in the literature. For cases where each regression has suffi-
cient sample size to allow a separate estimation of 8, and 6%(r,=k<n, i=1,..., m),
the solution is a standard analysis-of-covariance test given by Kullback and
Rosenblatt [1957]. However, these authors did not deal with the frequent case
where one or several of the subperiods have an insufficient sample size (n;<k).
In view of such situations, Chow [ 1960] considered the case of two samples (m =2),
one of which is undersized (r,=k<n, and r,=n, <k), and proposed to use a
predictive test comparing the vector y, with the vector of predictions X z_l:f , based
on the regression from the other sample. This test as well as the analysis-of-
covariance test for m=2 (which Chow also derives) are generally known to
econometricians as the “Chow tests’ for structural change (a terminology we
shall retain here). Further discussions of these tests were provided by Fisher
[1970], Gujarati [1970], Harvey [1976], Andersen [1977], Rea [1978], Wilson
[1978] and Dufour [1980].! An important disadvantage of the line of reasoning

* Manuscript received June 12, 1981 ; revised February 12, 1982.

! The same problem, when disturbance variances in the two regressions are unequal, was
considered by Toyoda [1974], Schmidt and Sickles [1977], Jayatissa [1977], Goldfeld and Quandt
[1978] and Watt [1979]; in this paper, we will not consider this type of situation. Corresponding
Bayesian posterior odds (for the case r,=k <m;, i=-1,2) were presented by Zellner and Siow
[1979]. Note also that the problem of testing H, in the context of ‘“‘seemingly unrelated regres-
sions” (for n,=---=n, and r,=k, i=1,..., m) was considered by Zellner [1962].
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adopted by Chow [1960] in order to deal with problems of undersized samples
is that it cannot be applied to cases in which the number of periods exceeds 2.
For example, if we have one undersized sample with two or more samples of suffi-
cient size, which sample (or combination of samples) should be used to generate
the predictions of the undersized sample -— if one does not wish to arbitrarily
reduce the problem to the two sample case by (questionably) assuming the m — |
other regressions have the same coefficients? Similarly, if we have several
undersized samples with several samples of sufficient size, it is even less clear how
the predictions should be made. Furthermore, even if the union of the under-
sized samples has sufficient size (so that these could be merged and the analysis-
of-covariance test be applied), merging the undersized samples is not always
appropriate, as it implies that the coefficient vector is the same among these
samples, a hypothesis we may precisely want to question.

The first purpose of this paper is to provide explicit and easily applicable
solutions to such problems of undersized samples, thereby generalizing the predic-
tive Chow test. In order to do this, we shall first derive a general solution to the
problem of testing the equality of coefficient vectors in several regressions when
explanatory variable matrices have arbitrary ranks (r; <k, i=1,..., m). Problems
of undersized samples can then be dealt with in a simple manner, because they
are a special case of the broader problem. Besides, it is worthwhile noting that
this more general result has further practical applications: in particular, situations
with all or some r; <k can occur easily when dummy variables are present among
the regressors (e.g., if a dummy variable remains constant over a subperiod);
furthermore, this general set-up has the additional flexibility of allowing the
exclusion of certain variables from some of the regressions (by putting zeros in
the appropriate columns)?.

A natural extension of the above class of problems consists in testing equality
between subsets of coeflicients in m regressions. This problem was also con-
sidered by Kullback and Rosenblatt [1957] and Chow [1960], though under
the same restrictive conditions described previously. Accordingly, the second
purpose of this paper will be to extend these results in various ways, allowing, in
particular, for explanatory-variable matrices with arbitrary ranks (hence, again,
for a range of situations with undersized samples wider than previously considered
by Chow) as well as for different numbers of coefficients among the m regressions.

Third, it appears that, in order to deal with these non-full rank problems, an
algebraic treatment like the one of Chow [1960], or even the neater exposition
given by Fisher [1970], would have been quite burdensome. We used instead a
geometric, or coordinate-free, approach (see Herr [1980], Kruskal [1961, 1968]),

2 Of course, in such a case, the null hypothesis really being tested states equality restrictions
only between those coefficients affecting non-zero variables; i.e., H, and this (wider) null hypoth-
esis are observationally equivalent. More generally, the main consequence of having r,<.k for
some i, is that there will be alternatives which will be observationally indistinguishable from H,,
the same type of “indeterminacy” problem pointed out by Rea [1978] for the Chow test with an
insufficient number of observations.
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GENERALIZED CHOW TESTS 567

based on the elegant geometric interpretation of likelihood ratio tests in the
classical linear model given by Scheffé [1959]. Although this approach has been
discussed by Malinvaud [1969, Ch. 5], it seems it has been very little used in the
econometric literature. Consequently, a third purpose of the paper will be to
provide an illustration of the simplicity as well as the fruitfulness of geometric
reasoning in the analysis of linear models.

The general likelihood ratio test against H, is presented in Section 2. In
Section 3, the Kullback-Rosenblatt and Chow tests are shown to be special cases
of the general test obtained, and the explicit test for the important case where
one or several regressions among m >3 regressions have insufficient numbers of
observations is given. The problem of testing equality between subsets of coeffi-
cients in m regressions is considered in Section 4. Finally, in Section 5, one of
the extended stability tests given in Section 3 is applied to a recent version of the
St. Louis equation.

2. GENERAL TEST OF EQUALITY BETWEEN FULL SETS OF COEFFICIENTS

We will find it very convenient to have some of the results given by Scheffé
[1959, Sections 2.5-2.6] summarized in the following theorem which gives a
geometric interpretation of likelihood ratio tests of linear hypotheses within the
context of the classical linear model.

THEOREM. Let y be a nx 1 random vector following a N[n, 6*I,] distribution,
V, a r-dimensional subspace of R" and V, a ry-dimensional subspace of V,,
where ro<r<n. Let also

So=min(y —n)'(y —n), So=min(y —n)'(y —n).

geVr r_er,.o

Then, the likelihood ratio test for testing
Hy:nel,, versus Q:nev,,
is given by {F > F}, where

F= n—r SO-SQ

r—ryg _TS'T
Jollows an F(r—ry, n—r) distribution under the null hypothesis H, and F, is the
appropriately chosen critical point for a test of level a.

Furthermore, the above test can be shown to be uniformly most powerful in
wide classes of alternative tests (see Scheffé [1959, pp. 46-51]), and thus the
tests obtained below will enjoy the same optimal properties. Now considering
equation (1.1), let us define:
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R 7211

Xy 00 ‘| Xy
l._Z , U = u ;

Y=

!
S

2.1) X*JQ X5+ 0 J,X= X,

0 0-X, X | Y Lty

and ro=rank(X). The rank of X*is thus r=3%",r,. Under H,, equation (1.1)
can be rewritten:

2.2) y=XBo +u,
where f,=p,=---=p,, while under the alternative,
(2.3) y=X*B +u,

where f=(81,..., B,)’. The subspace generated by the columns of X* has dimension
r, while the subspace generated by the columns of X is a subspace of the previous
one having dimension ry; let us call these ¥, and ¥V, respectively. Under the null
hypothesis, E(y)eV,, while, under the alternative, E(y)eV,. Thus, by the
Theorem, the likelihood ratio test for testing H,, is given by {F>F,}, with

vV So—So
2.4) F= v s
where
(2.5) Vo = Eﬁ r; — Ty, V= i; (n; — 1),
(2.6) So = H;in Wy —=Xp)(y - Xp, So = };] S;
and
2.7 S; = min(y; — X;8)' (y; — X80, i=1,..,m3
B T -

Under H,, F follows a F(v,, v) distribution. Furthermore, we can see that a
necessary and sufficient condition for H, to be testable using (2.4) is

(2.8) i ng> 3 r;>r.

3. SPECIAL CASES

We shall now examine important special cases of the above test, especially cases
where the X; matrices have maximum rank (either full column rank or full row
rank), which are the most frequent situations in practice.

If the matrices X; all have full column rank (r;=k, i=1,..., m), we must also

> When r;<<k, §; may be computed by replacing 3; by _@:(XE’X;)‘X,’_y,-, where (X/X,)"is a
generalized inverse of X;X,, and similarly for S,. See Rao [1973, Chapter 4].
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have ro=k, hence vo=(m—1)k and v=3", n,— mk in (2.4); we thus get the same
test as Kullback and Rosenblatt [1957, p. 73] for this problem. On the other
hand, in the standard Chow problem, it is assumed that m=2, r,=k<n, and
either ry=k<n, or ry=n,<k. Since r,=k, we must have ro=k, and thus
vo=ryand v=n;+n,—k—r,. When ry=k, we have vo=k and v=n, +n, —2k;
when r,=n, <k (an insufficient number of extra observations), we have vy=n,
and v=n,—k. In the second case, we also have S, =0, so that F takes the form:

m—k S-S5,

(3.1) F= 5

which can be shown to be mathematically identical with the statistic of the predic-
tive ““Chow test™” (see Chow [1960, p. 598-599]). Furthermore, it is interesting to
observe that the null distributions of the two Chow tests are here obtained in a
particularly simple and unified way, while this is usually done via two separate
derivations.*

Now let us assume m, of the m regressions, with 0<m, <m, have insufficient
numbers of observations (r;=n;<k). Call I the set of regressions such that
ri=n;<kand I={1,..., m}\I. Then, for each i € I, we have S;=0 and the statistic
F takes the form:

(3.2) F=——[(So~ %.5) % 5
] i€] i€]
where
(3.3) Vo = ;l n; + ; ¥ — Pos v = ez; (n; — r)

If, in particular, r;=k for all i e I, then r,=k and
(3.4) Vo = 2 n; + (m, — 1)k, v = Z} n; — msk.
i€r i

i€

where my=m—m,. This simple generalization of the second Chow test allows
us to test H, when more than 1 (but fewer than m) regressions have insufficient
numbers of observations; one can see easily that it is not in general equivalent to
the predictive test in (3.1). Furthermore, we can observe that, if the regressions
included in I are not necessarily chosen such that r,=n; < k (but may instead have
k<n; or r;<n;, so that these regressions do not generally yield a perfect fit) and no
line of X; is zero for any i €I, the statistic F as given in (3.2) will follow the same
distribution F(vo, v) with v, and v given by (3.3). This can be seen easily by
noting that each regression in I can always be divided into shorter ones (so that
we have r;=n;<k for each subperiod in the new subdivision) and that such a
process will not change the value of F.3

* For various alternative derivations of the predictive Chow test, see Chow [1960], Fisher
[1970}, Harvey [1976] and Dufour [1980].

* A simple way to do this consists in taking subperiods of 1 observation, which makes n; =r, 1
for every subperiod in /.
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4. TESTS OF EQUALITY BETWEEN SUBSETS OF COEFFICIENTS
Let us now consider the following modification of the set-up of Section L:
(4.1) :_)_),- = X“_[_fn + XiZEiZ + U; i= ],..., m,

where X;, is a n;x k, non-stochastic matrix of rank r;, X;, is a n;x k;; non-
stochastic matrix of rank r;,, f;; and f;, are k; x | and k;; x | vectors of coeffi-
cients, while other assumptions remain unchanged. Note that the different
regressions may have different numbers of coefficients, because the vectors f;,
may have different dimensions. We want to test the null hypothesis Hg: ;="
=.Bml'

In order to perform this test, let us define:

(4-2) X; = [Xil’ Xi2]ﬂ Ei = (ﬁ’il’_ﬁliz),a i=1,...,m,
and

X1 X2 o - 0 X1
(4.3) Xo = /‘_’21 0 Xzz 0 , Xo1 = /‘_’21

X 0 0 - X X

Let also r;=rank(X,), i=1,...,m, and ro;=number of linearly independent
columns of X, which are also independent of the last 37, k;, columns of X,
Under the null hypothesis, equation (4.1) can be rewritten:

(4'4) X = XOﬁO +u,

where fo=(Bo1, f12.---» Bm2)" and By, is the common value of B11seees Bmi» While,
under the alternative,

4.5) y=X*B +u,

where f=(B1,..., B,)'; y, X* and u are defined as in (2.1). The subspace gene-
rated by the columns of X* has dimension r=3 " r;, while the space generated
by the columns of X, is a subspace of the previous one having dimension ry=
For+ XMy riz; we will call these two subspaces ¥, and V,, respectively. Under the
null hypothesis, E(y)e Ve while, under the alternative, E(y)e V,. Thus, by the
Theorem, the likelihood ratio test for testing Hy is given by {F'>F,}, with

r = V_So=Sg
(4.6) F = v 5,
where
4.7 Vo = i; (ri—rip) —ro, v= igl("i -,
(4.8) So = n;in (y — Xo_ﬁo)' (X - Xoéo), So = 21 S;
_0 =
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and S;, i=1,..., m, are defined as in (2.7). Under H, F' follows a F(vy, v)
distribution. Furthermore, we can see that a necessary and sufficient condition
for Hj to be testable using (4.6) is

m m

(4.9) i”i> ri>rort+ X i
=

i=1 i=1

We can note here that the fact that the vectors f,, i=1,..., m, may have
different lengths allows one to exclude variables from some regressions (by setting
the corresponding coefficients to zero) and, more generally, to impose various
a priori restrictions on the different regressions.

If the numbers of coefficients in the m regressions are the same (k;,=k,, i=
1...., m) and the matrices X all have full column rank (r,=k, +k,=k, i=1,..., m),
then the matrices X, and X, must also have full column rank (r;;=k,, r;; =k,,
i=1,..., m) and ro =k,; hence, we have vo=(m— 1)k, v=3 ", n,—mk in (4.6),
and we get a test previously given by Kullback and Rosenblatt [1957, p. 76], and
by Chow [1960, pp. 509-602] for m=2.

If m=2 and X, has full column rank, then ry,=ry, =k, ri,=k,, and r;=
ki+k;,. Hence, we have vy=r,—r,;, and v=n,+n,—k,—k;,—r,. We can
note that Hj is not testable when r,=r,,, and so let r,,<r,. Furthermore, if
ny<k;+k,, (insufficient number of observations to run separately the second
regression), if X,, has full column rank (r,,=k,,) and X, has full line rank
(ra=n,), then we have vo=n, —k,,, v=n,—k,—k,,, S,=0 and

nl‘—kl*klz S’é—S'].
nz‘kzz Sl

(4.10) F' =

We thus get an extension of the test suggested by Chow [1960, p. 602], without
the restriction k,,=k,,.

We will now extend the above test to m regressions. Assume there is a subset
I containing m, regressions (0 < m, <m) such that k;, <n; <k, +k;, and X, has full
column rank for every iel. Then r;=k,, r,=k;, and r;=k, +k;, for iel,
and ry, =k, ; hence

m

@.11) vy = (my — Dk, + T =ra) v= % -,

i=1

where my,=m—m,. If, furthermore, X;, has full column rank (r;,=k;,) and X;
has full row rank (r,=n;) for every i€ I, then S;=0for i € I, and F’ takes the form:

(4.12) Fl= T [(Sh = % S| T 8]
Vo i€J i€r
where
4.13) vo = (m, — Dk, + g (n; — k), v= ; (ny — ki — kyy).

Finally, in order to illustrate the flexibility of the above test, we shall indicate
how it could be used to test a hypothesis of the type Hg: f,,="---=f,,, where 0<
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p<m. For i=p+1,...,m, let us replace, in (4.1), X;; by X;,=X;, where X,

is defined by (4.2) and X,;, by X,;=0;, a n;x k;; zero matrix; X,; thus has rank
zero and X, has rank r;; then, consider the system:

i = Xilﬁil + X,'z,B,'g + Ui, i = I,.A., P,
(4.14) ) B o
Y= Xilﬁn + Xppfia + us, i=p+1...,m

where B, =(Bi;, Bi,)’. 1t is easy to see that the null hypothesis Hg is here
(observationzﬁ]y) equuivalent to Hy: B, =-=B, =B, ="=Bm. Con-
sequently, we can test Hg by testing the equivalent hypothesis Hj, which can be
done by using the procedure described in this section [provided (4.9) holds].

5. ILLUSTRATION

Of the situations covered by the above results, problems of testing stability
with several subperiods, some of which are undersized (but still have maximum
row rank), are likely to be the most frequent in practice. We shall illustrate now
such a problem by testing the stability of a version of the *““St. Louis equation™
in rate-of-change form suggested by Carlson [1978]. This equation is:

. 4 . 4 .
Yi=a+ > mM_;+ 2 ek,
i=0 i=o

where Y,, M, and E, are the compounded annual rates of change in nominal GNP,
money stock (M1) and high-employment expenditures respectively in the United
States. The sample period considered is 1953/1-1976/1V (quarterly data). The
equation was originally estimated using Almon polynomials for m; and e; (fourth
degree polynomials constrained to go through zero at the endpoints; see Carlson
[1978; Table IV]). However, we also estimated this equation without restrictions
(see Table 1) and found that the F statistic for testing the Almon restrictions is
quite high [F, g5 =2.608>F ,5(4,85)]. Consequently, we reject the Almon restric-
tions and we shall concentrate our analysis on the less restricted model. Besides,
we may note that Carlson reports not to have found any evidence of instability of
the Almon constrained version of the model after applying the Brown, Durbin
and Evans [1975] techniques (though details of this analysis are not supplied by
the author); of course, the instability of the unrestricted equation would imply
instability of the restricted equation.

In order to test the above equation for stability over time, we divided the
sample period 1953/1-1976/1V into 7 disjoint subperiods: 1953/1-1959/1V, 1960/1-
1960/1V, 1961/1-1969/1V, 1970/1-1970/111, 1970/IV-1973/111, 1973/IV-1975/1 and
1975/11-1976/1V. The points of divison between these periods coincide roughly
with business cycle turning points (as defined by movements in real GNP). We
chose this type of subdivision because we considered highly plausible the con-
jecture that an important structural break (e.g., the OPEC price hike in 1973/IV)
would lead to (or would be associated with) a phase of recession or a phase of
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TABLE 1
UNCONSTRAINED ST. LOUIS EQUATION*

. . 4 .
Y, :‘H-;—i(:a m; M,-,»+§e.» E,
Sample period: 1953/1-1976/1V

Mo 607 (1 3.277) € 055 ( 1.329)
ny 238 (. 1.031) e 104 (2510
m, 022 (1 .093) e, —.0225 ( —.557)
my .631 ( 2.536) e; —.0276 ( —.688)
"y ~.440 (—2.260) ey —.0947 (—2.418)
Xm; 1.059 ( 2.315) Ye; 0141 (21D
a 2.829 ( 3.507)

S§S=1116.54, R*=.465, S.E.==3.624, D.W.--1.745, D.F.=85

* t-statistics are given in parentheses, SS is the sum of squared residuals,
R? is the coefficient of multiple determination, S.E. is the standard error
of the regression, D.W. is the Durbin-Watson statistic and D.F. is the
number of degrees of freedom.

TABLE 2
UNCONSTRAINED ST. LOUIS EQUATION
SUM OF SQUARED RESIDUALS FOR SUBPERIODS

Period Sum of squared residuals Number of observations
1953/1 - 1976/1V 1116.54 96
1953/1 - 1959/1V 235.971 28
1960/ - 1960/1V — 4
1961/1 — 1969/1V 109.808 36
1970/1 - 1970/111 — 3
1970/1V - 1973/111 38.7826 12
1973/1V - 1975/1 - 6
1975/I1 - 1976/1V — 7

expansion. Of these subperiods, only three have a number of observations suffi-
cient to allow a separate estimation (1953/1-1959/IV, 1961/1-1969/IV and 1970/IV-
1973/111). The sums of squared residuals for the subperiods are reported in
Table 2 and the general test statistic for performing the stability test is given by
equations (3.2) and (3.4). Using the information in Table 2, we can see easily
that Sg=1116.54, 3 ,c; S;=384.5616, vo=42 and v=43. Hence we get F=1.949
which is significant at a level as low as .016 (hence also at the conventional .05
level). Thus, from this result, we can rather safely reject the null hypothesis
that this relationship was stable over the sample period considered. Furthermore,

¢ For the Almon constrained model, the corresponding test statistic for stability is F=2.392
(with v, =34 and v =355), which is (as expected) much more strongly significant (p-value=.0019).
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we have seen that the stability test could be performed very easily despite the
presence of several undersized subperiods.

Université de Montcéal, Canada
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