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ABSTRACT

We study the problem of testing hypotheses on the parameters of one- and two-factor stochas-
tic volatility models (SV), allowing for the possible presence of nonregularities such as singular
moment conditions and unidentified parameters, which can lead to non-standard asymptotic dis-
tributions. We focus on the development of simulation-based exact procedures — whose level can
be controlled in finite samples — as well as on large-sample procedures which remain valid under
non-regular conditions. We consider Wald-type, score-type and likelihood-ratio-type tests based on
a simple moment estimator, which can be easily simulated. We also propose a C'(«)-type test which
is very easy to implement and exhibits relatively good size and power properties. Besides usual lin-
ear restrictions on the SV model coefficients, the problems studied include testing homoskedasticity
against a SV alternative (which involves singular moment conditions under the null hypothesis) and
testing the null hypothesis of one factor driving the dynamics of the volatility process against two
factors (which raises identification difficulties). Three ways of implementing the tests based on al-
ternative statistics are compared: asymptotic critical values (when available), a local Monte Carlo
test (or parametric bootstrap) procedure, and a maximized Monte Carlo (MMC) procedure. The size
and power properties of the proposed tests are examined in a simulation experiment. The results in-
dicate that the C'(«)-based tests have the best size and power properties, while Monte Carlo tests are
much more reliable than those based on asymptotic critical values. Further, in cases where the para-
metric bootstrap appears to fail (for example, in the presence of identification problems), the MMC
procedure easily controls the level of the tests. Moreover, MMC-based tests exhibit good power
performance despite the conservative feature of the procedure. Finally, we present an application to
a time series of returns on the Standard and Poor’s Composite Price Index.

Key words: testing; exact test; Monte Carlo test; maximized Monte Carlo test; Wald test; LR test;
LM test; C'(«) test; homoskedasticity; stochastic volatility; two-factor volatility; identification;
singular moment conditions.

JEL classification: C1, C12, C13, C15, C32, G1.



RESUME

Dans ce texte, nous étudions des tests d’hypotheses sur les parametres de modeles de volatilité sto-
chastique (SV) a un ou deux facteurs, en permettant la présence de non-régularités, tels que la singu-
larité locale des conditions de moment définissant I’estimateur ou encore des parametres de nuisance
non-identifiés, ce qui peut conduire a une théorie distributionnelle non standard. Nous développons
des procédures exactes dont la taille peut €tre controlée pour une taille donnée d’échantillon, ainsi
que des tests justifiés par des arguments asymptotiques, lesquels sont a la fois simples du point de
vue numérique et relativement fiables sur de petits échantillons. Nous considérons des criteres de
types Wald, score et quotient de vraisemblance fondés sur un estimateur des moments (et non sur
le maximum de vraisemblance) qui est simple du point de vue numérique. Nous proposons aussi
un test de type C'(«) qui est tres facile a utiliser et qui affiche de bonnes propriétés de niveau et
de puissance. Outre des tests de restrictions linéaires sur les coefficients du modele de volatilité
stochastique, les problemes étudiés comprennent des tests d’homoscédasticité (contre un modele
de volatilité stochastique) et des tests de I’hypotheése nulle d’une volatilité a un facteur contre une
volatilité a deux facteurs, lesquels soulevent des problemes de singularité locale et d’identification.
Nous comparons trois variantes différentes de chaque test suivant que 1’on utilise des points cri-
tiques asymptotiques standards, une procédure de test de Monte Carlo (ou bootstrap paramétrique)
et une procédure de test de Monte Carlo maximisé (MMC). Le niveau et la puissance des procé-
dures proposées sont étudiées par simulation. Les résultats soulignent la supériorité du test C'(«v)
dans les cas réguliers, a la fois pour le niveau et la puissance, tandis que les tests de Monte Carlo
s’averent plus fiables que leurs homologues asymptotiques. En outre, dans des situations ol le
bootstrap paramétrique ne parvient pas a contrdler le niveau (par exemple, en présence de prob-
lémes d’identification), la procédure MMC contrdle facilement le niveau des tests. De plus, les tests
fondés sur la procédure MMC affichent une bonne puissance bien que cette méthode soit conser-
vatrice par construction. Finalement, nous présentons une application a une série de rendements
quotidiens de I’indice boursier du Standard and Poor’s.

Mots clé: test d’hypothese; test exact; tests de Monte Carlo; test de Monte Carlo maximisé; test de
Wald; test du score; test du quotient de vraisemblance; test C'(«); volatilité stochastique; volatilité

a deux facteurs; identification; conditions de moments singulieres.

JEL classification: C1, C12, C13, C15, C32, G1.
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1. Introduction

Modelling conditional heteroskedasticity is one of the central problems of financial econometrics.
The two main families of models for that purpose consist of GARCH-type processes, originally in-
troduced by Engle (1982), and stochastic volatility (SV) models proposed by Taylor (1986, 1994).
Even though GARCH-type models are more widely used than SV models, the latter may be prefer-
able for several reasons. First, SV models are directly connected to diffusion processes used in
theoretical finance and allow for a volatility process that does not depend on observable variables.
Second, as pointed out by Carnero, Pefia and Ruiz (2004), kurtosis, volatility shock persistence and
serial correlation of squared variables differ markedly in GARCH and in autoregressive SV models
(ARSV). This difference may explain why the estimated persistence is usually higher in GARCH
than in Gaussian ARSV models, and why GARCH models usually require leptokurtic conditional
distributions. Third, from a theoretical viewpoint, the SV model naturally arises from appropriate
distributional assumptions, such as a distribution mixture assumption on the joint distribution of
daily security returns and trading volumes; see Clark (1973), Morgan (1976), Tauchen and Pitts
(1983), and Fridman and Harris (1998). Fourth, there is evidence that SV models offer increased
flexibility over the GARCH family; see Geweke (1994) and Fridman and Harris (1998).

GARCH models, on the other hand, are relatively easy to estimate and remain much more pop-
ular; for reviews, see Gouriéroux (1997) and Palm (1996). In particular, evaluating the likelihood
function of GARCH models is simple compared to SV models, for which it is quite difficult to ob-
tain a likelihood in closed form; see Shephard (1996), Mahieu and Schotman (1998) and the review
of Ghysels, Harvey and Renault (1996). This is a general feature of most nonlinear latent variable
models, because the latent variables must be integrated out of the joint density for the observed
and latent processes, leading to an integral of high dimensionality. As a result, maximum likelihood
(ML) methods are prohibitively expensive from a computational viewpoint, and alternative methods
appear to be required for applying such models. This fundamental difficulty may have prevented
the widespread use of SV models and has made GARCH the model of choice in practice.

Much progress has been achieved on the estimation of nonlinear latent variable models in gen-
eral [see Fiorentini, Sentana and Shephard (2004)] and SV models in particular. Four main types
of methods have been proposed for that purpose: quasi maximum likelihood approaches [Nelson
(1988), Harvey, Ruiz and Shephard (1994), Ruiz (1994)], generalized method of moments (GMM)
procedures [Melino and Turnbull (1990), Andersen and Sgrensen (1996)], simulation-based esti-
mation techniques, and Bayesian methods. Simulation-based estimation, which has become more
attractive due to increasing computer power, comprises: (1) indirect inference [Gouriéroux, Mon-
fort and Renault (1993)] which has been used to estimate SV models by Monfardini (1998) and
Pastorello, Renault and Touzi (2000); (2) the efficient method of moments [Gallant and Tauchen
(1996)] applied to SV models by Andersen, Chung and Sgrensen (1999) and Chernov, Gallant,
Ghysels and Tauchen (2003); (3) simulated maximum likelihood (SML), which can be implemented
in SV models using importance sampling [see Danielsson and Richard (1993), Danielsson (1994)].
Bayesian techniques can also be applied in this context through computer-intensive methods, such
as Markov Chain Monte Carlo (MCMC) methods [see Chib (2001, 2004)] and Gibbs sampling with
the Metropolis-Hastings algorithm [see Chib and Jeliazkov (2005)], and appear to yield relatively



good results; see Jacquier, Polson and Rossi (1994), Kim and Shephard (1994), Kim, Shephard and
Chib (1998), Chib, Nardari and Shephard (2002) and Wong (20025, 2002a).

All these studies focus on the estimation of SV models. Test problems have received much
less attention. The available results on hypothesis testing for such models are rather incomplete
and scattered. These include: GMM-based t-type tests on individual coefficients [Andersen and
Sgrensen (1996), Andersen et al. (1999)], and various specification tests such as tests for goodness of
fit, diagnostic checking and model comparison [see Andersen and Sgrensen (1996), Gallant, Hsieh
and Tauchen (1997), Kim et al. (1998), Monfardini (1998), Andersen et al. (1999), and Fleming
and Kirby (2003)]. A systematic discussion of hypothesis testing on SV model coefficients does
not appear to be available. Further, even in parametric SV models, all the available test procedures
are based on large-sample approximations and do not address non-regular problems that show up
naturally in this context, such as testing the hypothesis of homoskedasticity against a SV model, or
testing the hypothesis of a one-factor SV model against a two-factor SV model.

In this paper, we focus on hypothesis testing in parametric SV models. Our main objective is
to develop both exact tests as well as asymptotically justified procedures that are markedly more
reliable than those based on usual large-sample approximations, especially in the presence of non-
regularities and non-standard asymptotic distributions. The proposed procedures are also designed
to be computationally manageable.

Exploiting the fact that many SV models are parametric models involving only a finite number
of unknown parameters, our basic outlook is to develop finite-sample simulation-based procedures
as opposed to procedures based on establishing asymptotic distributions. For that purpose, we rely
on extensions of the basic idea of Monte Carlo (MC) tests originally proposed by Dwass (1957) and
Barnard (1963). When the distribution of a test statistic does not depend on (unknown) nuisance
parameters, the technique of MC tests yields an exact test provided one can generate a few i.i.d. (or
exchangeable) replications of the test statistic under the null hypothesis; for example, 19 replications
are sufficient to get a test with level 0.05; see Dufour and Khalaf (2001). This technique can be
extended to test statistics which depend on nuisance parameters by considering maximized Monte
Carlo (MMC) tests; see Dufour (2005). MMC tests yield exact tests whenever the distribution of the
test statistic can be simulated as a function of the nuisance parameters: no additional assumption on
its distribution is needed. Further, computationally more tractable versions of this procedure, such as
MMC tests on consistent set estimators of model nuisance parameters, provide asymptotically valid
tests irrespective of the presence of non-regularities and non-standard asymptotic distributions, such
as those associated with identification problems. Parametric bootstrap tests may also be interpreted
as degenerate MMC tests, where the simulated p-value function is evaluated at a single nuisance-
parameter point estimate. However, the asymptotic validity of the parametric bootstrap method
requires stronger assumptions than the MMC procedure and it may fail to control the level of the
test even asymptotically, especially in non-regular problems (where the MMC procedure remains
valid).

Even though the general approach proposed here can be applied to a wide array of setups and
relatively general SV models, we focus here on a relatively simple log-normal SV model of order
one with an autoregressive mean, which has been widely studied in the SV literature (usually in a
more restricted form); see Harvey et al. (1994), Jacquier et al. (1994), Danielsson (1994), Gallant



et al. (1997) and Tauchen (1997). Further, for the sake of numerical tractability, we consider tests
based on a simple two-step moment estimator which is available in closed form. This estimator is
studied in detail in Dufour and Valéry (2005).

To be more specific, the contributions of the paper can be summarized as follows. First, we
implement and compare the three standard test statistics, i.e. Wald-type, score-type and likelihood-
ratio-type tests based on the computationally simple moment estimator available in Dufour and
Valéry (2005). Further, we propose a C'(«)-type test [see Neyman (1959), Smith (1987), Dagenais
and Dufour (1991)] which turns out to be relatively easy to implement in our framework and exhibits
remarkably good size and power properties. Under standard regularity conditions, these test criteria
follow asymptotic chi-square distributions under the null hypothesis. This holds, in particular, for
linear hypotheses on the coefficients of the SV models and various (sufficiently smooth) nonlinear
hypotheses. However, in view of the fact that the asymptotic distribution may be quite unreliable
in finite samples (a fact documented in a simulation study), we suggest that such tests be imple-
mented using MMC techniques (which are provably valid without further regularity conditions) and
parametric bootstrapping. We also compare the relative performance of the different test criteria.

Second, we study in greater detail three relatively important special hypotheses in the context
of the SV model, namely: (1) the hypothesis of non persistence in volatility (against persistence in
volatility); (2) homoskedasticity (against the SV alternative); (3) one-factor SV against a two-factor
SV.

The first problem is a regular one for which standard asymptotic distributions are applicable.
Through simulation evidence, however, we find that asymptotic critical values can lead to sizeable
over-rejection rates even with a fairly large sample. In contrast, the bootstrap procedure controls
test level relatively well (at least for samples larger than 200), while the MMC method controls test
level in all cases.

The second problem (testing homoskedasticity) is, of course, an important pre-test before trying
to include a latent factor to drive the dynamics of the volatility process which makes its estimation
much more complicated. However, moment conditions become locally singular in this case so that
standard regularity conditions are not anymore applicable. Further, score-type test criteria [LM and
C'(«)] and Wald-type are no longer computable in this case — at least without modification — so that
they cannot be used. By contrast, bootstrap and MMC versions of LR-type tests appear to work
well in this case.

The third problem (testing one factor against two-factor SV) is motivated by the fact that stan-
dard SV models do not capture important features of asset returns distribution such as tail thick-
ness; see Chernov et al. (2003) and Durham (2004a, 2004b). As a solution, a second factor in the
volatility dynamics may account for tail behavior. Eraker, Johannes and Polson (2003) proposed
to model the same feature by introducing a jump component to the SV factor. Testing one factor
against two-factor SV introduces an unidentified parameter under the null hypothesis [as in Hansen
(1996), Andrews (2001) and Dufour, Khalaf, Bernard and Genest (2004, section 3.2)], so that stan-
dard asymptotic regularity conditions do not hold. Here score-type criteria are not applicable be-
cause covariance matrices are singular and Wald-type tests become utterly unreliable [see Dufour
(1997, 2003)]. Even bootstrapping appears to fail in this case. In contrast, we find that MMC-based
LR-type tests work well for that problem. It is also interesting to note that developing and justifying



solutions such as those proposed by Hansen (1996) and Andrews (2001) would require considerable
additional theoretical work. In contrast, the MMC approach works transparently.!

Fourth, we perform a Monte Carlo study to compare the finite-sample properties of the various
procedures considered. We make two important observations: (1) in regular test problems, C'(«)
and LR-type tests exhibit good performance, especially when they are implemented in a simulated
approach (bootstrap or MMC); (2) in non-regular problems, the only procedure which is both widely
applicable and allows one to control test level is the MMC-based LR-type test.

Fifth, the proposed procedures are applied to the Standard and Poor’s Composite Price Index.
For this series, we find evidence that stochastic volatility is present through a one-factor specification
with strong persistence.

The paper is organized as follows. Section 2 sets the framework underlying the one-factor and
two-factor SV models and reviews the estimation procedure used to implement the tests. The test
criteria considered and the associated confidence sets are discussed in Section 3. In Section 4,
we examine why some basic problems in this setup, such as testing homoskedasticity against SV
or testing one-factor SV against two-factor SV, lead to non-regularities. In Section 5 we review
the technique of Monte Carlo tests. Simulation results are presented in Section 6, while empirical
results on the Standard and Poor’s Composite Price Index 500 return series appear in Section 7. We
conclude in Section 8.

2. Framework

2.1. One-factor SV model

The basic form of the stochastic volatility model we study here comes from Gallant et al. (1997).
Let us denote by y; the variable of interest. For example, y; can denote the first difference over a
short time interval, a day for instance, of the log-price of a financial asset traded on security markets.

Assumption 2.1 The process {y, : t € N} follows a stochastic volatility model of the type:

Ly
ye =y =D cilye—i — py) +ue @.1)
i=1
up = exp(wy/2)ryz; , (2.2)
Ly
Wi =y = Z Qi (Wi—j — fhy) + Twt (2.3)
j=1

'Related work on assessing the number of factors in a GARCH-type model may be found in Lanne and Saikkonen
(2002) and Quintos (2005). Lanne and Saikkonen (2002) derived rank tests for the number of factors in an orthogonal
GARCH system introduced by Alexander (2001) as a generalization of the GARCH factor model [Engle (1984), Engle,
Ng and Rothschild (1990)]; see also van der Weide (2002) and Vrontos, Dellaportas and Politis (2003). More recently,
Quintos (2005) extended Lanne and Saikkonen’s (2002) factor tests by allowing k& conditionally heteroskedastic factors
and p — k less persistent factors in a p-variate system.



Ly L . e e e
where p,, {¢; }jzl, Tys Moy {0wj }jgl and r,, are unknown parameters and sy = (yz, wy)' is initial-
ized from its stationary distribution.

In the above model, (2.1) is the mean equation, while (2.3) is the volatility equation. We shall
call the model represented by (2.1)-(2.3) the stochastic volatility model of order L,, with autore-
gressive mean of order L, [ARSV(L,, L,,) for short]. The lag lengths of the autoregressive specifi-
cations used in the literature are typically short. Usual configurations are (L,,, L) = (0, 1), (1, 1)
or (2, 2); see Andersen and Sgrensen (1996), Gallant et al. (1997) and Andersen et al. (1999). An
important special case of (2.1)-(2.3) consists in setting 1,, = 0, ¢; = a,; = 0, Vj > 2, and
§ = (¢, 0') with § = 61, where 61 = (ay, Ty, Tw)'. We then have:

Yt — py = (Y1 — py) T, e[ <1, (2.4)
ug = [ry exp(w/2))z (2.5)
Wy = QuWi—1 + TV, |aw| < 1. (2.6)

Assumption 2.2 The vectors (z;, v)’, t € N are i.i.d. according to a N (0, I3) distribution.

Assumption 2.3 The process sy = (y, wy)’ is strictly stationary.

The ARSV(Ly, L,,) process is Markovian of order Ly = max(L,, L,,). Let us denote by

/
d= (:uyv Cly oo s CLyy Ty Moys Gwly - oo 5 QL Tw) (27)

the parameter vector of the model. Here {y,} is observed, while {w;} is a latent variable. Accord-
ingly, the joint density of the observation vector y(ry = (y1, ..., yr) is not available in closed
form, for it requires evaluating an integral with dimension equal to the whole path of the latent
volatilities. Let

F(yi, .- yr) =PY1 < w1, ..., Y < yrld] = Fo(yr)19)

denote its unknown distribution function.

We shall now focus on the ARSV(1, 1) model. To estimate it, we consider a two-step method
whose first step consists in applying ordinary least squares (OLS) to the mean equation which yields
a consistent estimate of the autoregressive parameter ¢ and of the mean parameter /., denoted by
¢, fi, and the residuals 4; = u(¢) = y¢ — fi,, — ¢(y1—1 — j,,). Then, we apply in a second step a
method of moments to the residuals 4, to get the estimate of the parameter 61 = (ay,, 7y, Tw) of
the mean and volatility equations. Unlike the other estimators proposed in the financial literature for
estimating SV models, this two-step moment estimator is easy to implement and available in closed
form, an appealing feature for complicated latent variable models. Besides, its simplicity allows
for simulation-based inference and will be further exploited to obtain simulated testing procedures.
In the sequel we will focus on the particular case where i, = 0 but all the results still hold in the
general case.



Under the assumptions 2.1 to 2.3, with u, = p,, = 0 and ¢; = ay; = 0, Vi > 2, the
perturbation term u; has the following moments for positive even values of j and k:

0,) = E(u¥) =¥ i k221 2 2.8
i (01) = E(uy) —%mexp [grw ( _aw)} ; (2.8)
k10 = E(ujuyy)
; ! k! r2
_ itk J w 2 2 o
N ST G s O [8(1_%21})(] +k +2gkaw)}. (2.9)

The odd moments are equal to zero. In particular, for j =2, j =4andj =k =2and! =1, we
have:

po(01) = E(uf) = r} exp[(1/2)r2, /(1 — a2)], (2.10)
114(01) = E(uf) = 3r exp[2ry /(1 — al)] , (2.11)
p2,2(1101) = E[ufui_1] = ryexp[ry, /(1 — aw)]; (2.12)
see Dufour and Valéry (2005). Let
M4(91)
= 2.13
" 0) @13

be the kurtosis coefficient of the process. It is easy to see that £ > 3, with x > 3 as soon as r,, # 0
(i.e., when the volatility is constant). Solving the above moment equations corresponding to j = 2,
j =4 and ! = 1 yields the following expressions: provided x > 3,

o _ loglps (1]01)] +1log [%/3u3(61)]
“ log(r/3)

—1, (2.14)

hence

31/4#2(91) 3#%(91) 1/4 2 1/2 .
Ty = 1 (01)1/7 7( " ) O [(l—aw)log (H:/3)] , if k> 3. (2.15)

If k < 3, the volatility is constant and it is natural to set
ay =7y =0 and ry =/p(61) if K <3. (2.16)

Given the latter definitions, it is easy to compute a method-of-moment estimator for §; =
(@, Ty, ) replacing the theoretical moments by sample counterparts based on the residuals ;.
Let O denote the method-of-moments estimator of 6. Typically, E(u?), E(u) and E(uiu? ;) are

approximated by:

T T
. 1 9 . 1 . . 1 9.
,U'QZTE U? M4:T§ U?a M2(1):T§ U?U?fl
t=1 t=1



respectively. This yields the following estimators of the stochastic volatility coefficients:

A ifay > A,
Gw =4 aw if|aw| <A, 2.17)
—A ifa, < —-A,
iy, = (32/R)" it
v = (303/R) it & > 3, )18
1/2 ¢ (2.18)
9 if & <3,
o = [(1—a2)log (#/3)]"" if& >3
w w) 108 k=9, (2.19)
=0 if & <3,
where & = fi,/f13 and
= [loglin(1)) +log (3/3i3)]/og (3/3) it >3,
oA (2.20)
=0 if Kk <3.

In (2.17), A is a number close to one which is used to bound the estimator away from the stationary
boundary. This is important to avoid numerical instability. In the simulations and application below,
we used A = 0.99, but a value closer to one could be considered. Under the assumptions of the
model, the restriction 4~ > 3 must hold with probability converging to one. Provided |a,,| < A, the
estimator 67 = (G, Ty, f'w]/ is consistent and asymptotically normally distributed; see Dufour and
Valéry (2005) for a detailed presentation of its asymptotic properties.

2.2. Two-factor SV model

A simple single-factor SV model appears to be sufficient to capture the salient properties of volatility
such as randomness and persistence. It is the shape of the conditional distribution of financial returns
which constitutes the problem; see Chernov et al. (2003) and Durham (20044, 2004b). Standard SV
models cannot match the high conditional kurtosis of returns (tail thickness) documented in the
financial literature, for example in the case of equities. Trying to capture nonlinearities in financial
returns has important implications for risk management and option pricing.

Consequently, we also consider a two-factor specification driving the dynamics of the volatility
process of the following form:

Yo =y = c(Y—1—py) tue, ] <1, (2.21)
u = [ryexp(wy/2+1/2))z, (2.22)
Wy = QupWi—1 + U1t ,  |aw| <1, (2.23)
Ny = anMy—q + TnU2¢ , ‘aTI| <1 ) (224)

(z¢, v1¢, vor) are i.i.d. Gaussian vectors such that z; ~ N (0, 1) and



1

(vie, var) ~ N(0, X)), Xy = [ o piQ } . E[(v1e, var)z] = 0. (2.25)
12

We shall call the above model represented by equations (2.21)-(2.25) the autoregressive stochastic

volatility model with two factors. Let 02 = (aw, 7y, Tw, by, T4, p12)" denote the parameter corre-

sponding to the two-factor SV model. We derive the moment conditions used in a just-identified

GMM framework which are stated in the proposition below.

Proposition 2.4 MOMENTS OF THE TWO-FACTOR SV PROCESS. Under the assumptions (2.21)
to (2.25), we have for positive even values of j and k :

k! 2 2

! k k k2 rurnp
k\ _ .k K™ 92,01 2 R™ 2,00 2y BT TwlpPr2
E(ut)—ryiﬂkm(l{;m)!exp 8rw/(l ay) + 87’,7/(1 a,) +

41— ayay

2
. Tw ) 2 o
" 2“/2)(1/2)!2<’€/2>(1c/2)!GXI"’L;(1—G,30)(‘7 K+ 2kay)
2
rin -2 2 |

1
4 (257 + 2k2 + 2jkal!l + 2jkalll) 01012 | (2.26)
8 1 —ayay

. _ il k!
Elufuf,] = )

The proof of this proposition is given in Appendix A. In particular, for j = 2,4, 6 and j = k,
the above formulae yield the following moments:

1 72 1 72 TwTn P
E(u?) =2 —_w - w2 ) = (0 2.27
) = resp (30 + ey ) = (), )
22 2r2 Aryyrpp
4y _ o 4 n wlnP12 | _
E(uy) = 3ry exp<1 _w%) + T a% + 1 aw%) = uy(02), (2.28)
9 2 9 r2 9rwrpp
E(ul) = 1578 Z_w Z_0 w2 ) = 1.0 2.29
(ur) 5ryeXp<21—ag, 21— " T= away to(62) (2.29)
2 2 4 o?
Elujui_4] = ry exp 5 )= f12,2(1]62) (2.30)
Efujuf )] = 975 exp(20%) = 11y 4(1]62), (2.31)
9
E[ubul ;] =225 7“71;2 exp<202> = g, 6(1102), (2.32)
where
22 2r 4 2,12
o’ = Var(wy + 1y + wi—1 +m4_1) = : 2 Tj}rnpm ST




2
20 wTyPra  2anTwrypry  20yTy

_ _ _ 2
1 —aypay 1 —aypay 1 a;

(2.33)

These moment conditions constitute a just-identified GMM setup we shall use below in order
to test the number of SV factors in the volatility process. The associated estimators, however, are
not available in closed form, in contrast with the one-factor setup. But the moment conditions
(2.27)-(2.32) yield a GMM estimator in the usual way through nonlinear optimization techniques.

It is important to note that another set of moment conditions (larger or simply different) could
be used to estimate the two-factor model. This might lead to more precise estimates and eventually
more powerful tests. Finding a better or “optimal” moment conditions goes beyond the scope of the
present paper. But the general testing approach proposed below remains applicable if different sets
of moment conditions are employed.

3. Test statistics and confidence sets

In this section, we set the framework for testing general hypotheses as Ho(1)) : F' € Ho(1)y) where
Ho (1)) is a subset of all possible distributions for the SV model (2.4)- (2.6) [or (2.21)- (2.25) for
the two-factor SV model], that is,

Ho(vo) = {F () : F(yery) = Folyr|d] with 1(0) = 1} 3.1

where 0 = (c,0)', 1(0) is a p x 1 continuously differentiable function of 8 and 1), is the hypothe-
sized value of 1)(0), such as 1oy = 0. Hy(1)) is usually abbreviated as:

Ho (1) = 9(0) = vy -
Let us assume that the derivative of the constraints

9y

P(6) = 5

A . . ~0 . . .
has full row rank, let 6 be the unrestricted estimator and 6 the constrained estimator obtained by
minimizing the following criterion

M7 (6) = [gr(Ur) — w(®))' 2 [g7(Ur) — u(6)] (3.2)

where gT(UT) denotes the vector of empirical moments based on the residual vector Uz corre-
sponding to x(6). {2, denotes a consistent estimator of (2.,

.= lim E{T [97(Ur) = 1(00)] {37 (Ur) — 1(80)] '}, (3.3)



with g denoting the true value of 6. Such an estimator 2, can easily be obtained [see Newey and
West (1987b)] using a Bartlett kernel:

K(T)
R . k r- all
where T
. 1 2 i J "NK
Ti= 7 > lo-k(Ur) = w(@®)lge(Ur) — u(®) 3-3)
t=k+1

where 6 is a consistent estimator of 6, gt(ﬁT) = [a2, 4}, 6202 ]’ for the SV model (2.4)-(2.6),

and g;(Up) = [a2, 4}, a8, a2a? |, atal |, afal )’ for the SV model (2.21) - (2.25), respectively.
In a just-identified framework, the choice of weight metric (2* 1 is irrelevant.
The Wald-type statistic is defined as

¥ =T (0) — o) [P(J T )T P p(8) — )] (3.6)

where P = P(#), I = I(f) = 02.(0), J = J(0) = %(9) . The score-type statistic is based on

the gradient of the objective function with respect to # evaluated at the constrained estimator. This
gradient is

o' 50~ 4. A0 _ o~ N N
Dp = 5502 [u(@) — gr(Ur)] = Joly ' [u(@") — gr(Tr)] (3.7)
where Iy = I(@O) = Q*(@O), Jo = J(@O) = %(90) , and the test statistic is
Ap A1 AL ~0 A o ~0 A
& = TDp(Joly ' Jo) ™ Dr = T{u(0") — gr(Ur) Wolu(0") — gr(Ur)] (3.8)

with W, = jol (J0 1Jo) lj(;. Finally, the difference between the restricted and unre-
stricted optimal values of the objective function is called the LR-type statistic:

¢ = TIMp(8") — My(0)] . (3.9)
Provided
T[M7(60) = Mr(0)] — 0 (3.10)
where
Mr(0) = [gr(Ur) — u(0))' 2, gr(Ur) — n(0)] | 3.11)

the three test statistics £17, €3 and £$ follow a y2(v) distribution asymptotically under the null
hypothesis (with standard regularity conditions), where v is the number of constraints.
We also consider the C'(«)-type test statistic defined by

PC(07) = T[u(8") — gr(Ur)) Wolu(@") — gr(Ur)] (3.12)

10



where B S o o ~ S
Wo = IV Jo (JIy o)~ By [ By M (Jy 15 Jo) By) Byt (T Iy o) Ty Iy !
o )

with Jo = J(0 ) = %(éo) , Iy = I(éo) = Q*(éo) ,and Py = P(éo). 8" is any root-n

consistent estimator of # that satisfies w(éo) = 0. Below, for the ARSV(1, 1) model, 6° will be

obtained by imposing the constraints in the analytic expressions of the unrestricted method-of-

moments estimator § defined by (2.17) - (2.20), yielding a consistent restricted estimator without

the need to perform a nonlinear optimization. Again, under standard regularity conditions, the

C(a)-type test statistic is asymptotically distributed like a (1) variable under the null hypothesis;

see Davidson and MacKinnon (1993, page 619) and Dufour and Trognon (2001, Proposition 3.1).
In the simulations, we will focus on parametric functions of the form

00 =10 g ) =6,

in which case the null hypothesis Ho(v,) : ¥(0) = v, simplifies to Hy(1pg) : 051 = 6°,. For
example, we may have 051 = ay, 051 = (aw, Tw)’.

Tests may also be used to build confidence sets for model parameters. Let So = S(¢q, y(T))
note one of the four previous tests statistics computed from the sample points y(7y = (y1, - - . , yr)
and under the hypothesis Hy (1) : ¥(0) = 1. If the acceptance region of the test for Hy(vy) :
¥ (0) = 1) has the form

AWo) ={yry = W1, -, yr) €V S(o, Y1) < cla)} (3.13)

where c(«) is the critical point for a test with level «, the corresponding confidence set is the set of
values 1 which are not rejected by such tests:

Cy(yry) = {0 : SWo, yry) < cla)} = {g : GIS(Wg, yr))] > a}, (3.14)
where G(+) denotes the p-value function. These sets are connected to each other by the equivalence
yer) € A(g) & Yo € Clycr)) -

>From the level condition,
PrlY & A(hg)] < o, VF € Ho(vy),
it follows that

PrlY € A(¥g)] 21 —a, VF € Ho(yy),
Prly € C(Y)] =Pp[Y € A(Yy)] > 1 —a, VF € Ho(y), Vi, € Yo,

and
Prlv(@) e C(Y)] >1—a«, forallé,

11



which means that Cy(Y) is a confidence set with level 1 — a for 1(6).

Following this methodology, we will build confidence sets for any parameter of the volatility
process by finding the values of the parameter for which the p-value function is greater than or equal
to «v, yielding a confidence set with level 1 — a.

4. Nonregular problems

We will investigate in this section two interesting test problems. The first one consists in testing
the homoskedasticity hypothesis (a,, = r, = 0) against the SV alternative, and the second one
is to test one-factor SV (a, = r, = 0) against a two-factor SV. Although both hypotheses are
quite relevant in the context of SV models, they raise statistical difficulties. Indeed, under such null
hypotheses, standard regularity conditions turn out to be violated, thus making these problems non-
regular, although in somewhat different ways, so that the standard distributional theory presented in
Section 3 does not apply anymore.

Let us consider first the problem of testing homoskedasticity. In this case, the Jacobian of the
moment conditions (i.e., the derivative matrix of the moments with respect to the SV coefficients)
does not have full rank when evaluated at a point that satisfies the null hypothesis. On using the
analytical expressions for the derivatives of 11(f) with respect to § = (a, 7y, ), as given in
Appendix B, we see that

00 2

a Y

({Tg,: 0 0 12r§ (4.1)
00 4ry

when a,, = 7, = 0, so that Ou/ 00’ has at most rank one (instead of three in the full-rank case).
An important regularity condition is violated. This entails that the score-based statistics [the score
and C'(«)-type statistics] involve non-invertible matrices and are not applicable (at least, without
modifications). Further, Ou/960’ typically has full rank when it is evaluated at a point that does
not satisfy the null hypothesis, for example at an unrestricted point estimate of €, as done when
computing a Wald-type statistic. Therefore, the rank of du1/06’ when evaluated at an unrestricted
point estimate of ¢, will generally exceeds that of its population quantity when the null a,, = r,, =
0, is true. Thus, the rank condition between the population quantity (9u/96’(6p)) and its estimator
(Op) 08 (9)) fails. This feature is then passed on the covariance matrices of the Wald statistic.
Consequently, the Wald-type statistic must be modified [see Andrews (1987) and Liitkepohl and
Burda (1997)] and was hence discarded here.

Second, when testing one-factor SV (a,, = r,, = 0) against a two-factor SV, the correlation pa-
rameter p;5 = corr(vy, ve;) becomes unidentified under the null hypothesis. Again this creates a
singularity and standard regularity conditions are violated. In particular, score-type statistics are not
applicable (without modification). Further, it is well known that identification failure — or conditions
close to identification failure (such as weak instruments) — can make Wald-type statistics fundamen-
tally invalid and require important adjustments to critical values used for other test statistics, such
as LR-type statistics; see Dufour (1997, 2003) and Stock, Wright and Yogo (2002).Thus, the Wald-
type statistics were also discarded under identification failure. In Section 6, we present simulation
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evidence which shows that this is indeed the case for problem at hand here, for LR-type statistics.
Although adjustments similar to those considered by Hansen (1996) and Andrews (2001) may be
feasible here, justifying and applying such methods here would require a considerable theoretical
effort.

In this paper, we shall take a different approach based on using a method which is completely
immune to possible singularities and identification problems, such as those described above, namely
the technique of maximized Monte Carlo tests [Dufour (2005)]. We will now describe succinctly
this method.

5. Monte Carlo tests

The technique of Monte Carlo tests was originally been proposed by Dwass (1957) for implementing
permutation tests and did not involve nuisance parameters. This technique was also independently
proposed by Barnard (1963) and Birnbaum (1974); for a review, see Dufour and Khalaf (2001).
It has the great attraction of providing exact (randomized) tests based on any statistic whose finite
sample distribution may be intractable but can be simulated. We briefly review the methodology
of Monte Carlo tests covering both cases, first without nuisance parameters and then with nuisance
parameters. The technique of Monte Carlo tests provides a simple method allowing one to replace
the unknown or intractable theoretical distribution F'(y|d), where § = (c, 8, by its sample ana-
logue based on the statistics S1(d), ..., Sy(0) simulated under the null hypothesis. We shall now
describe how MC tests can be performed in practice.
For the sake of clarity, let us first consider the case where no nuisance parameters are present.

1. Using the observed sample, we calculate the relevant statistic .Sp.
2. Using draws under H, we generate N simulated samples S1, ..., Sn.
3. Then we consider the following simulated survival function

. 1

Gnly; S = ; s

and the associated p-value function

NGy(y) +1

pn(y) = N1

where s(z) = 1if x > 0, and s(z) = 0 if 2 < 0. If the distribution of S is continuous and N
is chosen so that «(N + 1) is an integer, then

P[pn(So) < a] = a, under Hy,

yielding an exact test.

13



In most econometric models, the relevant case is the one where the distribution of the test
statistic depends on nuisance parameters. To deal with this complication, the MC test procedure
can be modified as follows, where J represents the true parameter vector.

1. To test the null hypothesis B
Hy:6 € () ,

we use first the observed sample to calculate the relevant statistic denoted by Sg.
2. For each 0 € 2y, we generate N replications of S: S1(9), ..., Sy ().

3. Using these simulations we compute the corresponding simulated p-value function:

A NGn[y|d] +1
)= —————.
Pn[yld] N1
4. The p-value function pn[Sp|d] as a function of ¢ is maximized over the parameter values
compatible with the null hypothesis (£29), and H is rejected if

sup{pn(Sold) : 6 € 2} < «. (5.1

If the number of simulated statistics IV is chosen so that a(/NV + 1) is an integer, then we have
under Hy:
Plsup{pn(So0|d) : 6 € 2} < a] < a, (5.2)

that is we control for the level of the test [for a proof, see Dufour (2005)].

Because of the maximization, the critical region in (5.1) is called a maximized Monte Carlo
(MMC) test. MMC tests provide valid inference under general regularity conditions such as almost-
unidentified models or time series processes involving unit roots. In particular, even though the
moment conditions defining the estimator are derived under the stationarity assumption, this does
not question in any way the validity of maximized MC tests, unlike the parametric bootstrap whose
distributional theory is based on strong regularity conditions. Only the power of MMC tests may be
affected.

A simplified approximate version of the MMC procedure can alleviate the computational load
of the MMC procedure whenever a consistent point or set estimate of § is available. To do this, we
shall need to reformulate the setup in order to allow for an increasing sample size.

1. To test the null hypothesis
Hy:6€ 8y, with Q9€ 2, Q#0,

we use first the observed sample to calculate the relevant statistic denoted by Stg.

2. We consider Cr, T' > I a sequence of (possibly random) subsets of {2 instead of {2y, such
that B
lim P[6 € Cr| =1 under Hy. (5.3)

T—o0
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3. For each § € Cp, we generate N replications of S: S71(d), ..., Sy (), with T > I .

4. Using these simulations we compute the corresponding simulated p-value function:

~ NGTNy5 +1
pTN[?/|5] = N[+|1]

5. The p-value function pry[S7o|d] is maximized with respect to § in C7, and Hy is rejected if

sup{prn(St0ld) : 0 € Cr} < «. (5.4)

If the number of simulated statistics IV being chosen so that (/N + 1) is an integer, we have
under Hy:
Thm P[Sup{ﬁTN(ST()’(s) 10 € CT} < Oé] <a, (55)
—00

i.e., we control for the level asymptotically.

In practice, it is easy to find a consistent set estimate of J, whenever a consistent point estimate
o7 of § is available. For instance, any set of the form

Cr={6€ 9 :||or—0|| <d} (5.6)

with d a fixed positive constant independent of 7, satisfies (5.3). It is worth noting that there is no
need to maximize the p-value function with respect to the unidentified parameters under the null
hypothesis (which corresponds to p;, in the two-factor SV framework). Thus, parameters which
are unidentified under the null hypothesis can be set to any fixed value and the maximization be
performed only over the remaining identified nuisance parameters. When there are several nuisance
parameters, one can use simulated annealing [see Goffe, Ferrier and Rogers (1994)], an optimiza-
tion algorithm which does not require differentiability. Indeed Gy [So|d] is step-type function which
typically has zero derivatives almost everywhere, except on isolated points where it is not differen-
tiable. For an example, where this is done using in a VAR model involving a large number of
nuisance parameters, see Dufour and Jouini (2005).
Finally, if the set Cr in (5.4) is reduced to a single point estimate 3T, ie. Cp = {5T}, we get
a local MC (LMC) test R
Pr (StoldT) < o (5.7

which can be interpreted as a parametric bootstrap test. Even if S is a consistent estimate of &
(under the null hypothesis), the condition (5.3) is not usually satisfied in this case, so that additional
assumptions are needed to show that the parametric bootstrap procedure yields an asymptotically
valid test. It is computationally less costly but clearly less robust to violations of regularity condi-
tions than the MMC procedure; for further discussion, see Dufour (2005).
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6. Simulation results

In this section, we present some simulation evidence on the finite-sample properties of the proce-
dures described in the previous sections. In particular, we provide results on the actual level of the
Wald, score, LR and C'(«)-type tests for the three main hypotheses discussed: (1) the hypothesis of
non-persistence in volatility (against persistence in volatility); (2) homoskedasticity (against the SV
alternative); (3) one-factor SV against a two-factor SV. Three ways of implementing the tests are
considered: asymptotic critical values, parametric bootstrap, and MMC. We also present results on
power for the three types of hypotheses described above.

The Wald-type statistic [defined in equation (3.6)] is evaluated at the unrestricted method-of-
moments estimator §. The score-type statistic [defined in (3.8)] is evaluated at the restricted estima-
tor 8 which minimizes the criterion M7.(0) in (3.2) under the constraint a,, = 0. The C(a)-type
statistic [defined in (3.12)] is evaluated at the restricted estimator éo of #, where éo is obtained by
setting a,, = 0 in the analytical expressions of the unrestricted method-of-moments estimator 6 in
(2.17)-(2.20). Further, the LR-type test statistic LR(Q) = g% corresponds to the difference be-
tween the restricted and the unrestricted optimal values of the objective function, with the restricted

objective function evaluated at @0 and 2 = !2(9) The weighting matrix (2 is estimated by a kernel
estimator with fixed-bandwith Bartlett kernel, where the lag truncation is set at K = 2 [see Newey
and West (1987a)].

Let S denote the test statistic which alternately takes the form of one of the four test statistics
mentioned, and Sy the statistic computed from the “pseudo-true” data obtained by simulation under
the true data generating process. The critical regions have the following forms:

Ra = {SO > Xi(y)}

for the standard asymptotic tests, where P[x?(v) > x2(v)] = a and v is the number of constraints
tested,
R <0
Rp = {pn[S0|0] < a}

for the bootstrap test, and

Rumce = { sup{prn(Srold) : 6 € Cr} < a},

where
R NGxlz|6] +1
pulals] = FONIAEL
. 1 X
Gnlz; S(N, §)] = N;5(Si(5) — 1),

0. . . . . .

§ is a consistent point restricted estimate § = (c, ), 6 is the vector of the SV parameters [e.g.,
0 = (aw, Ty, Tw)’ for the one-factor SV model, 0 = (aw, ry, Tw, @y, ™, p1o)’ for the two-factor
SV model], and C7 is a restricted consistent set estimator of d.
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For MMC tests of the non-persistence hypothesis in the single-factor SV model (a,, = 0), the
set Cr over which we maximize the simulated p-value is:

O = (e, ry, mw) 1 e — & < 0.15, |¢ <0.99, [ry — #V] < 0.3, ry, — 7V < 0.3}, (6.1)

where ¢ is the least squares estimates of ¢ [based on fitting the AR(1) model (2.1) with no drift] and
(f'(l), P )) is the restricted GMM estimate of (7, r,,) in the one-factor model [based on minimizing
M7.(9) subject to the restriction a,, = 0]. For the homoskedasticity hypothesis (a,, = r,, = 0), the
corresponding set is

O = {(e, my) : Je — ¢ < 0.15, |¢| < 0.99, |r, — #?)] < 0.3} (6.2)
where fz(f) is the corresponding restricted GMM estimate of r,, [based on minimizing M7.(6) subject

to the restriction a,, = 7, = 0]. Finally, for testing the one-factor model against the two-factor
model (a, = r, =0), Cr is

C¥ = {(c, tu, Ty, 1) t e — ¢ <015, |¢] < 0.99, |ay, — 4P| < 0.15, |a,| < 0.99,

|
ry — 7] < 0.3, [ry, — 7P < 0.3} (6.3)
where f’(3), fﬁ;‘ ) and &1(3 ) are restricted moment estimates of the two-factor model [based of the
moment equations in (2.27)-(2.32)]. Since the number of nuisance parameters is relatively small,
maximization was achieved through a grid search (with points separated by a distance of 0.03 for
each coefficient). Note that many other restricted consistent estimates of the relevant nuisance
parameters could be used to build the sets Cr.

The nominal level is @ = 0.05. The number of replications used for Monte Carlo tests is
N = 99, while the rejection frequencies are estimated with M = 1000. 7" is the sample size of the
series y; whose data generating process is assumed to be specified as in equations (2.4)-(2.6) for
the one-factor SV model and as in equations (2.21)-(2.24) for the two-factor SV model. Calculation
were performed with the GAUSS software (version 3.2.37). The autoregressive parameters a,, and
a, in the autoregressive specifications for the volatility process are restricted to an interval inside
(=1, 1) to ensure stationarity.

In the power study (Section 6.2), the asymptotic critical points are locally level-corrected, i.e.
the critical points are modified to ensure that the rejection frequency under the null hypothesis (for
the specific nuisance parameter values considered) is equal to 0.05; the corrected critical value is
obtained by simulating the test statistic under the null hypothesis with a large number of replica-
tions.> Corrected asymptotic critical values are estimated from a separate simulation (with 10000
replications). Bootstrap tests are level-corrected by decreasing the threshold under which the boot-

2We use the term “locally level-corrected” instead of “size-corrected” because a true size correction would require one
to ensure that the probability of rejecting the null hypothesis under all distributions compatible with null hypothsesis (i.e.,
for all values of the nuisance parameters) be less than or equal to the level «. Theoretically, a complete size-correction
would be the most satisfactory correction to perform for a fair comparison of all the test procedures. However, finding
the appropriate size-corrected critical values requires a numerical search that could not performed in the context of the
present experiment.
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strap p-value must fall to ensure the that bootstrap test rejects with frequency of 0.05 under the null
hypothesis; the corrected threshold is estimated from a separate simulation (with 1000 replications).

6.1. Level

We will now examine the empirical levels of the tests. The results on testing volatility non-
persistence (Hy : a,, = 0) are reported in Table 1. When the mean process has low persistence
(¢ = 0.3), we observe few over-rejections (above the nominal level of 0.05), except for the bootstrap
procedure with a low sample size. Indeed, the asymptotic critical values appear to be conservative in
this case. In contrast, when mean persistence is high (¢ = 0.95), several asymptotic and bootstrap
procedures exhibit notable over-rejection rates even with a sample of 7' = 500. The only procedures
which do not exhibit over-rejections in the cases considered are the asymptotic C'(«)-type test and
the MMC versions of all the tests. As expected from theory, the latter may be conservative.

Results on testing homoskedasticity and the one-factor hypothesis appear in Table 2. Because
these hypotheses lead to locally singular moment conditions, the score and C'(«)-type tests are not
applicable here, while Wald tests often depend on covariance matrices which are almost singular
(generating numerically unstable behavior). So only LR-type tests are considered. We see from
the results that asymptotic LR-type tests are quite conservative for the homoskedasticity hypothesis
but can severely over-reject for the one-factor hypothesis. Indeed, size distortions increase with
the sample size, indicating that standard critical values are not asymptotically valid. Bootstrapping
appears to correct the situation for the first hypothesis, but leaves notable over-rejection rates in the
second case. Of course, one cannot exclude the possibility of larger bootstrap failures for different
parameter configurations. Clearly, the two types of non-regular problems studied are qualitatively
different from the statistical viewpoint. Again, in all cases studied, the MMC-based tests do not
exhibit over-rejection rates.

6.2. Power

We will now study the empirical powers of the tests. In Table 3, we report empirical powers for tests
of Hy : a,, = 0. We can see from the results that the C'(«) and the LR-type tests have more power
than the other tests. Further, the C'(«)-type test is easy to implement in this context since it does
not require any optimization procedure unlike the LR and the score-type tests. Further, although
the MMC-based tests may be conservative, their power is in fact quite close to the one of the other
tests and even perform better, in some cases, than the level-corrected bootstrap and asymptotic tests
in small samples (e.g. for T' = 50, 100, 200 in Table 3). In the present situation, MMC-based tests
are essentially equivalent to (infeasible) level-corrected bootstrap tests, which suggest that they may
dominate size-corrected bootstrap tests (whose level would be controlled over the whole nuisance-
parameter space).

We also examine in Table 4 (panel A) the power of homoskedasticity tests (against one-factor
SV). All versions of the LR-type test exhibit good power — which increases with the sample size
— and are very close of each other. Note that the locally level-corrected asymptotic tests are not
feasible in practice (because critical values are computed using unknown parameter values under
the null hypothesis).
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Table 1. Empirical levels of asymptotic, bootstrap and MMC tests for non-persistence in volatility

Hj : a,, = 0 (non-persistence)

One-factor SV: ¢ = 0.3, ry =1, = 0.5

T =50 T =100 T =200
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 0.1 6 0.2 0.8 5.6 0.3 09 | 43 0.3
Score | 0.5 9.1 0.2 1 9.2 0.1 22 | 82 0.4
LR 8.4 8.6 0.2 5.6 4.5 0.6 39 | 5.1 1.3
C(a) | 04 9.1 0.3 0.6 8.6 0.3 23 | 718 0.8
T =500 T = 1000 T = 2000
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 1.7 4.5 0.3 2.2 54 0.7 3.1 5.5 0.5
Score | 2.8 7.6 0.8 3 5.1 1 3 29 0.9
LR 2.5 6.3 0.8 29 55 1 36 | 48 1.1
C(a) | 29 8.1 1.4 29 5.7 1.6 2.9 4 1.1

One-factor SV: ¢ = 0.95, r, = 0.5, r, = 0.9

T =50 T =100 T =200
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 23 | 11.6 2.8 4.1 | 10.6 1.7 7.2 | 103 3.2
Score | 3.3 | 13.5 0.8 6.1 9.5 0.1 53 | 45 0.3
LR 153 | 9.7 32 129 | 6.9 1.2 92 | 65 2.7
Ca) | 33 | 148 39 39 | 11.2 2.8 42 | 6.2 2
T =500 T = 1000 T = 2000
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 94 94 39 10.1 | 5.9 2.8 84 | 57 29
Score | 6.4 52 1.5 6.4 4.8 2 6 4 2.2
LR 9.1 8 34 7.7 6.1 2.8 69 | 63 32
Ca) | 55 7.3 34 5.5 5.7 2.6 57 | 47 29

Note - In this table as well as in the other tables, frequencies are reported in percentages.
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Table 2. Empirical levels of asymptotic, bootstrap and MMC tests for the number of factors.

(A) Hyp : ay = 1y = 0 (homoskedasticity)

One-factor SV: ¢ = 0.3, r, = 0.5
T =50 T =100 T = 500
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 82 | 7.6 0.5 69 | 7.7 2.9 1 52 4.8
T = 1000 T = 2000 T = 5000
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 02 | 53 4.7 04 | 48 3 03 | 46 3.6

One-factor SV: ¢ = 0.95, ry, = 0.5
T =50 T =100 T =500
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 8 10.7 4.6 7 9.7 4.7 09 | 64 52
T = 1000 T = 2000 T = 5000
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR| 02 | 54 4.5 04 | 5.1 34 03 | 48 3.1

(B) Hp: ay, = r; =0 (one factor)

One-factor SV: ¢ = 0.95, ry = 0.5, a, = 0.7, 7, = 0.5
T =50 T =100 T = 500
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR 3 5 1 5 3 1 9 4 0
T = 1000 T = 2000 T = 5000
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 21 6 1 35 15 1 63 13 1
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Table 3. Powers of MMC, (level-corrected) bootstrap and (level-corrected) asymptotic tests.
Hypothesis of non-persistence in volatility

One-factor SV: ¢ = 0.3, ry =1, = 0.5

Holaw:O
H;:a, =028
T =50 T =100 T =200

Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald 12 | 11.6 5.8 18 12 8.6 28.6 | 21.8 | 15.6
Score | 14.2 4 24 23 6 4.8 478 | 23 19.4
LR 10 6.4 6.2 16.2 | 8.6 6 356 | 246 | 174
Ca) | 206 | 12 134 | 312 | 18 204 | 542 | 39 40.6
T =500 T = 1000 T = 2000

Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 60.6 | 456 | 364 | 844 | 62 548 | 957 | 849 | 83.6
Score | 77 51 54 83.2 | 8l 76.2 | 924 | 92.1 90
LR 694 | 526 | 49.8 | 87.3 | 80.6 73 96.5 | 95 92.2
C(a) | 80.8 | 634 | 658 | 953 | 94 92.1 | 985 | 982 | 974

Hy:a, =0.99
T =50 T =100 T =200
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 263 | 25.8 | 16.50 | 53.6 | 422 | 373 | 80.8 | 784 | 65.1
Score | 21 104 | 252 | 326 | 20.2 | 303 50 | 374 | 41.8
LR 33 29 40 55.6 | 47 534 | 87.6 | 81.2 88
C(a) | 37.2 | 33.8 40 60.8 | 524 60 86 | 844 83
T = 500 T = 1000 T = 2000
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 964 | 93.3 84 98.8 | 96.7 | 87.2 99 98 91
Score | 58.1 | 50.8 | 514 | 78.7 | 919 | 857 93 94 91
LR 9741 946 | 951 | 994 | 998 | 99.7 | 99.8 | 99.6 99
Cla) | 98 | 978 | 971 | 995 | 99 98.5 | 99.8 | 99.3 99
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Table 3 (continued)

One-factor SV: ¢ = 0.95, ry = 0.5, ry, = 0.9

H(]:aw:0
leaw:0.8
T =50 T =100 T =200

Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 23.8 | 26 212 | 418 | 37.8 | 358 | 604 | 50.8 | 55.8
Score | 11.2 | 1.6 4 19.8 6 7.1 36 23 14.8
LR 20.8 | 31.8 | 32.6 | 424 | 38 38,6 | 654 | 504 | 56.1
C(a) | 37.8 | 28.8 33 554 | 432 | 478 | 748 | 624 66
T = 500 T = 1000 T = 2000

Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 78.6 | 63 70 92 83 81.8 | 95.8 | 86.6 86
Score | 61.4 | 41.6 40 68 | 62.6 | 58.8 | 72.6 | 70.6 66
LR 86.8 | 70.4 75 96 | 914 | 912 | 984 | 952 | 952
C(a) | 95.8 | 88.8 90 984 | 972 | 972 | 988 | 98.2 | 98.2

H; :a, =0.99
T =50 T =100 T =200
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 37.8 | 432 | 365 | 66.4 | 68.2 63 86.6 | 86.6 | 825
Score | 34.2 | 354 33 49 | 495 | 475 | 61.7 | 623 60
LR 376 | 63 60.5 | 695 | 81.8 | 789 | 884 | 94 95
C(a) | 488 | 624 | 62.6 | 819 | 81.6 81 90.1 | 94.8 89
T = 500 T = 1000 T = 2000
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
Wald | 97 | 96.6 | 93.4 | 994 | 995 | 945 100 | 96.8 | 96.8
Score | 80.1 81 80.2 94 | 938 | 93.8 | 998 | 99.6 | 99.6
LR 95.7 | 97.6 | 98.5 97 | 996 | 98.6 | 97.8 | 99.8 | 99.8
Cla) | 99 | 987 | 984 |99.5| 99.6 | 99.1 100 | 100 100

Note — All asymptotic tests are locally level-corrected. Bootstrap tests are locally level-corrected when the
probability of type I error exceeds 0.05. Locally-level corrected tests are not feasible in practice and
constitute benchmarks for assessing the performance of MMC tests.
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Table 4. Empirical powers of MMC, bootstrap and (locally level-corrected) asymptotic tests.
Tests for zero (homokedasticity) and one factor SV (against two-factor SV)

(A) Hp: ay = ry = 0 (homoskedasticity)
Hi:a,=1r,=0.>5

One-factor SV: ¢ = 0.3, r, = 0.5
T =50 T =100 T =500
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 11.8 | 11.2 9.4 154 | 13.8 12 88 87 86
T = 1000 T = 2000 T = 5000
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 99 | 995 | 99.1 100 | 100 100 100 | 100 100
One-factor SV: ¢ = 0.95, ry, = 0.5
T =50 T =100 T = 500
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 11.8 11 94 162 | 14 13 87.8 | 84.8 | 854
T = 1000 T = 2000 T = 5000
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 99.5 | 994 99 100 | 100 100 100 | 100 100

(B) Hp : ay, = r,; =0 (one factor)

Two-factor SV: ¢ = 0.95, ry, = 0.5, ay, = 0.7, 1, = 0.5, p5 = 0.3
Hy:a,=r,=09

T =50 T =100 T = 500
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 5 8 5 10 23 8 22 30 20
T = 1000 T = 2000 T = 5000

Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
LR | 31 41 33 39 50 36 70 76 60

Note — All asymptotic tests are locally level-corrected. Bootstrap tests are locally level-corrected when the
probability of type I error exceeds 0.05. Locally-level corrected tests are not feasible in practice.
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For tests of the one factor hypothesis (panel B of Table 4), the powers of LR-type tests — though
low in comparison with the other hypotheses studied previously — is sizeable and increases with
the sample size. For average sample sizes, the MMC-LR procedure has as much power and some-
times more power than the corresponding (infeasible) locally level-corrected asymptotic test. Thus,
the only valid feasible test which guarantees to control for the level — unlike the asymptotic and
bootstrap procedures — provides reasonable power.

Finally, we provide plots of power functions for Hy : a,, = 0 in the one-factor SV model,
where the performance of the locally level-corrected asymptotic tests (dashed line) and bootstrap
tests (dotted line) are compared. The Wald, LR, score and C(«)-type tests appear in figures 1 to
4 respectively. Once again, we observe that the C'(«) and the LR-type tests display higher and
smoother power than the Wald and the score-type tests. The score-type tests (Figure 3) behave quite
poorly at the boundaries of the domain for the autoregressive parameter a,,. This bad performance
may be linked to the instability of the restricted GMM estimator when the autoregressive parameter
ay, is close to the boundary of its domain. In contrast, the C'(«)-type tests behave much better near
the boundary, when a,, is close to 1 and to —1. The LR-type test does not seem to suffer from
this drawback and displays more robustness at the boundaries of the domain of a,, than the other
tests. Further, the bootstrap power functions tend to be dominated by their asymptotic counterparts.
However, the asymptotic power functions should be viewed only as a infeasible benchmark which is
useful for comparison purposes, since it requires values of nuisance parameters that are not available
in practice.

7. Empirical application

In this section, we test the three null hypotheses studied in the simulation experiments from real
data on the Standard and Poor’s Composite Price Index (1928-87). We actually proceed in three
steps in order to select the more suitable specification for this specific data set. First, we test for
the null of homoskedasticity against an alternative of stochastic volatility. Second, we perform the
test of one factor against two factors in the volatility process. And finally, we implement the test of
no-persistence in the one-factor volatility process if the one-factor specification is appropriate.

7.1. Data

The data have been provided by Georges Tauchen where the efficient method of moments (EMM)
have been used by Gallant et al. (1997) to fit a SV model. The data to which we fit the stochastic
volatility models is a time series comprised of 16,127 daily observations, {gjt}%i’llw, on adjusted
movements of the Standard and poor’s Composite Price Index, 1928-87. The raw series is the
Standard and Poor’s Composite Price Index (SP), 1928-87 (daily). The raw series is converted to
growth rates by the transformation 100[log(SP;) — log(SP;_1)], and then adjusted for systematic
calendar effects, that is, systematic shifts in location and scale due to different trading patterns

across days of the week, holidays, and year-end tax trading.
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Figure 1. Power functions of level-corrected asymptotic parametric and bootstrap Wald-type tests
of Hy:a, =0
Model with: r,, = 0.5, ry = 0.5, ¢ = 0.3, T" = 2000. Level = 0.05
The dashed line represents the asymptotic test and the dotted line the bootstrap test.
Level is 0.05. All tests are locally level-corrected.
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Figure 2. Power functions of level-corrected asymptotic parametric and bootstrap LR-type tests of
H() LAy = 0
Model with: r,, = 0.5, ry, = 0.5, ¢ = 0.3, T" = 2000
The dashed line represents the asymptotic test and the dotted line the bootstrap test.
Level is 0.05. All tests are locally level-corrected.
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Figure 3. Power functions of level-corrected asymptotic parametric and bootstrap score-type tests
of Hy:a, =0
Model with: r,, = 0.5, ry, = 0.5, ¢ = 0.3, T" = 2000
The dashed line represents the asymptotic test and the dotted line the bootstrap test.
Level is 0.05. All tests are locally level-corrected.
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Figure 4. Power functions of level-corrected asymptotic parametric and bootstrap C'(«)-type tests
of Hy:a, =0
Model with: r,, = 0.5, r, = 0.5, ¢ = 0.3, T" = 2000
The dashed line represents the asymptotic test and the dotted line the bootstrap test.
Level is 0.05. All tests are locally level-corrected.

Ay
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7.2. Results

The unrestricted estimated value of (¢, @) for the one-factor model obtained from the data is:

(&, Qu, Py, Fw] = [0.129, 0.926, 0.829, 0.427 |

(0.007) (8.10) (0.829) (8.13) (7.1)

where standard errors are given in parentheses. We may conjecture that there is some persistence in
the data during the period 1928-87 what is statistically checked by performing the tests below. The
restricted estimated values of (¢, §) from the data are:

e, ad, 70, #9] = [0.129, 0, 0.785, 1.152]

T 0007) () (1L.95) (1L7) (7.2)

and the consistent restricted estimator derived from the closed-form expression of the unrestricted
moment estimator is equal to

le,ad, 70, 7] = [0.129, 0, 0.829, 1.133]

T 0007) () (191) (1.66) (.3)

Note the large discrepancy between the unrestricted and restricted estimates of r,, where the re-
stricted estimates may not be consistent if the null hypothesis Hy : a,, = 0 is false.

In Table 5, we report tests based on the whole sample (16,127 daily observations on the S&P
500), which covers the market crashes of the Black Thursday of October 1929 and of October 1987,
the Cuban Missile Crisis (October 1962) and the Arab Oil Embargo (October 1973). We then repeat
the tests on there sub-samples: 1928 - 1949, 1950 - 1969 and 1970 - 1987. The long sloped arrow
displayed on Figure 5 shows the Cuban Missile Crisis of October 1962. The outlier appearing at the
end of the sample indicates the market crash of October 1987.

We can see from the results in the top panel of Table 5, that the three versions (asymptotic,
bootstrap and MMC) of the LR test do reject the null hypothesis of homoskedasticity in favor of
a stochastic volatility specification for the volatility process of the S&P 500 index, except for the
third sub-period 1970-1987 but with p-values however very close to 0.05 (p-value=0.07).

More recently, Chernov et al. (2003) and Durham (20044, 2004b) provide evidence that standard
single-factor SV models have some difficulties to model the shape of the conditional distribution
of financial returns. In particular, Chernov et al. (2003) show that two-factor SV models better
accommodate richer dynamics such as the tail behavior of (conditional) return distributions and
possibly capture some rapid moves in the dynamics of volatility during extreme market conditions.
The first factor may act as a long-memory component, while the second factor is expected to model
tail behavior. To check for that, we test the null of one factor against two factors (Hy : a,, = r, = 0)
in the bottom panel of Table 5. All versions (asymptotic, bootstrap and MMC) of the LR test do not
indicate that a two-factor specification is needed for the S&P 500 index volatility. Consequently,
we chose a one-factor specification for modelling the S&P 500 index volatility.

We will now study in greater detail the volatility parameter in the one-factor SV model. We
first test for the null hypothesis of no-persistence in the volatility process (Table 5). All tests,
asymptotic, bootstrap and MMC, reject the null hypothesis of no-persistence in the volatility for
all the periods considered. Indeed, it is well known in the financial literature that financial returns
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Figure 5. Daily observations on the S&P500 index.
The long sloped arrow shows the Cuban Missile Crisis of October 1962.
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Table 5. Empirical application

S&P 500 index

Test of homoskedasticity

Hy:ap,=1r,=0

Sample 1928-1987, T = 16127

Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N=99 | N =999
LR 9.71 0.05 0.01 0.001 0.05 0.01 0.001
Sample 1928-1949, T' = 6491
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N=99 | N =999
LR 42.58 0.05 0.01 0.001 0.05 0.01 0.001
Sample 1950-1969, T' = 5087
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N=99 | N =999
LR 6.28 0.05 0.02 0.003 0.05 0.02 0.003
Sample 1970-1987, T' = 4549
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N=99 | N =999
LR 2.09 0.10 0.07 0.077 0.10 0.07 0.078
S&P 500 index
Test of one against two SV factors
Hy:ap=1r,=0
Sample 1928-1987, T = 16127
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N=99 | N =999
LR 4.150 0.20 0.14 0.131 0.40 0.30 0.242
Sample 1928-1949, T' = 6491
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N=99 | N =999
LR 0.436 0.95 0.89 0.882 0.95 0.92 0.883
Sample 1950-1969, T' = 5087
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N=99 | N =999
LR 3.131 0.20 0.11 0.046 0.50 0.41 0.326
Sample 1970-1987, T' = 4549
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N=99 | N =999
LR 1.142 0.35 0.26 0.254 0.40 0.36 0.308
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Table 5 (continued)

S&P 500 index
Hy:a, =0
Sample 1928-1987, T = 16127
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N =99
Wald 210.85 0.05 0.01 0.001 0.05 0.01
Score 1039.04 0.05 0.01 0.001 0.05 0.01
LR 25.49 0.05 0.01 0.001 0.05 0.01
C(a) 854.55 0.05 0.01 0.001 0.05 0.01
Sample 1928-1949, T' = 6491
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N =99
Wald 112.95 0.05 0.01 0.001 0.05 0.01
Score 269.72 0.05 0.01 0.001 0.05 0.01
LR 52.73 0.05 0.01 0.001 0.05 0.01
C(a) 185.47 0.05 0.01 0.001 0.05 0.01
Sample 1950-1969, T' = 5087
Asymptotic tests Bootstrap tests MMC tests
So N=19 | N=99 | N=999 | N=19 | N =99
Wald 93.01 0.05 0.01 0.001 0.05 0.01
Score 607.92 0.05 0.01 0.001 0.05 0.01
LR 11.95 0.05 0.01 0.001 0.05 0.01
C(a) 304.66 0.05 0.01 0.001 0.05 0.01
Sample 1970-1987, T' = 4549
Asymptotic tests Bootstrap tests MMLC tests
So N=19 | N=99 | N=999 | N=19 | N =99
Wald 30.50 0.05 0.01 0.001 0.10 0.03
Score 391.87 0.05 0.01 0.001 0.05 0.01
LR 40.90 0.05 0.01 0.001 0.05 0.01
C(a) 165.03 0.05 0.01 0.001 0.05 0.01
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Table 6. Confidence sets

Confidence sets for a,,, 1 — a = 0.95
Asymptotic Bootstrap
Wald [0.800, 0.999] [0.748, 0.999]
Score | [—0.950, —0.561] U [0.405, 0.474] | [—0.950, —0.561] U [0.405, 0.476]
U[0.713, 0.993] U[0.640, 0.997]
LR [0.810, 0.996] [0.750, 0.997]
C(a) [0.713, 0.994] [0.726, 0.995]

display serial dependence in volatility. In Table 6, we also report confidence sets for the one-factor-
model persistence parameter a,, obtained by testing the values of a,, between —0.999 and 0.999
[see Section 3]. The nominal coverage probability for the confidence is 1 —a = 0.95. In practice, to
implement the confidence sets based on the asymptotic critical point X%,o5(1) = 3.84, we keep all
the values of the parameter which are not rejected at level of o = 0.05. For the bootstrap confidence
sets, we proceed as exposed in Section 5 with the observed statistic computed from the actual
data. Then, we compute the rank of the observed statistic among the statistics simulated under
Hy : ay = ap where the nuisance parameters are evaluated at the consistent estimates obtained
from the real data set. For each value of a¢ varying from -0.999 to 0.999, we keep the values ag
whose p-value is greater than 0.05. The results reported in Table 6, indicate that all confidence sets
do cover the estimated value a,, = 0.926 drawn from the real data. Nevertheless, the confidence
sets based on the asymptotic critical point are globally shorter than the bootstrap ones which reveal
more conservative in this context with the exception of the one built on the C'(«)-type test statistic
whose length is nearly identical for the bootstrap and the asymptotic confidence sets. Note that
the confidence sets built from the score-type test statistic consist of the union of three confidence
intervals and again do not perform as well as the ones obtained through the other test statistics as
already observed in the simulations. Further, the loss of precision of confidence sets deduced from
the tests statistics involving only on the restricted estimates may be due to the fact the restricted
estimates may lead to inconsistent estimates when the null being tested is false. At the opposite, the
most precise confidence sets are those based on the LR-type statistic.

To summarize, the results presented here indicate that a one-factor model with strong volatility
persistence may be appropriate for the S&P 500 index data studied here.

8. Conclusion

In this paper, we have provided finite-sample procedures for testing hypotheses on the parameters of
SV models, allowing for the possible presence of non-regular testing problems (underidentification,
singularity issues) that can lead to non-standard asymptotic distributional theory. Besides usual
linear restrictions on SV coefficients, the problems studied include testing homoskedasticity against
a SV alternative and testing the one-factor SV against two-factor SV, which raises singularity and
identification difficulties. In addition to the three standard tests, we proposed to use C'(«)-type tests
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which are relatively easy to apply and displays good size and power properties (when applicable).

In order to deal with the potential unreliability of asymptotic critical values and bootstrapping,
especially in cases where standard regularity conditions fail, we showed that the MMC test approach
provides a transparent way of dealing with such difficulties, yielding both exact or asymptotically
valid tests without the need to establish a specific distributional theory. In some cases, the MMC
method is the only one that yields provably valid tests. Further, in simulations, we observed that
the MMC method can indeed be implemented to produce inference on SV models, works very well
from the viewpoint of controlling test levels, and does not entail a considerable power loss with
respect to alternative (usually infeasible) level-corrected asymptotic or bootstrap approaches.

These testing procedures can easily be extended to accommodate richer dynamics such as fat-
tailed and/or correlated errors [see Harvey and Shephard (1996), Jacquier, Polson and Rossi (2004),
Omori, Chib, Shephard and Nakajima (2004)], or multivariate stochastic volatility structures [see
Harvey et al. (1994), Chib, Nardari and Shephard (2002b), Jacquier, Polson and Rossi (1999)]. They
could also be extended to a continuous-time specification of the SV model since all the moments
are already derived in Meddahi (2002).
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A. Appendix: Proofs

PROOF OF PROPOSITION 2.4

If U ~ N(0, 1) then E(U?*1) = 0,V p € Nand E(U%) =

(2p)!/[2Pp!] V p € N [see Gouriéroux and Monfort (1995, Volume 2, page 518)]. Hence:

E(uy

= rl;E(zf)E explk(we/2 + 1, /2)]

A 2
_ kv L
= 207 (1. /2)] exp[ 3 (Var(wt) + Var(n,) + 2COV(wt777t)>:|
k! k? k% ryr
T — M _ K TwimP12
Ty2(k/2)(k/2 eXp[ w/( ) 3 7“77/(1 a )+ 11—aya n:| (A.1)

where the second equality uses the definition of the Gaussian Laplace transform of w; ~
N[0, 72,/(1 — a2)] (of 1 respectively) and of the moments of z;. Further, using

we obtain the cross-moments:

E[

j. k
Uz Uppg

]

E(wy) =0, Var(wt) =72 /(1 —d2), (A.2)
E(n,) =0, Var(n,) = r7/(1 —ay), (A.3)
Cov(wr, wiyr) = alyryy /(1= az,) Covlig, my1y) = anry /(1 - ay), (A4)
TwTnP12
Cov(wy, 1) = ———=, (A.5)
t 1 —away
Cov(wy,m;47) = alllCov(we, n,), Cov(wyi, n,) = alllCov(wy, n,) (A.6)
w
E{r) ™ol f expli (5 + 1) + k(S5 + T
DR E ey + gw + (2 4 Dty
e ! ! | Lk
: ! k! 1[42 k?
J+k J
3G (72) 207 (1. /2)] exp{ 5 [ Var(wy) +? Var(nt) + Var(wt+l)

k? 252 25k
—i—ZVar(ntH) + %C’ov(wt,nt) + {TCOU(wt,th)

27k 27k 27k
+TCOU<wta 77t+l) + TCOU(% wt+l) + TCOU(W: 77t+l)

2k?
+TCOU(wt+l, nm)] }

] 2
j+k J! k! r2 P
"y 20/2)(j/2)1 2k/2) (K /2)! exp 3(1 _a%))(] + k* + 2jkay, )

7“2

n 2 2 il
+ + k% + 25k
8(1— a%) ( jkay)
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219242 4 2k2 + 2ikalll - 25k glthy ZwInP12 |
—i—S[ 35+ 2k + 2jkay’ + 25 a“’]l—awan

B. Appendix: Analytical derivatives of moment conditions

The analytical expressions of the derivatives of the moment conditions are given by:

2

2
gvlfj T . 2)'v eXP[Q(lr—w“%v)} |
gﬁj =2, eXP[2(17z%a%U)]

253 =125 _aw;i)zriré eXp[(lzjig’)] |
gf:ﬁ - 125 iwag,f; exp[@%%%’)] |
g,:; _ 127“2 eXP[(l %%U)] ’

JR i y s
anju T —ap)?'Y exp[m] |
s g

Tt el ).

All these derivatives evaluated at a,, = 0, 7, = 0 gives the results stated in equation (4.1).
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