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ABSTRACT

We study the distribution of Durbin-Wu-Hausman (DWH) and/&ear-Hartley (RH) tests for ex-
ogeneity from a finite-sample viewpoint, under the null aitdraative hypotheses. We consider
linear structural models with possibly non-Gaussian srnahere structural parameters may not be
identified and where reduced forms can be incompletely 8pdgior nonparametric). On level con-
trol, we characterize the null distributions of all the tsigttistics. Through conditioning and invari-
ance arguments, we show that these distributions do ndveEwmisance parameters. In particular,
this applies to several test statistics for which no findaeiple distributional theory is yet available,
such as the standard statistic proposed by Hausman (19%8)di$tributions of the test statistics
may be non-standard — so corrections to usual asymptoticativalues are needed — but the char-
acterizations are sufficiently explicit to yield finite-spl@ (Monte-Carlo) tests of the exogeneity
hypothesis. The procedures so obtained are robust to wealkifidation, missing instruments or
misspecified reduced forms, and can easily be adapted t® tlogparametric non-Gaussian error
distributions. We give a general invariance reshlb€k triangular invariancg for exogeneity test
statistics. This property yields a conveniexiogeneity canonical formnd a parsimonious reduc-
tion of the parameters on which power depends. In the extrase where no structural parameter
is identified, the distributions under the alternative hyesis and the null hypothesis are identical,
so the power function is flat, for all the exogeneity statsti However, as soon as identification
does not fail completely, this phenomenon typically disspp. We present simulation evidence
which confirms the finite-sample theory. The theoreticalilitesare illustrated with two empirical
examples: the relation between trade and economic growthiree widely studied problem of the
return of education to earnings.

Keywords: Exogeneity; Durbin-Wu-Hausman test; weak instrumentomplete model; non-
Gaussian; weak identification; identification robust; érsample theory; pivotal; invariance; Monte

Carlo test; power.

JEL classification: C3; C12; C15; C52.
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1. Introduction

The literature on weak instruments is now considerable asdoften focused on inference for the
coefficients of endogenous variables in so-called “insautal-variable regressions” (or “IV re-
gressions”); see the reviews of Stock, Wright and Yogo (20D2four (2003), Andrews and Stock
(2007), and Poskitt and Skeels (2012). Although researdiesia for exogeneity in IV regressions
is considerable, most of these studies either deal withrsaglere instrumental variables are strong
(thus leaving out issues related to weak instruments), ars@n the asymptotic properties of ex-
ogeneity tests. To the best of our knowledge, there is no study on the finitepda performance
of exogeneity tests when IVs can be arbitrary weak, when tteersemay follow a non-Gaussian
distribution, or when the reduced form is incompletely sfied. The latter feature is especially im-
portant to avoid losing the validity of the test procedureewlimportant instruments are “left-out”
when applying an exogeneity test, as happens easily for somenon “identification-robust” tests
on model structural coefficients [see Dufour and TaamoOD 3]

In this paper, we investigate the finite-sample propertseze(and power) of exogeneity tests
of the type proposed by Durbin (1954), Wu (1973), Hausmar§},9and Revankar and Hartley
(1973), henceforth DWH and RH tests, allowing for: (a) thebility of identification failure
(weak instruments); (b) model errors with non-Gaussiatridigions, including heavy-tailed dis-
tributions which may lack moments (such as the Cauchy Higtan); and (c) incomplete reduced
forms (e.g, situations where important instruments are missing oplgf) and arbitrary heterogene-
ity in the reduced forms of potentially endogenous explayatariables.

As pointed out early by Wu (1973), a number of economic hypsdis can be formulated in
terms of independence (or “exogeneity”) between stoaha&siplanatory variables and the distur-
bance term in an equation. These include, for example, ttlegrent income hypothesis, expected
profit maximization, and recursiveness hypotheses in $anebus equations. Exogeneity (or “pre-
determination”) assumptions can also affect the “caudalpnetation” of model coefficients [see
Simon (1953), Engle, Hendry and Richard (1982), Angrist Rizthke (2009), Pearl (2009)], and
eventually the choice of estimation method.

To achieve the above goals, we consider a general setup aftogrs for non-Gaussian distribu-
tions and arbitrary heterogeneity in reduced-form erroirsler the assumption that the distribution
of the structural errors (given 1Vs) is specified up to an wvin factor (which may depend on IVs),
we show that exact exogeneity tests can be obtained fromVilH[2nd RH statistics [including
Hausman (1978) statistic] through the Monte Carlo test (@ €&thod [see Dufour (2006)]. The
null distributions of the test statistics typically depemal specific instrument values, so “critical

1See, for example, Durbin (1954), Wu (1973, 1974, ¥)d®83), Revankar and Hartley (1973), Farebrother (1976),
Hausman (1978), Revankar (1978), Dufour (1979, 1987), Hwa&@80, 1985), Kariya and Hodoshima (1980), Hausman
and Taylor (1981), Spencer and Berk (1981), Nakamura andiaka (1981, 1985), Engle (1982), Holly (1982, 1883
1983), Holly and Monfort (1983), Reynolds (1982), Smith (198384, 1985, 1994), Thurman (1986), Rivers and
Vuong (1988), Smith and Pesaran (1990), Ruud (1984, 2008yeM (1983, 198%), Davidson and Mackinnon (1985,
1985, 1989, 1990, 1993), Meepagala (1992), Wong (1996, )1997n (1997), Staiger and Stock (1997), Hahn and
Hausman (2002), Baum, Schaffer and Stillman (2003), Kt Niemczyk (2006, 2007), Blundell and Horowitz (2007),
Guggenberger (2010), Hahn, Ham and Moon (2010), Jeong aod {@910), Chmelarova and Hill (2010), Kiviet and
Pleus (2012), Lee and Okui (2012), Kiviet (2013), Wooldedg@014, 2015), Caetano (2015), Doko Tchatoka (2D15
Kabaila, Mainzer and Farchione (2015), and Lochner and Md¢g915).



values” should also depend on the latter. Despite this, t@8 Mrocedure automatically controls
the level irrespective of this complication, and tlawidsthe need to computeritical values Of
course, as usual, the null hypothesis is interpreted helfeeasonjunction of all model assumptions
(including “distributional” ones) with the exogeneity testion.

The finite-sample tests built in this way are also robust taknveastruments, in the sense that
they never over-reject the null hypothesis of exogeneitgnewhen IVs are weak. This entails
that size control is feasible in finite samples for all DWH &RH tests [including the Hausman
(1978) test]. All exogeneity tests considered can also Berdeed as identification-robust in finite
samples. These conclusions stand in contrast with onelseddxy Staiger and Stock (1997, Section
D) who argue — following a local asymptotic theory — that sizgustment may not be feasible due
to the presence of nuisance parameters in the asymptotiibdion. Of course, this underscores
the fundamental difference between a finite-sample theotdya; asymptotic approximation, even
when the latter is “improved”.

More importantly, we show that the proposed Monte Carlogestedure remains valid even if
the right-hand-side (possibly) endogenous regressotseéeeogenous and the reduced-form model
is incompletely specified (missing instruments). Becausthe latter property, we say that the
DWH and RH tests armbust to incomplete reduced forntsor example, robustness to incomplete
reduced forms is relevant in macroeconomic models wittcgiral breaks in the reduced form: this
shows that exogeneity tests remain applicable without kedge of break dates. In such contexts,
inference on the structural form may be more reliable th&rémce on the reduced form. This is
of great practical interest, for example, in inference Hase IV regressions and DSGE models.
For further discussion of this issue, see Dufour and Taain(2d®7), Dufour, Khalaf and Kichian
(2013) and Doko Tchatoka (2086

We study analytically the power of the tests and identify ¢hecial parameters of the power
function. In order to do this, we first prove a general invac& property l§lock triangular invari-
ancg for exogeneity test statistics — a result of separate @stee.g. to study how nuisance pa-
rameters may affect the distributions of exogeneity tedisdics. This property yields a convenient
exogeneity canonical forand a parsimonious reduction of the parameters on whichpdepznds.

In particular, we give conditions under which exogeneistgddhave no power, and conditions under
which they have power. We show formally that the tests hatle bower when instruments are
weak. In particular, the power of the tests cannot exceeddn@nal level if all structural parame-
ters are completely unidentified. Nevertheless, power gy as soon as one instrument is strong
(partial identification).

We present a Monte Carlo experiment which confirms our theatefindings. In particular,
simulation results confirm that the MCT versions of all exugjey statistics considered allow one
to control test size perfectly, while usual critical valyesder a Gaussian error assumption) are
either exact or conservative. The conservative propenysible in particular when the two-stage-
least-squares (2SLS) estimator of the structural errdawee is used in covariance matrices. In
such cases, the MCT version of the tests allows sizable pgaies.

The results are also illustrated through two empirical gxasi the relation between trade and
economic growth, and the widely studied problem of the retifreducation to earnings.

The paper is organized as follows. Section 2 formulates tbdeinstudied, and Section 3 de-



scribes the exogeneity test statistics, including a nunobedternative formulationse(g, linear-
regression-based interpretations) which may have diffeaealytical and numerical features. In
Section 4, we give general characterizations of the firategde distributions of the test statistics
and show how they can be implemented as Monte Carlo testseitliter Gaussian or non-Gaussian
errors. In Section 5, we give the general block-trianguiesariance result and describe the as-
sociated exogeneity canonical representation. Powersiussed in Section 6. The simulation
experiment is presented in Section 7, and the empiricatiidion in Section 8. We conclude in
Section 9. Additional details on the formulation of the diffnt test statistics and the proofs are
supplied in Appendix.

Throughout the papety, stands for the identity matrix of orden. For any full-column-rank
T x mmatrixA, P[A] = A(A'A)~1A' is the projection matrix on the space spanned by the colurins o
A, andM|[A] = It — P[A]. For arbitrarym x m matricesA andB, the notationA > 0 means thaf is
positive definite (p.d.)A > 0 meandA is positive semidefinite (p.s.d.), add< B meansB—A > 0.
Finally, ||A]| is the Euclidian norm of a vector or matrixe., ||A|| = [tr(A’A)]%.

2. Framework
We consider a structural model of the form:
y=YB+X1y+u, (2.1)

Y = g(X1, X2, X3, V, 1), (2.2)

where (2.1) is a linear structural equatigng RT is a vector of observations on a dependent vari-
able,Y € R™*C is a matrix of observations on (possibly) endogenous exsptewy variables which
are determined by equation (2.2; € RT*¥ is a matrix of observations on exogenous variables
included in the structural equation (2.%, € RT*% andXz € RT*% are matrices of observations
on exogenous variables excluded from the structural esuati= (uy, ... , ur)’ € RT is a vector of
structural disturbance¥, = Vi, ..., Vr]' € RT*C is a matrix of random disturbance8,e R® and

y € Rk are vectors of unknown fixed structural coefficients, &hds a matrix of fixed (typically
unknown) coefficients. We suppo&> 1, k; > 0,k > 0, ks > 0, and denote:

) X = [, Yol = [xa,. 1, X =X, X Xe] = (%o, %) (2.3)
Y:[Ya X1]7 Z:[Ya Xla XZ]:[Zla"'7ZT]/7 Z:[Y,X]_, X2a >Q3]:[Z_17"'7Z_T]/7 (24)
U=[uV]=[U,...,U]. (2.5)

Equation (2.2) usually represents a reduced-form equédiori. The form of the functiorg(-) may

be nonlinear or unspecified, so model (2.2) can be viewed@gdarametric” or “semiparametric”.
The inclusion ofX3 in this setup allows folY to depend on exogenous variables not used by the
exogeneity tests. This assumption is crucial, becauserackerizes the fact that we consider here
“incomplete models” where the reduced form fmay not be specified and involves unknown
exogenous variables. It is well known that several “idetdifion-robust” tests fof [such as those
proposed by Kleibergen (2002) and Moreira (2003)] are nbusbto allowing a general reduced



form for Y such as the one in (2.2); see Dufour and Taamouti (2007) akd Dehatoka (2015).
We also make the following rank assumption on the matrféeX| and [P[X]Y, X1]:

Y, X] and [ P[X]Y, X1] have full-column rank with probability ongonditional orX).  (2.6)

This (fairly standard) condition ensures that the matriéeM[X;]Y andM[X]Y have full column
rank, hence the unicity of the least-squares (LS) estimakes each column of is regressed on
X, as well as the existence of a unique two-stage-least-sgya@6LS) estimate fg8 andy based
on X as the instrument matrix. Clearly, (2.6) holds whéhas full column rank and the conditional
distribution ofY givenX is absolutely continuous (with respect to the Lebesgue uneps

A common additional maintained hypothesis in this contextsists in assuming that:) is a
linear equation of the form

Y =XqMM1+Xolp+V = XM +V (2.7)

wherell; € R}*C andf1, € R*C are matrices of unknown reduced-form coefficients. In thisec
the reduced form foy is
y=Xamn + Xk +V (2.8)

wherern = y+ M1 3, & = 1, 3, andv = u+V 3. When the errors andV have mean zero (though
this assumption may also be replaced by another “locatisunagtion”, such as zero medians), the
usual necessary and sufficient condition for identificatibthis model is

rank(I1;) = G. (2.9)

If [, =0, the instrumentX; are irrelevant, an@ is completely unidentified. If ¥ rank(/1;) < G,

B is not identifiable, but some linear combinations of the @ets of3 are identifiable [see Dufour
and Hsiao (2008) and Doko Tchatoka (206f5 If I, is close not to have full column rank.g,

if some eigenvalues dfl;[1, are close to zero], some linear combinationg3adre ill-determined
by the data, a situation often called “weak identificatiom’this type of setup [see Dufour (2003),
Andrews and Stock (2007)].

We study here, from a finite-sample viewpoint, the size andgogroperties of the exogeneity
tests of the type proposed by Durbin (1954), Wu (1973), Haus(h978), and Revankar and Hart-
ley (1973) for assessing the exogeneityydh (2.1) - (2.7) when: (a) instruments may be weak; (b)
[u, V] may not follow a Gaussian distributioe.p, heavy-tailed distributions which may lack mo-
ments (such as the Cauchy distribution) are allowed]; apthécusual reduced-form specification
(2.7) is misspecified, and follows the more general model (2.2) which allows for ondttestru-
ments, an unspecified nonlinear form and heterogeneityciieee this, we consider the following
distributional assumptions on model disturbances (whéteefers to the relevant probability mea-
sure).

Assumption 2.1 CONDITIONAL SCALE MODEL FOR THE STRUCTURAL ERROR DISTRIBUTON.
For some fixed vector a iR®, we have:

u=Va+e, (2.10)



e=(e,....er) =ai(X)e, (2.12)
whereoy (X) is a (possibly randomfunction ofX such that?[oy(X) # 0| X] = 1, and the condi-
tional distribution ofe givenX is completely specified.

Assumption 2.2 CONDITIONAL MUTUAL INDEPENDENCE OF e AND V. V ande are indepen-
dent, conditional orX.

In the above assumptions, possible dependence betnaedV is parameterized bg, while &
is independent of (conditional onX), andoy(X) is an arbitrary (possibly randorsfale parameter
which may depend oX (except for the non-degeneracy conditiBfoy(X) # 0| X] = 1). So we
call a the “endogeneity parameter” of the model. Assumption 2duite general and allows for
heterogeneity in the distributions of the reduced-fornutiisanced4, t =1,..., T. In particular, the
rows ofV need not be identically distributed or independent. Furthen-Gaussian distributions
are covered, including heavy-tailed distributions whichyntack second moments (such as the
Cauchy distribution). In such cgsenz;],(x)_2 does not represent a varianc&ince the scale factor
may be random, we can haeg(X) = a(X,V, e). Of course, these conditions hold wher- o ¢,
where o is an unknown positive constant amsds independent oK with a completely specified
distribution. In this context, the standard Gaussian apsiomis obtained by takings ~ N[0, I].
The distributions of and o1 may also depend on a subsetXgfsuch asx = [Xi, X;]. Note also
the parametea is not presumed to be identifiable, amchay not be independent ¥f— though this
would be a reasonable additional assumption to considéeiprtesent context.

In this context, we consider the hypothesis thatan be treated as independentudh (2.1),
deemed the (strictexogeneityof Y with respect tou, so no simultaneity bias would show up if
(2.1) is estimated by least squares. Under the Assumptidnanel 2.2a = 0 is clearly a sufficient
condition foru andeto be independent. Further, as soovVdsas full column rank with probability
one,a= 0 is also necessary for the latter independence property.lddds one to test:

Ho: a=0. (2.12)

We stress here that “exogeneity” may depend on a set of ¢onidiy variables )(), though of
course we can have cases where it does not depeidasrholds unconditionally. The setup we
consider in this paper allows for both possibilities.

Before we move to describe tests of exogeneity, it will bdulde study howHg can be reinter-
preted in the more familiar language of covariance hypathegrovided standard second-moment
assumptions are made.

Assumption 2.3 HOMOSKEDASTICITY. The vectors Y= [u, /], t =1, ..., T, have zero means
and the saméfinite) nonsingular covariance matrix:

2 !
Gu aVu

E[UU, [X] =5 = [ o

]>o, t=1,..., T (2.13)

whereo&, oyvy and 2y may depend oiX.



Assumption 2.4 ORTHOGONALITY BETWEEN € AND V. [EMe&|X] =0, E[g|X] = 0 and
E[e?|X] =02, fort=1,...,T.

Under the above assumptions, the reduced-form disturbance
W=, V] =[w+VWB,V], t=1...,T, (2.14)
also have a nonsingular covariance matrix (conditionak{n

02+ B'5yB+2B 0y B'Ev+0a,

Q= 2vB+ 0wy 2y (2.15)
In this context, the exogeneity hypothesisyofan be formulated as
Ho: ovu=0. (2.16)
Further,
owu=3va, 0f=0Z+dSa=0z+a% o, (2.17)

sooyy =0 < a=0, and the exogeneity of can be assessed by testing whetaet 0. Note,
however, that Assumptions 2.3 and 2.4 will not be neededhforesults presented in this paper.

In order to study the power of exogeneity tests, it will befust® consider the following sepa-
rability assumptions.

Assumption 2.5 ENDOGENEITY-PARAMETER DISTRIBUTIONAL SEPARABILITY. 1 is not re-
stricted by a, and the conditional distribution pf, €] givenX does not depend on the parameter
a

Assumption 2.6 REDUCED-FORM LINEAR SEPARABILITY FORY . Y satisfies the equation
Y = g(X1, Xz, X, M) +V. (2.18)

Assumption 2.5 means that the distributions/oénde do not depend on the endogeneity pa-
rametera, while Assumption 2.6 means thétcan be linearly separated frogiXi, Xz, X3, I1) in
(2.2).

3. Exogeneity tests

We consider the four statistics proposed by Wu (1978) | = 1,2, 3,4, the statistic proposed by
Hausman (1978)777] as well as some varianis#s, 73] occasionally considered in the literature
[see, for example, Hahn et al. (2010)], and the test suggjést&kevankar and Hartley (1973, RH)
[#]. These statistics can be formulated in two alternative wg$} as Wald-type statistics for

the difference between the two-stage least squares (23id5S)he ordinary least squares (OLS)
estimators of3 in equation (2.1), where different statistics are obtaingdhanging the covariance
matrix; or (2) aF-type significance test on the coefficients of an “extendeat’sion of (2.1), so



the different statistics can be written in terms of the ddfece between restricted and unrestricted
residual sum of squares.

3.1. Test statistics

We now give a unified presentation of different available DMyHe statistics. The test statistics
considered can be written as follows:

—KI(B B) ( - ) i :17 27 37 47 (31)
A = (B ﬁ) YB-B), =123, (3.2)
= KR (y, ’“H:zy/ GR) ) (33)

whereB and B are the ordinary least squares (OLS) estimator and twedeasgt squares (2SLS)
estimators of3, i.e. R
B = (Y'M1Y)"Y'Myy, (3.4)

B =[(PY)My(PY)] " (PY)'M1y = (Y'N1Y) Y'Nyy, (3.5)
while we denotegy andy the corresponding OLS and 2SLS estimatoryg,afnd

M;=M[Xs], P=PX], M=M[X]=It—P[X], N;=MP, (3.6)
51=06%2A, 5,=63A, 53=06%A, 5,=06%A, (3.7)

51= 820 — 620, 5,=6%A, 53=6%A, (3.8)
A=Oi-03, Q= %Y’va, Qs= %Y’MlY, (3.9)
—YB—Xf=Mi(y—YB), G=y—YB—Xaf=M(y—Yp), (3.10)

6= Zla=Z(y-YB)Miy-YB), &%=Idi=1(/~YHMiy-YF),  (31D)
57 = %(y—vﬁle(y—YB) -0 B=zo-YBMy-¥F). @12

6% = 62— (B—B)YA Y (B—P), (3.13)

%:%{Mm—m[zn, B=YAY. A=M[z. (3.14)

K1 = (kg—G)/G, Ky = (T—kl—ZG)/G, K3z = K4:T—k1—G, andkgr = (T—kl—kz—G)/kg.
Here,U'is the vector of OLS residuals from equation (2.1) @rfds the corresponding OLS-based
estimator ofg? (without correction for degrees of freedom), whilds the vector of the 2SLS
residuals andi? the usual 2SLS-based estimatoraff, 62, 62, 62 and 63 may be interpreted as
alternative IV-based scaling factors. Note also A& =PP, = P,, MM = MM; =M, and

Ny = MP=PM =PMP=MPM =NM; =MN; =N;N;
= Mi—M=P—P;=P[X]—P[X] = P[M;Xo]. (3.15)



Each one of the corresponding tests rejétisvhen the statistic is “large”. We also set

~ ~ 1A, -
V=iMy, 5y =2V, (3.16)

i.e. 3y is the usual sample covariance matrix of the LS resid(\a)sfrom the reduced-form linear
model (2.7).

The tests differ through the use of different “covariancdriraestimators. .77 uses two dif-
ferent estimators ofiZ, while the others resort to a single scaling factor (or eastimof g2). We
think the expressions given here f6f,1 = 1, 2, 3, 4, in (3.1) are easier to interpret than those of
Wu (1973), and show more clearly the relation with Hausnmyge-tests. The statisti¢Zi can be in-
terpreted as the statistic proposed by Hausman (1978) v3iland.7#3 are sometimes interpreted
as variants of71 [see Staiger and Stock (1997) and Hahn et al. (2010)]. Wehasaltove notations
to better see the relation between Hausman-type tests argipd/tests. In particulads = 5, and
54 =53,50 73 = (ka/T)#5 and T, = (K4/T).5#4. Further,.7; is a nonlinear monotonic transfor-

mation of %: 7
Ka 72 Kq
= = ) 3.17

YT Zvke (k%) +1 317)
Despite these relations, the tests based/@and.”# are equivalent only if exact critical values are
used, and similarly for the paifs7,, .773) and (%, 74). We are not aware of a simple equivalence
betweensq and %, i =1, 2, 3, 4, and similarly betweer?; and.77, j =1, 2, 3.

The link between the formulation of Wu (1973) and the one ahswiscussed in Appendix A.

Condition (2.6) entails thay, Qs and2y are (almost surely) nonsingular, which in turn implies
thatA is invertible; see Lemma A.1 in Appendix. In particular,stdf interest to observe that

A = O+ Qv (Qis— Qv) 1Oy = Qv + Qv 3 Oy = Qis5 Qs — Qs
1 1
= ?Y’Nl [T +Y(Y'MY) Y] NyY = TY’Ml[Y(Y’MY)*lY’ — IT]MgY. (3.18)
from which we see easily thai~* is positive definite. FurtheZd~* only depends on the least-
squares residuald,Y andMY from the regressions &f on X; andX respectively, andi—* can be

bounded as follows: A A o
Qu <A< Qs2, ' Qs (3.19)

so that
B-BYOnv(B-B) <(B-BAB-B)<(B-B) Qs Os(B-B). (3.20)

To the best of our knowledge, the additive expressions tBJ3are not available elsewhere.
Finite-sample distributional results are available ¢ .7, and% when the disturbancas are

2When the errorg)y, ..., Ut are i.i.d. Gaussian [in which case Assumptions 2.3 and 2] hine .75 test of Wu

(1973) can also be interpreted as the LM test ef 0; see Smith (1983) and Engle (1982).



i.i.d. Gaussian. Ifi~ N[0, g2I1] andX is independent ofi, we have:
%NF(G,kz—G), %NF(GvT_kl_ZG)v '@NF(kZT_kl_kZ_G)v (321)

under the null hypothesis of exogeneity. Furthermore, dogd samples, we have under the null
hypothesis (along with standard asymptotic regularitydgions):

25 x2(G),i=1,2,3and7 5 x4(G), | =3, 4,

when rankrl,) = G.

Finite-sample distributional results are not availablé¢him literature fors7, i = 1, 2, 3 and.%j,
| = 3,4, even when errors are Gaussian and usual full identifitat&sumptions are made. Of
course, the same remark applies when usual conditions éattifetation fail [rankl1,) < G] or
get close to do so e.g, some eigenvalues df,/1, are close to zero (weak identification) — and
disturbances may not be Gaussian. This paper provides alfatmaracterization of the size and
power of the tests when IVs may be arbitrary weak, with antout Gaussian errors.

3.2. Regression-based formulations of exogeneity stafist

We now show that all the above test statistics can be comgardrelatively simple linear regres-
sions, which may be analytically revealing and computatilgrconvenient. We consider again the
regression ofionV in (2.10):

u=Va+e (3.22)

for some constant vectare R®, wheree has mean zero and varianaé, and is uncorrelated with
V andX. We can write the structural equation (2.1) in three difféngays as follows:

y = YB+Xiy+Vate =Z0+e,, (3.23)
y = YB+Xiy+Vb+e =76, +e, (3.24)
y = Yb+Xiy+Xoa+e=27.6+e, (3.25)

where

Z=1[Y,%,V],0=(B",y,a),Z.=[Y,%X,V], 6. = (B, y,b"), Z. = [Y, X, %], (3.26)

0= (b/a V/7 a_/)/7 b= B +4a, V: y—Tha, a= —Iza, (327)

Y =PX]Y, V=M[X]Y, e =P[X]Va+te. (3.28)

Clearly, B = b if and only if a= 0. Equations (3.22) - (3.25) show that the endogeneity o
(2.1)-(2.7) can be interpreted as an omitted-variable Iprolffor further discussion of this view,

see Dufour (1979, 1987) and Doko Tchatoka and Dufour (201§ inclusion o in equations
(3.23) - (3.24) may also be interpreted as an applicatiowmutrol function methods [see Wooldridge



(2015)]. We also consider the intermediate regression:

wheref& is the 2SLS estimator ¢f.

Let 6 be the OLS estimator & and8° the restricted OLS estimator éfunder the constraint
Ho:a=0 [in (3.23)], 6. the OLS estimator o6, and 90 the restricted OLS estimate 6f under
Hg : B = b [in (3.24)], 6 the OLS estimate 06 and 60 the restricted OLS estimate éf under
Ho :a=0[in (3.25)]. Similarly, the OLS estimate d.. based on (3.29) is denotdd],, while
éf* represents the corresponding restricted estimate udge@ = 0. The sum of squared error
functions associated with (3.23) - (3.25) are denoted:

S(0) = ly—26|?, S.(6.)=|y—Z.6.]]>, S(6)=y—2Z.6]?, (3.30)
S(6..) = |ly—YB —X6..|?. (3.31)

UsingY =Y +V, we see that:

S(6)=5S.(6.)=5(6%, 6% =s(6))=567), (3.32)
S6)=T3d3, S6°=T6% S(6°)=T&% §6.)=Taz. (3.33)
We then get the following expressions for the statisticBid)- (3.3):
S(6°) —S(6) S(6°) - S(6)
N = —_— — |, 3.34
: Kl( 509 s<e**>> “ <s<°>—s<e**>> 339
_ (S8 -56) _ (s -56) _ . (s6)-56)
‘%‘“( s9) ) ‘73"‘3< S.®) ) Z“"“( &) )’(335)
PR = Gl C) = S(6°) — S(6) ’ (3.36)
S.(62) S(6°)
% = Kr[S(6°) — S(6)]/5(6). (3.37)

Details on the derivation of the above formulas are givenppéndix B.

(3.36) - (3.37) provide simple regression formulationsted DWH and RH statistics in terms
of restricted and unrestricted sum of squared errors iratimegressions. However, we did not
find such a simple expression for the Hausman statigfic While DWH-type tests consider the
null hypothesisHp : a = 0, the RH test focuses on the null hypotheBi§ : a= —T,a = 0. If
rank(I1;) = G, we have:a = 0 if and only ifa= 0. However, if rankl1,) < G, a= 0 does not
imply a= 0: Hg entailsHg, but the converse does not hold in this case.

The regression interpretation of tl# and.773 statistics was mentioned earlier in Dufour (1979,
1987) and Nakamura and Nakamura (1981). ¥hstatistic was also derived as a standard regres-
sion test by Revankar and Hartley (1973). To our knowledge,ather regression interpretations
given here are not available elsewhere.
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4. Incomplete models and pivotal properties

In this section, we study the finite-sample null distribngamf DWH-type and RH exogeneity tests
under Assumption 2.1, allowing for the possibility of idiication failure (or weak identification)
and model incompleteness. The proofs of these results netwo lemmas of independent interest
(Lemmas C.1 - C.2) given in Appendix.

4.1. Distributions of test statistics under exogeneity

We first show that the exogeneity test statistics in (3.1)3 [£an be rewritten as follows, irrespec-
tive whether the null hypothesis holds or not.

Proposition 4.1 QUADRATIC-FORM REPRESENTATIONS OF EXOGENEITY STATISTICS The
exogeneity test statistics (8.1) - (3.3) can be expressed as follows:

L (YYy _

A =K (y’/\|y>’for|_l’2’3’4’ (4.2)
=T (YWY =T (Cry) [(YAsy) Q' — (YAay) [51 (Cry), (4.2)

(YWY (YWY y Yk
=T (y’/\sy>’ =T (y’/\4y>’ (y’ > (*:3)

where

N = %Nl MINY]Ni, Ap =M, (%M[MlY] - %) My, (4.4)
A3:%M1N§N2Ml, Aa= WIY] = ZMAMIMLY M, (4.5)
Wy =C31C = CL [(YAsY) Q' — (YAay) Q] ', (4.6)

andy, By, C;, Yk and/\, are defined as in Lemma C.1.

The following theorem characterizes the distributionslb&gogeneity statistics under the null
hypothesis of exogeneityHp : a = 0).

Theorem 4.2 NULL DISTRIBUTIONS OF EXOGENEITY STATISTICS Under the model described
by (2.1) - (2.6), suppose Assumption 2.1 holds. i Ha = 0 also holds, then the test statistics
defined in(3.1) - (3.3) have the following representations:

/
T =K (8,/"L\"E> forl =1,2,3, 4, 4.7)
A =T (g Wele) =T (Cre) [(€N36) Ot — (€M) O ] T (Cae), (4.8)
_ 1 (E%eE L (EY%e o (€Yke
T (Gae) 0T (Gae) 7k (ace) “9)
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whereW), Ay, ..., N\g, ¥, Yk and A, are defined as in Proposition 4.1. If Assumption 2.2 also$old
the distributions of the test statistic®, 72, .73, 4, 74, #3, 73 and %, conditional onX and Y,
only depend on the conditional distribution ®fgivenX, as specified in Assumption 2.1, and the
values of Y and X.

The last statement of Theorem 4.2 comes from the fact thavéighting matrices defined in
(4.4) - (4.6) only depend oK, Y ande. GivenX andY, the null distributions of the exogeneity test
statistics only depend on the distribution &fprovided the distribution of | X can be simulated,
exact tests can be obtained through the Monte Carlo testooh¢tiee Section 4.2]. Furthermore,
the tests obtained in this way are robust to weak instrunieritee sense that the level is controlled
even if identification fails (or is weak). This result holdgea if the distribution ofe | X does not
have moments (the Cauchy distribution, for example). Thay tre useful, for example, in financial
models with fat-tailed error distributions, such as thed8hit distribution. There is no further re-
striction on the distribution of | X. For example, the distribution &fiX may depend oiX, provided
it can be simulated.

It is interesting to observe that the distributionvbplays no role here, so the vectMs..., Vr
may follow arbitrary distributions with unspecified hetgemeity (or heteroskedasticity) and serial
dependence. In addition to finite-sample validity of all #yegeneity tests in the presence of
identification failure (or weak identification), Theoren2£ntails robustness tocomplete reduced
formsandinstrument exclusioander the null hypothesis of exogeneity. No further infatiorais
needed on the form of the reduced formYoin (2.2): g(-) can be an unspecified nonlinear function,
I =y, My] an unknown parameter matrix, avidnay follow an arbitrary distribution. This result
extends to the exogeneity tests the one given in Dufour aach®ati (2007) on Anderson-Rubin-
type tests (for structural coefficients).

As long as the distribution of (given X andY) can be simulated, all tests remain valid under
Ho, and test sizes are controlled conditional>0mandY, hence also unconditionally. In particular,
Monte-Carlo test procedures remain valid even if the imsegmt matrixXs is not used by the test
statistics. A similar property is underscored in Dufour amémouti (2007) for Anderson-Rubin
tests in linear structural equation models. This obsearaas also useful to allow for models with
structural breaks in the reduced form: exogeneity testaureralid in such contexts without knowl-
edge of the form and timing of breaks. In such contexts, @xfee on the structural form may be
more reliable than inference on the reduced form, a quesfigneat relevance for macroeconomic
models; see Dufour et al. (2013). However, although theusi@h of instruments does not affect
the null distributions of exogeneity test statistics, ityraad to power losses when the missing
information is important.

4.2. Exact Monte Carlo exogeneity tests

To implement the exact Monte Carlo exogeneity testlpfvith level a (0 < o < 1), we suggest
the following methodology; for a more general discussia@® Bufour (2006). Suppose that the
conditional distribution of (given X) is continuous, so that the conditional distribution, givé,

of all exogeneity statistics is also continuous. tdenotes any of the DWH and RH statistic in
(3.1) - (3.3). We can then proceed as follows:

12



1. choosaex* andN so that a*N] 1
a*NJ| +

= 4.10

T NT1 (4.10)

where for any nonnegative real numbet [x] is the largest integer less than or equak;to

2. compute the test statist#¢' (9 based on the observed data;

3. generaté\ i.i.d. error vectorg(}) =] i”, e, 4”]/, j=1,....N, according to the specified
distribution of&|X , and compute the corresponding statist¢$/), j =1, ..., N, following
Theorem 4.2; the distribution of each statistic does noeddmnfy under the null hypothe-
SiS;

4. compute the empirical distribution function based#f), j =1, ..., N,

- o st <y
Fn(x) = NT1 (4.11)
or, equivalently, the simulatepkvalue function
1+3N 170 >x
Pn[X] = 2 LT =X (4.12)

N+1
wherel[C] = 1 if conditionC holds, andl [C] = O otherwise;

5. [eject the null hygothesis of exogeneilyy, at levela when://(‘)) > If,\jl(l— a*), where
Fyl(g) = inf{x: Ry(x) > q} is the generalized inverse &(-), or (equivalently) when
f)N [7/(0)] <a.

UnderHp, A
P#©>Fit(1-a*)] =P[pn7 9 <a]=a (4.13)

so that we have a test with leval The property given by (4.13) is a finite-sample validityules
which holds irrespective of the sample sizeand no asymptotic assumption is required. If the dis-
tributions of the statistics are not continuous, the Monéel@test procedure can easily be adapted
by using “tie-breaking” method described in Dufour (2086).

It is important to note here that the distributions of theguweity test statistics in Theorem 4.2
generally depend on the specific “instrument matdxtised by the tests (especially wheiis not
Gaussian), so no general valid “critical value” (indepamds X) is available. The Monte Carlo test
procedure transparently controls the level of the tessjreetive of this complication, so therenis
need to compute critical values

Swithout correction for continuity, the algorithm proposted statistics with continuous distributions yields a con-
servative testi.e. the probability of rejection under the null hypothesis i laoger than the nominal levéb). Further
discussion of this feature is available in Dufour (2006).

13



5. Block-triangular invariance and exogeneity canonicaldrm

In this section, we establish invariance results for exeggrests which will be useful to study the
distributions of the test statistics under the alternatiypothesis. This basic invariance property is
given by the following proposition.

Proposition 5.1 BLOCK-TRIANGULAR INVARIANCE OF EXOGENEITY TESTS Let

Ri1 O ]
R= 51
[ Ro1 Ro2 ®-1)

be a lower block-triangular matrix such that;R+# 0 is a scalar and R is a nonsingular G< G
matrix. If we replace y and Y by y=yR;1 +Y Rz and Y = YRy, in (3.1) - (3.14), the statistics%
(i=1,2,3,4), 74 (j =1,2,3) andZ do not change.

The above result is purely algebraic, so no statisticalmaption is needed. However, when it is
combined with our statistical model, it has remarkable egnences on the properties of exogeneity
tests. Forexample, if the reduced-form erdgrs. .. , Vy for Y have the same nonsingular covariance
matrix Z, the latter can be eliminated from the distribution of th&t tatistic by choosingy, so
thatR,,> Ry = |g. This entails that the distributions of the exogeneityistias do not depend on
2 under both the null and the alternative hypotheses.

Consider now the following transformation matrix:

= e o) ©2)
Then, we havey*, Y*| = [y, Y]R with
y° = y-Y(B+a)=YB+Xy+Vat+e-Y(B+a)=pu.(a+e, (5.3)
Y* =Y (5.4)
wherepy, (a) is aT x 1 vector such that
Hy () = Xay+ [V — g(Xa, Xo, X, V, MM)]a. (5.5)

The (invertible) transformation (5.3) - (5.4) yields thdldaving “latent reduced-form” represen-
tation: _
yk = X]_V"‘ [V - g(xla X2a X3a V7 n)]a+ e’ (56)

Y = g(Xa, X, X3, V, ). (5.7)

We say “latent” because the functi@g-) and the variableXs are unknown or unspecified. An
important feature here is that the endogeneity paranaatan be isolated from other model param-
eters. This will allow us to get relatively simple charaizations of the power of exogeneity tests.
For this reason, we will call (5.6)-(5.7), the “exogeneiggnonical form” associated with model
(2.1) - (2.2) along with Assumption 2.1.

14



In the important case where reduced-form error linear sdylety holds (Assumption 2.6) in
addition to (2.1) - (2.2), we can write

Y =g(Xq, X2, X3, 1) +V = py +V (5.8)

which, by (2.1), entails
y=py(a)+ (u+Vp)=py(a)+v (5.9)

wherepy is aT x G matrix anduy is aT x 1 vector, such that

Hy =g(X1, Xo, Xa, 1), y(@) = g(Xa, Xo, Xa, [1)B+ X1y, (5.10)
v=u+VB=e+V(B+a). (5.11)

Then B
y-(8) = py(a) — py (B +a) = X1y —g(Xq, X2, X3, [T)a (5.12)

does not depend oW, and the exogeneity canonical form is:

y' = X1y—9(Xg, X2, X3, M)a+e, (5.13)

Y =g(X1, X2, X3, 1) +V. (5.14)

6. Power

In this section, we provide characterizations of the powexogeneity tests. We first consider the
general case where only Assumption 2.1 is added to the betgip §2.1) - (2.6). To simplify the
exposition, we use the following notation: for aliyx 1 vectorx andT x T matrix A, we set

Sr[x, Al =T XAXx. (6.1)

Theorem 6.1 EXOGENEITY TEST DISTRIBUTIONS UNDER THE ALTERNATIVE HYPOTHESIS.
Under the model described §9.1) - (2.6), suppose Assumption 2.1 holds. Then the test statistics
defined in(3.1) - (3.3) have the following representations:

T =K (%) , forl=1 234, (6.2)
=T U@ U@ u@)}, =T (%) =T (%) . (63)
_ . (Srlu@), %]

# =K (sr[u@,/u) ’ (6.4)

where a) =Va+e¢,a = g(X) 1a,

Y [u(@)] = Ci(Sr[u(@). Ag) Ot — Srlu(@). Al B) ~Cy (6.5)



and G, ¥, ¥, Yk, /\;, \1,..., \y are defined as in Theorem 4.2. If Assumption 2.5 also holds, th

distributions of the test statisti¢ggonditional onX) depend on a only throughin u(a ).

By Theorem 6.1, the distributions of all the exogeneityistias depend om, though possibly
in a rather complex way (especially when disturbancesolhon-Gaussian distributions). If the
distribution ofe does not depend aam— as would be typically the case — power depends on the way
the distributions of the quadratic forn®[u(a ), ¥] andSr[u(a ), A;j] in (6.2) - (6.4) are modified
when the value o& changes. Both the numerator and the denominator of thetstatin Theorem
6.1 may follow different distributions, in contrast to wheppens in standaketests in the classical
linear model.

The power characterization given by Theorem 6.1 does netgea clear picture of the param-
eters which determine the power of exogeneity tests. Tdeadone by exploiting the invariance
result of Proposition 5.1, as follows.

Theorem 6.2 INVARIANCE-BASED DISTRIBUTIONS OF EXOGENEITY STATISTICS Under the
model described b§2.1) - (2.6), suppose Assumption 2.1 holds. Then the test statisticeedefi
(3.1) - (3.3) have the following representations:

o (Sly@), ) _

T =K <—Sr[y*i(5),A|]> , forl=123 4, (6.6)

_ A1 A1 o ST[y*L(aT% LHJ]
A=y @) @), =T (S A, 67)

_(Sly@), W) Srlvi(a), W)
=T (sr[yaa),/m) A= (sr[y*L(a),AR]) ’ (6.8)

where

VH(&) = [y (8) + Mee, (6.9)
I (&) = MoV —g(Xe, Xo, X, V, M)]a,  a=o(X) 'a, (6.10)
Yyt (@)] =Cy(Srly: (@), Al Oyt — Srlyt (&), A Oid) TCu, (6.12)

and G, ¥, ¥, Yk, N, N1,..., /Ay are defined as in Theorem?2. If Assumption 2.5 also holds,
the distributions of the test statisti¢sonditional onX and V) depend on a only throughy; () in
y-(&). If Assumption 2.6 also holds,

Hys (&) = —M19(X1, X2, Xs, ) &. (6.12)

Following Theorem 6.2, the powers of the different exogenieists are controlled bﬁyﬁ(i)

in (6.10). Clearlya=0 entailsﬁﬁ(a_) = 0, which corresponds to the distribution under the null
hypothesis [under Assumption 2.5]. Note however, thergiteperty also holds when

Ml [V - g(XL X27 X37 V7 ﬁ)] =0 (613)
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even ifa#0.

Under Assumption 2.6/ is evacuated frormTﬁ(eT) as given by (6.12). If Assumptions 2.5 and
2.6 hold, power is determined by this parametﬁﬁ(i) = 0 whena = 0, but also whenX; and
9(X1, Xz, X3, IT) are orthogonal. Note also the norm;@ﬁ(é) shrinks wheno (X) increases, so
power decreases when the variance of valug afcreases (as expected). Under Assumption 2.6,
conditioning on X andV also becomes equivalent to conditioningXmandY .

Consider the special case of a complete linear model wheratiegs (2.7) and (2.8) hold. We
then have:

g(Xl, Xz, X3, I7) = X1I71 + Xgng, uyl*l(a_) = —M]_inzaj (6.14)
When 1, = 0 (complete non-identification of model parameters),MaXo = 0 (Xo perfectly
collinear withX,), or more generally wheM X/, = 0, we haveﬁyﬁ(i) = 0. Then, under As-
sumption 2.5, the distributions of the exogeneity tesisttas do not depend oa, and the power
function is flat (with respect ta).

Theorem 6.2 provides a conditional power characterizdtjren X andV (orY)]. Even though
the level of the test does not depend on the distributiov, gfower typically depends on the distri-
bution ofV. Unconditional power functions can be obtained by avegagiverV, but this requires
formulating specific assumptions on the distributiorvof

When the disturbances, ..., &r are i.i.d. Gaussian, it is possible to express the powetifumc
in terms of non-central chi-square distributions. We derimt x2[n; 8] the non-central chi-square
distribution withn degrees of freedom and noncentrality paraméteand byF [ny, ny; 81, &,] the
doubly noncentraF-distribution with degrees of freedorim;, nz) and noncentrality parameters
(01, &), i.e. F~ F[ny, ny; 01,0] means thaF can be written a§ = [Q1/my] /[Q2/my] where
Q1and Q;, are two independent random variables such @t x2[ng; 8] and Q, ~ x2[ny; &;
see Johnson, Kotz and Balakrishnan (1995, Ch. 30). When O, F ~ F[ny, ny; &) the usual
noncentraF -distribution.

Theorem 6.3 INVARIANCE-BASED DISTRIBUTIONS OF EXOGENEITY STATISTICS COMPO
NENTS WITH GAUSSIAN ERRORS  Under the model described 4.1) - (2.6), suppose As-
sumptions 2.1 and 2.2 hold. ¢f~ NJ[O, I7], then, conditional orX and V, we have:

Srly. (@), W] ~x%[G; 6(a, ¥)], Srlyr(a), Al ~ x%lk2—G; 8(a, A1), (6.15)

Srlyy (@), Aal ~ X*[T —ki—2G; 3(&, A2)],  Srlyr (@), Ad] ~ X2[T —ki—G; 8(a, Ag)], (6.16)
ST[yi_(aT)v LH?] ~ Xz[kZ; 5(8_, q"h)]v ST[y*J_(aT)> /\R] ~ XZ[T - kl_ kZ_G; 5(a_> AR)]? (6-17)
where

5(a %) = Srlik: (@), Wi, 3(a A1) = Srlk. (@), Al (6.18)
o(a, ¥k) = ST[ﬁj;s(a_)> YR, O(a, /\R) = ST[ﬁj;s(a_)v /\R] ) (6.20)

and the other symbols are defined as in Theorem 6.2. Furtbeditional onX and V, the random
variable Sy (&), ¥] is independent of8y.-(a), A1) and Sy (a), Az, and Sy (a), Yk is
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independent of Sy (&), Ay].

Note we do not have a chi-square distributional resulSidy,- (a ), As] which depends on the
usual 2SLS residuals. On the other ha®dy.- (a), A4] follows a noncentral chi-square distribution,
but it is not independent @[y (a), ¥].

The noncentrality parameters in Theorem 6.3 can be intexgbr@sconcentration parameters
For example,

S@w) = TIEE) W5 @) = TE@)CA *Cu (@) )
= {Ml[v - g(X17 X27 X37 V7 rl_)]a_}lgill.(clclll.)ilcl{lvll[v - g(X17 X2_7 X37 V7 n)]a_}
= MV —g(Xs, X2, X3, V, M)]a} PICI{M1V —g(X1, Xo, X3,V M)]a}  (6.21)

and, in the case of the simple complete linear model wher@ éhd (2.8) hold,
5(a W) = (M1 Xz 128) PICY] (M1 X2 [128) = & My X MiP[Ci M1 Xo T28. (6.22)

For d(a, ) to be different from zero, we need;XlM,a # 0. In particular, this requires that the
instrumentsX, not be totally weakf{l, # 0) and linearly independent && (M1X, # 0). Similar in-
terpretations can easily be formulated for the other chiytfzarameters. In particular, in the simple
complete linear model, all noncentrality parameters are ifeM; X, [1,a = 0. Note, however, this
may not hold in the more general model described by (2.1§)(Because of the nonlinear reduced
form for Y and the presence of excluded instruments.

Theorem 6.3 allows us to conclude th@t, .7, andZ follow doubly noncentraF -distributions
under the alternative hypothesis (conditional ¥randV). This is spelled out in the following
corollary.

Corollary 6.4 DOUBLY NONCENTRAL DISTRIBUTIONS FOR EXOGENEITY STATISTICS Under
the model described b§2.1) - (2.6), suppose Assumptions 2.1 and 2.2 holde # N[O, I1], then
conditional onX and V, we have:

T~ F[Gv ke —G; 5(8_, q‘{))» 6(3: /\1)]7 (623)

T2~ F[G,T—-ki—-2G;6(a %), 6(a N2)], (6.24)
Ky Ka

Ip=————<|— | %, 6.25

] Kz%lﬂ_(@) ; (6.25)

where the noncentrality parameters are defined in Theor&n 6.

In the special case where (2.7) and (2.8) hold, we haygV1g(Xy, Xo, X3, 1) =
N9(X1, X2, X3, 1) = 0 andd(a, $k) =0, S0Z ~ Fko, T —k; — ko — G; &(a, $k)]the usual non-
central noncentraF -distribution. Whena = 0, the distributions of7;, % and % reduce to the
central chi-square in (3.21) originally provided by Wu (39And Revankar and Hartley (1973).
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The setup under which these are obtained here is consigaraise general than the usual linear
reduced-form specification (2.7) considered by these asitho

Note .7, is proportional to a ratio of two noncentral chi-squareriistions, but it is not doubly-
noncentral chi-square due to the non-orthogonalit¥odnd Ay [W, A, = T 1 see (C.50)]. This
observation carries t@#3 through the identity773 = (T /k4) Z4. The same applies te¢7 and .7,
because of the presenceSy. (a), A3] in these statistics.

7. Simulation experiment

We use simulation to analyze the finite-sample performafgies and power) of the standard and
exact Monte Carlo DWH and RH tests. The DGP is described bgteans (2.1) and (2.7) without
included exogenous instruments variablasyY = [Y1 : Y] € RT*2, the T x ky instrument matrix

Xo is a such thaky L N(O, Iy,) forall t=1,..., T, and is fixed within experiment. We set the
true values off at fp = (2,5)" but the results are qualitatively the same for alternativeiaces
of Bo. The matrixrl, that describes the quality of the instruments in the firgjestaegression is
such thatll, = [N1Mo1 : N2lo2] € Rk*2 where [Mo1 : Moy] is obtained by taking the first two
columns of the identity matrix of orderk,. We vary bothn; and n, in {0, 0.01, 0.5}, where
n1 = n2 = 0 is a design of a complete non-identificatiam, = N, = 0.01 is a design of weak
identification, n1 € {0, 0.01} andn, = 0.5 or vice versais a design of partial identification, and
finally, n1 = n2 = 0.5 corresponding to strong identification (strong instrutan

The errorau andV are generated so that

u=Va+e=Via+Voar+e (7.2)

wherea; anda, are fixed scalar coefficients. In this experiment, wesset(a;,a;)’ = A ag, where

ap = (0.5,0.2)" andA € {—20—5,0,1,100} but the results do not change qualitatively with alter-
native values oy andA. In the above setup\ controls the endogeneity &% A = 0 corresponds
to the exogeneity hypothesis (level), while valuesAofiifferent from zero represent the alterna-
tive of endogeneity (power). We consider two specificatifunghe joint distribution of[e,V]. In
the first one,(e,V/) ~N(0, I3) forallt =1,..., T (Gaussian errors). In the second ogeand
Vit, j = 1,2, follow a t(3) distribution and are uncorrelated for ak=1, ..., T. In both casesy;
andV;, are independent. The sample siz& is 50, and the Monte Carlo teptvalues are computed
with N = 199 pseudo-samples. The simulations are based on 100@tatEpls. The nominal level
for both the MC critical values and the standard tests ists&¥®a

7.1. Size and power with the usual critical values

Tables 1-2 present the empirical rejections of the stanB&H and RH tests for both Gaussian
errors (Table 1) ant(3) errors (Table 2). The first column of each table reports thtssics, while
the second column contains the value&ofnumber of excluded instruments). The other columns

4We run the experiment whefElos : Moy] is theky x 2 matrix of ones, and we found similar results as those pteden
here.
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report, for each value of the endogeneity measaneand IV qualitiesn; and n,, the rejection
frequencies of the tests. The results confirm our theotditalysis.

First, the rejection frequencies of all tests under the null higesis of exogeneityA(= 0) are
equal or smaller than the nominal 5% level, whether ideatifdey is weak 1,12 € {0, 0.01}),
partial (71 € {0,0.01}andn, = 0.5 or vice versg, or strong(ni = N2 = 0.5), with or without
Gaussian errors. Thus, all DWH-type and RH tests are valfihite samples and robust to weak
instrumentsi(e., level is controlled). This confirms the analysis of SectlorAs expected, the tests
Do, T4, 73, andZ have rejections close to the 5% nominal level. Meanwhilg,.7#1 and.773 are
highly conservative when identification is weaj [n2 € {0, 0.01} in the tables].

Second all tests have power when identification is partial (colsnh £ 0 and n; €
{0, 0.01} andn, = 0.5 orvice versaor strong (columng # 0 andn; = N2 = 0.5), with and with-
out Gaussian errors. Their rejection frequencies are ¢wd®©0% whem £ 0 and identification
is strong 1 = N2 = 0.5), despite the relatively small sample siZe-€ 50). However, all tests
have low power when all instruments are irrelevaht4 0 andni, n, € {0, 0.01}). In particular,
the rejection frequencies are close to 5% wheg 0, with n1,n, € {0, 0.01}, thus confirming the
results of Theorems 6.2 and 6.3. The simulations also stugjmtsthe tests’, 773, 4, and#
have greater power than the others. However, this is notadigays the case after size correction
through the exact Monte Carlo test method, as shown in thiesuésection.

7.2. Performance of the exact Monte Carlo tests

We now examine the performance of the proposed exact Morte &ageneity tests. Tables 3-4
present the results for Gaussian errors (Table 3)t&iderrors (Table 4). The results confirm our
theoretical findings.

First, the rejection frequencies under the null hypothesis ofyereity § = 0) of all Monte
Carlo tests are around 5% whether identification is weak > € {0, 0.01}), partial (71 €
{0, 0.01} andn, = 0.5 or vice versy, or strong (1 = n2 = 0.5), with or without Gaussian errors.
This represents a substantial improvement for the stan@grd#z and Hausman (1978y1 statis-
tics.

SecongdwhenA # 0 (endogeneity), the rejection frequencies of all testsavg in most cases.
This is especially the case farz, 71 and .77. For example, with Gaussian errors akd= 5
instruments, the rejection frequencies @, 771 and % have increased from 36, 209% and
36.8% (for the standard tests) to .606, 565% and 607% (for the exact Monte Carlo tests); see
the columns fold =1 (1 = 0.5 andn, = 0) in Tables 1 and 3. The results are more remarkable
with t(3) errors andkp; = 5 instruments. In this case, the rejection frequencies eettact Monte
Carlo .73, ##1 and J# tests have tripled those of their standard versionsAse€l (n, = 0.5 and
n2 = 0) in Tables 2 and 4. The results are essentially the samettier @alues ok,, A and IV
strength (1 and n2). Moreover, except for7;, the other exact Monte Carlo tests exhibit power
with or without Gaussian errors, including when identificatis very weak 1 = 0.01, n, = 0) and
endogeneity is largeA(= 100 for example). Note that the standard exogeneity testtuding .2
andR) perform poorly in this case. Thus, size correction throtighexact Monte Carlo test method
yields a substantial improvement for the exogeneity testsidered. In addition, observe that after
size correction, even the Hausman (1978) statistf¢)(becomes attractive in terms of power. This
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Table 1. Size and power of exogeneity tests with Gaussiamseat nominal level 5%

=-20 A=-5 A=0 A=1 A =100
ke | =0 m=01 m=5|m=0 m=01 m=5|m=0 m=01 m=5|m=0 m=.01 m=5|m=0 n=01 m=25
n2=0 n2=0 N2=0 | n2=0 np=0 N2=0 | np=0 np=0 N2=0 | n2=0 nx=0 N2=0 | n2=0 np=0 n2=0
T 5 5.0 4.8 74.2 5.3 4.8 67.7 4.7 5.0 5.1 5.1 4.8 21.1 5.3 4.4 74.1
T - 4.6 12.4 100.0 51 5.7 100.0 4.7 5.2 4.9 5.0 4.9 57.7 5.1 69.8 100.0
) - 0.0 0.0 98.4 0.0 0.0 97.8 0.0 0.0 0.7 0.0 0.0 34.1 0.0 3.6 98.4
Ta - 4.3 11.8 100.0 4.7 5.2 100.0 4.5 4.9 4.6 4.7 4.5 56.4 4.8 69.2 100.0
JA - 0.0 0.0 92.4 0.0 0.0 90.6 0.0 0.0 0.3 0.0 0.0 20.9 0.0 2.1 92.1
wZ) - 0.0 0.0 98.5 0.0 0.0 98.0 0.0 0.0 0.8 0.0 0.1 36.8 0.0 4.5 98.5
I3 - 5.0 12.9 100.0 5.4 6.0 100.0 5.0 55 5.2 5.3 5.2 58.7 55 70.4 100.0
R - 5.2 18.6 100.0 5.1 5.8 100.0 4.6 4.7 4.8 5.3 5.1 44.8 5.2 100.0 100.0
T 10 4.9 3.9 99.5 5.0 4.7 98.1 4.7 51 4.7 5.2 5.2 37.9 4.7 3.1 99.4
T - 4.8 9.7 100.0 5.0 5.1 100.0 4.8 4.8 5.1 5.1 5.2 59.1 4.8 44.6 100.0
) - 0.3 0.7 100.0 0.4 0.2 100.0 0.3 0.3 1.8 0.3 0.4 48.8 0.3 10.7 100.0
Ta - 4.5 9.2 100.0 4.6 4.8 100.0 4.5 4.6 4.8 4.8 4.9 57.8 4.5 43.8 100.0
JA - 0.2 0.4 99.1 0.2 0.1 98.5 0.2 0.1 0.8 0.1 0.1 32.1 0.1 7.1 99.2
Wz - 0.4 0.9 100.0 0.6 0.3 100.0 0.5 0.4 2.2 0.4 0.5 51.4 0.4 12.7 100.0
I3 - 5.0 10.1 100.0 5.3 55 100.0 51 51 55 5.4 55 60.0 5.1 45.6 100.0
R - 5.1 21.5 100.0 4.8 5.6 100.0 5.4 4.9 5.6 5.3 5.2 37.8 5.0 100.0 100.0
T 20 5.2 3.4 99.9 5.3 5.1 99.4 4.7 4.7 5.1 4.9 5.0 41.7 4.7 1.5 99.9
T - 5.0 7.0 100.0 5.2 5.2 100.0 4.9 4.6 5.1 5.1 5.0 51.9 5.1 14.5 100.0
) - 1.8 2.8 100.0 1.9 2.1 100.0 2.1 1.7 3.3 2.0 2.0 47.8 2.0 7.4 100.0
Ta - 4.6 6.7 100.0 4.9 4.9 100.0 4.5 4.3 4.7 4.8 4.6 50.7 4.7 13.9 100.0
JA - 1.1 1.7 99.7 1.2 1.2 99.4 1.4 1.0 1.2 1.1 1.2 30.6 1.2 5.0 99.8
R Z) - 2.3 3.4 100.0 2.4 2.6 100.0 2.5 2.2 3.9 2.5 2.6 50.3 2.4 8.5 100.0
3 - 5.3 7.4 100.0 5.6 5.4 100.0 5.2 5.0 5.3 5.4 5.2 53.0 55 15.0 100.0
R - 4.7 29.4 100.0 5.0 6.0 100.0 5.0 5.0 5.4 4.7 5.4 25.7 5.1 100.0 100.0
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Table 1 (continued). Size and power of exogeneity tests @ihssian errors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100
ke | m=0 nm=.01 m=5| m=0 m=01 m=5| m=0 m=01L m=5| m=0 n=.01 m=5| m=0 m=.01 nmn=25
N2=. =5 nmn= N2=5 N2=5 =5 Mm=5 nN=5 m=5|n=5 mn=5 nmnp=5|n=. =5 nmn=

T 5 63.4 64.1 78.2 37.6 39.8 72.5 4.7 4.9 5.2 7.1 7.7 23.2 66.7 66.0 78.3
T - 100.0 100.0 100.0 96.8 98.1 100.0 4.9 5.3 4.9 11.6 12.3 61.4 100.0 100.0 100.0
) - 97.3 97.0 98.4 81.7 84.0 98.1 0.6 0.7 1.1 3.1 3.1 39.1 97.2 97.8 98.6
Ta - 100.0 100.0 100.0 96.5 97.9 100.0 4.5 4.9 4.7 11.0 11.7 60.2 100.0 100.0 100.0
JA - 90.7 91.2 91.4 66.5 69.4 89.6 0.3 0.4 0.4 1.7 1.6 23.4 91.4 92.3 91.9
wZ) - 97.5 97.2 98.5 83.6 85.6 98.2 0.7 0.9 1.2 3.6 3.8 41.4 97.4 98.0 98.7
I3 - 100.0 100.0 100.0 97.1 98.2 100.0 5.2 5.6 5.3 12.2 12.8 62.5 100.0 100.0 100.0
R - 100.0 100.0 100.0 94.7 96.5 100.0 5.0 5.3 5.4 9.3 9.5 48.4 100.0 100.0 100.0
T 10 98.8 98.9 99.7 79.4 81.4 99.0 4.8 5.3 54 10.3 11.2 43.3 99.4 99.2 99.8
T - 100.0 100.0 100.0 98.6 99.1 100.0 5.1 5.3 5.0 13.1 14.4 65.6 100.0 100.0 100.0
) - 100.0 100.0 100.0 97.3 98.1 100.0 1.7 1.7 1.8 7.1 8.3 57.4 100.0 100.0 100.0
Ta - 100.0 100.0 100.0 98.4 99.0 100.0 4.7 5.0 4.7 12.6 13.6 64.5 100.0 100.0 100.0
JA - 99.2 99.0 98.1 87.5 90.6 97.2 0.7 0.5 0.4 3.3 3.9 33.0 99.1 99.1 98.4
Wz - 100.0 100.0 100.0 97.7 98.4 100.0 2.1 2.0 2.2 8.1 9.5 59.9 100.0 100.0 100.0
I3 - 100.0 100.0 100.0 98.6 99.2 100.0 5.5 5.6 5.3 13.9 15.1 66.5 100.0 100.0 100.0
R - 100.0 100.0 100.0 95.5 97.1 100.0 5.1 5.1 5.1 8.4 9.4 42.8 100.0 100.0 100.0
T 20 99.8 99.7 100.0 84.0 85.8 99.5 5.3 5.2 4.9 10.9 11.7 43.2 99.9 99.9 100.0
T - 100.0 100.0 100.0 95.3 96.5 100.0 5.1 5.0 5.1 12.1 12.8 54.6 100.0 100.0 100.0
) - 100.0 100.0 100.0 94.5 95.7 100.0 3.4 3.1 3.3 9.2 10.0 50.4 100.0 100.0 100.0
Ta - 100.0 100.0 100.0 95.0 96.2 100.0 4.9 4.6 4.7 11.5 12.2 53.3 100.0 100.0 100.0
JA - 99.7 99.7 98.9 85.2 87.2 97.7 1.1 1.2 0.8 4.2 4.4 26.9 99.8 99.8 99.0
R Z) - 100.0 100.0 100.0 95.2 96.4 100.0 4.0 3.7 3.8 10.5 11.3 53.2 100.0 100.0 100.0
3 - 100.0 100.0 100.0 95.6 96.7 100.0 53 5.4 55 12.6 13.4 55.6 100.0 100.0 100.0
R - 100.0 100.0 100.0 86.9 90.2 100.0 5.1 5.3 4.9 7.5 7.3 27.4 100.0 100.0 100.0
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Table 2. Size and Power of exogeneity tests wi8) errors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100

ke | m=0 =01 n=5|m=0 =01 m=5|nnm=0 m=.01 m=5|m=0 m=01 n=5|m=0 n=01 m=5
M2=0  n2=0 n2=0 | n2=0 nN2=0  nN2=0 | n2=0 n2=0  1n2=0 | n2=0  nN2=0 n2=0 | Nn2=0 n2=0 n2=0

TN 5 4.6 5.0 50.5 53 5.2 43.9 53 4.9 5.0 4.9 4.9 12.9 5.0 4.4 50.7
T - 4.8 7.8 99.9 4.9 5.2 99.5 5.2 5.0 4.8 5.1 5.2 33.7 5.1 52.6 99.9
T3 - 0.0 0.0 91.2 0.0 0.0 87.6 0.0 0.0 0.4 0.0 0.0 10.6 0.0 1.5 91.2
T - 4.5 7.3 99.9 4.6 4.9 99.4 4.9 4.7 4.5 4.7 4.9 32.6 4.7 51.7 99.9
A - 0.0 0.0 85.3 0.0 0.0 79.4 0.0 0.0 0.2 0.0 0.0 6.4 0.0 0.8 84.8
Wz - 0.0 0.0 91.9 0.0 0.0 88.6 0.0 0.0 0.6 0.0 0.0 12.3 0.0 1.8 91.9
3 - 5.1 8.1 99.9 53 5.6 99.5 55 5.3 5.1 5.4 55 35.0 55 53.2 99.9
R - 4.9 9.8 100.0 5.0 5.4 99.6 5.0 5.2 4.9 5.3 5.6 27.8 5.2 92.0 100.0
¥ 10 5.1 4.6 86.0 5.0 4.7 78.6 4.9 4.9 4.6 4.9 5.0 21.1 5.2 3.2 87.2
T - 5.1 6.2 99.8 5.3 5.0 99.2 4.9 5.1 5.2 5.0 4.6 34.2 5.0 29.4 99.8
T3 - 0.4 0.4 99.0 0.3 0.4 97.7 0.3 0.3 1.2 0.3 0.2 20.5 0.2 4.4 99.2
T - 4.8 5.7 99.8 5.0 4.7 99.2 4.5 4.7 4.8 4.6 4.4 33.2 4.6 28.4 99.8
A - 0.1 0.1 97.9 0.1 0.2 95.5 0.1 0.1 0.6 0.1 0.1 13.3 0.1 2.5 98.1
R Z) - 0.5 0.5 99.2 0.4 0.5 98.0 0.4 0.4 1.5 0.4 0.3 22.6 0.4 5.4 99.3
3 - 5.4 6.6 99.9 5.6 5.3 99.2 5.1 5.4 5.4 5.3 4.9 35.1 5.2 30.2 99.8
R - 4.9 9.4 100.0 5.4 5.2 99.6 51 5.1 4.9 5.2 5.1 23.7 5.2 93.2 100.0
TN 20 4.8 4.4 97.9 4.6 4.6 94.6 5.1 4.9 5.4 4.9 4.9 29.8 4.9 1.6 98.4
T - 4.9 5.8 99.8 4.7 4.6 99.4 5.2 5.1 55 4.8 4.8 38.8 4.6 12.2 99.9
T3 - 1.8 2.3 99.8 1.7 1.9 99.3 2.1 2.0 3.3 1.7 1.9 33.5 1.7 5.7 99.8
T - 4.5 5.4 99.8 4.5 4.2 99.4 4.9 4.9 5.1 4.5 4.5 37.6 4.3 11.5 99.9
JA - 1.1 1.4 99.6 0.9 1.0 98.5 1.2 1.1 1.6 1.0 1.1 24.5 1.0 3.7 99.7
Rz - 2.3 2.8 99.8 2.1 2.2 99.4 2.5 2.4 3.8 2.1 2.3 35.9 2.2 6.7 99.8
I3 - 5.2 6.2 99.9 5.1 4.7 99.4 5.5 55 5.7 5.1 5.1 39.6 4.8 12.6 99.9
R - 5.2 11.8 100.0 4.9 5.4 99.4 5.1 4.7 4.7 5.0 4.9 23.0 4.4 98.0 100.0
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Table 2 (continued). Size and Power of exogeneity teststi@herrors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100

ke | m=0 m=.01 m=5| m=0 n=01 m=5| m=0 m=01 m=5|nn=0 m=.01 m=5| =0 n=01 m=5
MN2=5 M=5 N=5|M=5 nNp=5 nN=5|nN=5 nN=5 Mn=5]|Nn=5 nNn=5 nn=5|Mn=5 nmnp=5 n=.>5

TN 5 47.0 47.6 67.0 26.4 27.2 59.0 4.5 4.8 5.4 6.6 7.1 18.3 50.6 49.9 68.3
T - 99.7 99.8 100.0 83.3 86.2 99.8 4.6 4.9 4.9 8.9 10.1 48.9 99.9 99.8 100.0
T3 - 89.8 89.9 97.1 51.0 54.9 95.9 0.5 0.4 0.7 1.4 1.6 26.1 91.1 91.3 97.7
T - 99.7 99.8 100.0 82.5 85.7 99.8 4.3 4.5 4.6 8.3 9.5 48.0 99.9 99.8 100.0
A - 82.6 83.4 91.7 38.5 42.5 88.2 0.3 0.2 0.3 0.7 0.8 16.0 84.6 85.3 91.9
Wz - 90.8 90.8 97.3 54.1 57.7 96.3 0.6 0.5 0.8 1.7 1.8 28.3 91.8 92.1 97.9
3 - 99.7 99.8 100.0 83.8 86.7 99.8 4.8 5.1 5.2 9.3 10.7 50.0 99.9 99.8 100.0
R - 99.9 100.0 100.0 79.7 84.1 99.8 5.3 4.7 5.0 7.7 7.9 38.7 100.0 100.0 100.0
¥ 10 90.5 90.1 98.5 57.3 59.2 95.7 53 4.9 5.1 8.7 9.2 34.1 92.2 92.4 98.8
T - 99.8 99.8 100.0 87.7 90.0 99.9 5.3 5.1 5.0 10.5 11.5 53.9 99.9 99.9 100.0
T3 - 99.5 99.4 100.0 80.5 83.5 99.8 1.4 1.4 1.6 4.6 4.9 43.1 99.5 99.6 100.0
T - 99.8 99.8 100.0 87.2 89.7 99.9 4.9 4.8 4.6 10.0 10.9 52.7 99.9 99.9 100.0
A - 98.4 98.5 99.1 70.3 73.8 98.0 0.7 0.5 0.7 2.4 2.7 29.8 98.9 98.8 99.3
R Z) - 99.5 99.5 100.0 82.3 85.2 99.8 1.9 1.6 1.9 5.3 5.6 45.6 99.6 99.6 100.0
3 - 99.8 99.9 100.0 88.2 90.5 99.9 5.7 5.4 55 11.0 11.9 54.8 99.9 99.9 100.0
R - 99.9 99.9 100.0 81.6 85.0 99.8 51 5.1 4.8 7.8 8.1 36.5 100.0 100.0 100.0
TN 20 96.8 96.7 99.8 66.6 68.4 98.1 4.8 4.7 5.2 9.3 9.2 36.8 98.0 97.7 99.8
T - 99.8 99.7 100.0 83.5 84.5 99.7 4.8 5.0 5.2 10.2 10.2 46.4 99.8 99.8 100.0
T3 - 99.7 99.6 100.0 80.6 82.1 99.7 2.9 3.0 3.2 7.4 7.1 42.3 99.8 99.7 100.0
T - 99.8 99.7 100.0 82.8 83.9 99.7 4.4 4.7 4.9 9.7 9.6 45.3 99.8 99.8 100.0
JA - 99.5 99.4 99.8 72.2 74.9 98.8 1.4 1.6 1.4 4.1 4.1 29.6 99.7 99.6 99.9
Rz - 99.8 99.6 100.0 82.1 83.4 99.7 3.4 3.5 3.8 8.3 8.3 445 99.8 99.8 100.0
I3 - 99.8 99.7 100.0 84.1 84.9 99.7 5.1 5.3 54 10.6 10.6 47.5 99.8 99.8 100.0
R - 99.9 99.9 100.0 73.1 76.2 99.5 5.2 4.8 5.1 7.3 7.5 25.6 100.0 100.0 100.0
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Table 3. Size and power of exact Monte Carlo tests with Gangsirors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100

ke | =0 m=01 m=5|m=0 m=01 m=5|m=0 m=01 nm=5|m=0 m=.01 m=5|m=0 n=01 m=25

n2=0 n2=0 N2=0 | n2=0 n2=0 1nN2=0 | n2=0 n2=0 N2=0 | n2=0 nx=0 N2=0 | n2=0 np=0 n2=0

Tme 5 5.1 5.2 72.3 4.9 5.0 67.1 5.0 4.8 4.9 5.2 5.1 21.0 4.8 4.2 74.9
Tome - 5.4 11.2 100.0 53 5.6 100.0 53 5.4 5.1 5.3 55 55.7 5.5 69.4 100.0
Tame - 5.2 9.0 99.3 5.0 5.4 99.2 4.9 5.0 4.9 5.1 5.1 60.7 5.1 40.4 99.4
Tame - 5.3 11.2 100.0 5.2 5.6 100.0 53 5.4 5.1 5.2 5.4 55.7 5.5 69.4 100.0
Hme - 5.1 9.0 97.6 4.8 5.3 97.2 4.8 4.9 4.9 5.0 5.1 56.5 5.1 39.9 97.8
Home - 5.2 9.0 99.3 5.0 5.4 99.2 5.0 5.0 4.9 5.0 5.1 60.7 5.1 40.4 99.4
Tame - 5.3 11.2 100.0 5.2 5.6 100.0 5.3 54 5.1 5.3 5.4 55.7 55 69.4 100.0
Rme - 55 16.4 100.0 55 5.7 100.0 5.4 5.2 5.3 5.0 4.9 43.1 5.8 100.0 100.0
Time | 10 5.0 4.4 99.0 5.0 5.0 96.8 5.1 5.0 5.2 5.1 5.0 32.9 4.6 4.0 98.8
Tome - 5.2 8.5 100.0 5.0 5.3 100.0 5.2 5.1 5.0 55 5.6 54.6 5.7 40.9 100.0
Tame - 5.0 7.8 100.0 5.0 5.1 100.0 4.9 4.7 4.9 5.0 5.0 60.9 5.1 35.1 100.0
Tame - 5.1 8.5 100.0 5.0 5.3 100.0 5.2 5.1 5.0 55 5.6 54.6 5.7 40.9 100.0
Hme - 5.0 7.7 99.9 5.0 5.2 99.9 4.8 5.0 4.7 4.8 4.9 58.5 5.1 34.9 99.9
Home - 5.0 7.8 100.0 5.0 5.1 100.0 4.9 4.7 4.9 5.1 5.0 60.9 5.1 35.1 100.0
Time - 5.2 8.5 100.0 5.0 5.3 100.0 5.2 5.1 5.0 55 5.6 54.6 5.7 40.9 100.0
PKme - 5.6 16.7 100.0 5.0 5.6 100.0 5.1 5.3 5.4 55 5.8 35.1 5.0 100.0 100.0
Time | 20 4.9 3.3 99.9 5.0 4.6 99.2 4.9 4.7 4.8 4.8 5.0 40.7 4.7 4.3 99.9
Tome - 5.1 6.8 100.0 5.0 4.8 100.0 51 4.8 4.9 5.3 5.7 515 5.6 14.6 100.0
Tame - 4.8 6.6 100.0 5.0 4.7 100.0 5.0 4.6 4.7 5.0 5.1 54.3 5.0 13.9 100.0
Tame - 5.0 6.8 100.0 5.0 4.8 100.0 51 4.9 5.0 5.2 5.7 515 5.6 14.6 100.0
Hme - 4.9 6.6 100.0 5.0 4.7 99.9 5.0 4.6 4.9 5.0 5.1 51.5 5.1 14.0 100.0
Tome - 4.8 6.6 100.0 5.0 4.7 100.0 5.0 5.0 4.8 5.2 5.1 54.3 5.1 13.9 100.0
Hame - 5.1 6.8 100.0 5.0 4.8 100.0 51 5.1 5.0 5.0 5.7 515 5.6 14.6 100.0
PKme - 5.8 30.5 100.0 5.0 5.9 100.0 5.2 5.2 4.9 5.1 5.9 26.1 55 100.0 100.0
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Table 3 (continued). Size and power of exact Monte Carls t@ith Gaussian errors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100
ke | m=0 nm=.01 m=5| m=0 m=01 m=5| m=0 m=01L m=5| m=0 =01 m=5| m=0 m=.01 nmn=25
N2=. =5 nmn= N2=5 nN2=5 =5 Mm=5 n=5 m=5|n=5 mn=5 np=5|n=. =5 nmn=

Tme 5 71.2 72.3 80.3 44.5 44.1 76.0 4.8 5.1 5.2 7.9 8.4 24.4 74.3 74.0 80.5
Tome - 100.0 100.0 100.0 98.7 99.2 100.0 51 5.2 5.3 125 14.3 67.7 100.0 100.0 100.0
Tame - 99.3 99.5 99.6 96.3 96.5 99.4 4.8 5.0 4.9 14.6 16.2 71.2 99.3 99.4 99.5
Tame - 100.0 100.0 100.0 98.7 99.2 100.0 5.1 5.2 5.3 125 14.3 67.7 100.0 100.0 100.0
Hme - 97.6 97.5 97.3 91.9 92.5 97.0 4.8 5.0 4.9 14.2 15.7 63.9 97.7 97.7 97.1
Home - 99.3 99.5 99.6 96.3 96.5 99.4 4.7 4.9 5.1 14.6 16.2 71.2 99.3 99.4 99.5
Tame - 100.0 100.0 100.0 98.7 99.2 100.0 5.1 5.2 5.3 12.5 14.3 67.7 100.0 100.0 100.0
Rme - 100.0 100.0 100.0 97.4 98.6 100.0 5.0 5.0 5.0 9.6 10.7 54.8 100.0 100.0 100.0
Time | 10 98.3 98.3 99.8 75.6 79.9 98.5 4.9 5.2 5.2 9.6 10.6 40.8 99.0 98.9 99.6
Tome - 100.0 100.0 100.0 98.0 98.9 100.0 5.0 5.1 5.1 13.2 12.7 63.4 100.0 100.0 100.0
Tame - 100.0 100.0 100.0 98.9 99.3 100.0 4.9 4.8 5.0 14.5 14.2 70.1 100.0 100.0 100.0
Tame - 100.0 100.0 100.0 98.0 98.9 100.0 5.0 5.1 5.1 13.2 12.7 63.4 100.0 100.0 100.0
Hme - 99.9 99.8 99.8 97.7 98.1 99.7 4.9 4.8 5.0 14.4 13.8 66.2 99.9 99.9 99.8
Home - 100.0 100.0 100.0 98.9 99.3 100.0 4.8 4.7 4.9 145 14.2 70.1 100.0 100.0 100.0
Time - 100.0 100.0 100.0 98.0 98.9 100.0 5.0 5.1 5.1 13.2 12.7 63.4 100.0 100.0 100.0
PKme - 100.0 100.0 100.0 94.8 96.6 100.0 5.2 5.3 54 7.9 8.4 41.6 100.0 100.0 100.0
Time | 20 99.6 99.5 99.8 80.5 82.4 99.3 5.1 5.3 5.2 10.6 10.1 40.1 99.8 99.8 99.9
Tome - 100.0 100.0 100.0 93.6 94.8 100.0 51 5.1 5.0 12.0 11.5 51.2 100.0 100.0 100.0
Tame - 100.0 100.0 100.0 95.0 95.7 100.0 4.8 4.7 4.8 12.5 12.7 54.3 100.0 100.0 100.0
Tame - 100.0 100.0 100.0 93.6 94.8 100.0 5.1 5.1 5.0 12.0 11.5 51.2 100.0 100.0 100.0
Hme - 100.0 100.0 100.0 94.0 94.9 100.0 4.7 4.7 4.9 12.0 12.4 51.4 100.0 100.0 100.0
Tome - 100.0 100.0 100.0 95.0 95.7 100.0 4.8 4.7 4.8 12.5 12.7 54.3 100.0 100.0 100.0
Hame - 100.0 100.0 100.0 93.6 94.8 100.0 51 5.1 5.0 12.0 11.5 51.2 100.0 100.0 100.0
PKme - 100.0 100.0 100.0 84.2 88.2 100.0 5.3 5.4 5.2 7.0 7.3 26.7 100.0 100.0 100.0
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Table 4 . Size and power of exact Monte Carlo tests wi) errors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100

ke | m=0 =01 n=5|m=0 =01 m=5|nm=0 m=.01 m=5|nm=0 m=01L n=5|m=0 n=01 m=5

M2=0 nN2=0 n2=0 | n2=0 nN2=0  n2=0 | n2=0 n2=0  1n2=0 | n2=0  n2=0 n2=0 | Nn2=0 1n2=0 n2=0

Tme 5 4.4 4.6 47.1 4.5 4.9 42.2 5.2 4.9 4.8 5.1 5.2 12.9 4.7 4.6 49.1
Tome - 5.3 7.6 99.9 51 51 99.4 5.3 5.2 5.4 5.3 55 32.7 5.2 50.7 99.9
Tame - 4.8 6.3 96.8 5.0 5.4 95.7 4.9 4.7 4.9 4.9 5.1 35.2 5.1 29.6 96.8
Tame - 5.3 7.6 99.9 51 51 99.4 5.3 5.2 5.4 5.3 5.4 32.7 5.2 50.7 99.9
Hme - 4.9 6.4 95.7 4.9 5.3 94.4 4.7 4.8 4.8 4.8 5.0 34.5 5.1 29.1 95.5
Home - 4.8 6.3 96.8 5.0 5.4 95.7 4.9 4.7 4.9 4.9 5.1 35.2 5.1 29.6 96.8
Hame - 5.3 7.6 99.9 5.0 5.1 99.4 53 5.2 5.4 5.2 5.4 32.7 5.2 50.7 99.9
PKme - 5.4 9.4 100.0 51 51 99.5 51 5.0 5.2 5.4 5.6 27.9 5.4 91.0 100.0
Tme 10 4.5 4.7 91.1 4.7 4.9 82.8 51 4.9 5.1 5.0 5.2 23.2 5.1 4.4 90.5
Tome - 5.2 6.9 99.9 5.4 5.3 99.5 5.1 5.2 5.3 5.3 5.2 39.2 5.4 31.9 99.9
Tame - 5.0 6.4 99.8 51 5.1 99.4 4.8 4.9 4.9 5.1 5.1 43.3 5.1 26.7 99.7
Tame - 5.2 6.9 99.9 5.4 5.3 99.5 5.1 5.2 5.3 5.3 5.2 39.2 5.4 31.9 99.9
Hme - 4.9 6.4 99.7 5.0 5.1 99.2 4.8 4.8 4.7 5.0 5.1 42.4 4.9 26.5 99.7
Tome - 5.0 6.4 99.8 51 51 99.4 4.8 4.9 4.9 5.1 5.1 43.3 5.1 26.7 99.7
Hame - 5.2 6.9 99.9 5.4 5.3 99.5 51 5.2 5.3 5.3 5.2 39.2 5.4 31.9 99.9
Rme - 55 10.6 100.0 55 5.4 99.7 5.1 5.1 5.2 5.3 55 27.7 5.7 95.5 100.0
Tme 20 4.8 4.2 98.0 5.0 4.8 95.0 4.9 4.8 4.8 5.0 5.1 28.7 5.2 4.8 98.0
Tome - 5.4 5.9 99.9 5.3 5.1 99.4 5.1 5.0 5.1 5.2 5.1 38.2 5.3 12.0 99.9
Tame - 5.1 5.8 99.9 51 5.1 99.5 4.8 5.0 4.7 4.8 4.9 40.7 5.1 11.2 99.8
Tame - 5.4 5.9 99.9 5.3 5.1 99.4 5.1 5.0 5.1 5.2 5.1 38.2 5.3 12.0 99.9
Hme - 5.1 5.8 99.9 51 5.2 99.4 4.9 4.9 4.8 4.8 4.8 40.3 5.1 11.3 99.9
Home - 5.1 5.8 99.9 51 51 99.5 4.8 5.0 4.7 4.8 4.9 40.7 5.1 11.2 99.8
Tame - 5.4 5.9 99.9 5.3 5.1 99.4 5.1 5.0 5.1 5.2 5.1 38.2 5.3 12.0 99.9
Rme - 5.7 12.3 100.0 5.2 5.6 99.3 5.2 5.2 5.3 5.3 5.4 22.9 5.9 98.3 100.0
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Table 4 (Continued). Size and power of exact Monte Carls t@iht(3) errors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100

ke | m=0 m=.01 m=5| m=0 =01 m=5| m=0 m=01 m=5|nm=0 m=.01 m=5| m=0 n=01 m=5

MN2=5 Mm=5 =5 M=5 nNp=5 N=5|nN=5 nN=5 Mn=5]|Nn=5 nNn=5 nn=5|Mm=5 nmnp=5 n=.>5

Tme 5 46.7 46.9 67.0 25.6 27.3 58.7 4.7 4.9 5.0 6.3 6.5 18.4 50.3 51.8 68.9
Tome - 99.9 99.8 100.0 83.3 85.7 99.9 5.2 5.1 54 9.1 9.4 48.9 99.9 99.9 100.0
Tame - 96.7 96.9 99.2 79.9 82.4 98.7 4.9 4.8 4.9 10.1 10.1 52.6 96.8 97.2 99.1
Tame - 99.9 99.8 100.0 83.3 85.7 99.9 5.2 5.1 54 9.1 9.4 48.9 99.9 99.9 100.0
Hme - 95.2 95.6 97.5 77.5 79.7 96.6 4.6 4.7 4.9 9.9 10.1 50.3 95.6 96.0 97.7
Home - 96.7 96.9 99.2 79.9 82.4 98.7 4.9 4.8 4.9 10.1 10.1 52.6 96.8 97.2 99.1
Hame - 99.9 99.8 100.0 83.3 85.7 99.9 5.2 5.1 5.4 9.1 9.4 48.9 99.9 99.9 100.0
PKme - 100.0 99.9 100.0 79.6 82.9 99.8 5.3 5.2 5.1 7.3 7.7 40.2 100.0 100.0 100.0
Tme 10 89.6 89.8 98.6 56.3 56.9 95.7 5.1 5.3 5.2 8.6 8.8 34.6 91.2 91.5 98.6
Tome - 99.7 99.9 100.0 87.5 89.1 99.9 5.4 5.2 5.2 10.9 11.2 53.0 99.8 99.9 100.0
Tame - 99.6 99.7 100.0 89.7 91.5 99.9 5.0 4.9+ 51 11.6 12.4 56.9 99.6 99.8 100.0
Tame - 99.7 99.9 100.0 87.5 89.1 99.9 5.4 5.2 5.2 10.9 11.2 53.0 99.8 99.9 100.0
Hme - 99.5 99.7 99.9 88.7 90.2 99.6 4.9 5.1 4.8 11.5 12.1 55.1 99.6 99.8 99.9
Tome - 99.6 99.7 100.0 89.7 91.5 99.9 5.0 4.9 5.1 11.6 12.4 56.9 99.6 99.8 100.0
Hame - 99.7 99.9 100.0 87.5 89.1 99.9 5.4 5.2 5.2 10.9 11.2 53.0 99.8 99.9 100.0
Rme - 99.9 100.0 100.0 82.6 83.9 99.8 55 5.3 5.1 8.0 7.8 35.0 100.0 100.0 100.0
Tme 20 97.3 97.6 99.8 69.8 71.5 98.2 4.8 4.8 5.1 9.5 104 38.8 98.4 98.8 99.9
Tome - 99.7 99.7 100.0 84.9 86.7 99.7 5.1 5.0 5.3 10.9 10.8 48.3 99.9 99.9 100.0
Tame - 99.8 99.7 100.0 87.1 88.4 99.7 4.9 4.8 5.0 11.4 11.9 50.8 99.9 99.9 100.0
Tame - 99.7 99.7 100.0 84.9 86.7 99.7 5.1 5.0 5.3 10.9 10.8 48.3 99.9 99.9 100.0
Hme - 99.7 99.7 100.0 86.3 87.7 99.6 4.7 4.6 5.1 11.5 11.6 49.0 99.9 99.9 100.0
Home - 99.8 99.7 100.0 87.1 88.4 99.7 4.9 4.8 5.0 11.4 11.9 50.8 99.9 99.9 100.0
Tame - 99.7 99.7 100.0 84.9 86.7 99.7 5.1 5.0 5.3 10.9 10.8 48.3 99.9 99.9 100.0
Rme - 100.0 99.9 100.0 75.6 79.3 99.6 53 5.2 5.4 7.3 7.8 26.4 100.0 100.0 100.0




is the case in particular faf3) errors wherk, = 10, 20 andA = —5, 1; see Table 4.

8. Empirical illustrations

We illustrate our theoretical results on exogeneity tdstsugh two empirical applications related
to important issues in macroeconomics and labor econoritesture: (1) the relation between
trade and growth [Irwin and Tervio (2002), Frankel and Roi®99), Harrison (1996), Mankiw,

Romer and Weil (1992)]; (2) the standard problem of meaguriurns to education [Dufour and
Taamouti (2007), Angrist and Krueger (1991), Angrist andiéger (1995), Angrist, Imbens and
Krueger (1999), Mankiw et al. (1992)].

8.1. Trade and growth

The trade and growth model studies the relationship betvegmmdards of living and openness.
Frankel and Romer (1999) argued that trade share (ratiopdrits or exports to GDP) which is the
commonly used indicator of openness should be viewed aggendas. So, instrumental variables
method should be used to estimate the income-trade redaimnThe equation studied is

In(Inc;) = Bo+ BiTrade + yIn(Pop) + yaIn(Area) +u, i=1,..., T (8.1)

where Ing is the income per capita in countryTrade is the trade share (measured as a ratio of
imports and exports to GDP), Pap the population of country, and Areais countryi area. The
first stage model for Trade variable is given by

Trade = a+bX +ciIn(Pop) + coIn(Area) + Vi, i=1,..., T (8.2)

whereX; is an instrument constructed on the basis of geographiactaistics. In this paper, we
use the sample of 150 countries and the data include for eastirg: the trade share in 1985, the
area and population (1985), per capita income (1985), amfltthd trade share (instrument).

We wish to assess the exogeneity of the trade share varmal§i21). TheF-statistic in the
first stage regression (8.2) is around 13 [see Frankel anceR(99, Table 2, p.385) and Dufour
and Taamouti (2007)], so the fitted instruméhtoes not appear to be weak. Table 5 presents the
p-values of the DWH and RH tests computed from the tabulateblescact Monte Carlo critical
values. The Monte Carlo critical values are computed forgS@m and(3) errors. Because the
model contains one instrument and one (supposedly) endagesariable, the statistif is not well
defined and is omitted.

First, we note that thg-values based on the usual asymptotic distributions asedimthe 5%
nominal level fors7, 7, 9, andZ. So, there is evidence against the exogeneity of the trade
share (at nominal level of 5%) when these statistics areaegppMeanwhile, thep-values of.777,

5, and 73 are relatively large (around 12%) so that there is littledenice against trade share
exogeneity at 5% nominal level using the latter statist®iace the standards, 73, and .73 tests
are conservative when identification is weak, the lattenlteaay be due to the fact that the fitted
instrument is not very strong.
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Table 5. Exogeneity in trade and growth model

Statistics | Estimation| Standardo-value (%) | MC p-value (%) | MC p-value (%)
(Gaussian errors)  [t(3)-errors]
4 3.9221 4.95 4.98 5.38
A4 2.3883 12.23 6.14 5.99
b 2.4269 11.93 6.12 5.96
W) 3.9505 4.67 5.39 5.66
Do 3.9221 4.95 5.39 5.66
T3 2.3622 12.43 6.12 5.96
I 3.8451 4.99 5.49 5.66

Secongdwe observe the exact Monte Carlo tests yigldalues close to the 5% level in all cases,
thus indicating that there is evidence of trade share emdtyein this model. This is supported
by the relatively large discrepancy between the OLS esdmép; (0.28) and the 2SLS estimate
(2.03). Overall, our results underscore the importancedzef correction through the exact Monte
Carlo procedures proposed.

8.2. Education and earnings

We now consider the well known example of estimating thernstiio education [see Angrist and
Krueger (1991); Angrist and Krueger (1995); and Bound, daagd Baker (1995)]. The equation
studies is a relationship where the log-weekly earn)gq explained by the number of years of
education E) and several other covariates (age, age squared, 10 durfonkigh of year):

kg
y:Bo+[31E+Ziy.Xi+u. (8.3)

In this model,3; measures the return to education. Because education cawethas endogenous,
Angrist and Krueger (1991) used instrumental variablegiobt by interacting quarter of birth
with the year of birth (in this application, we use 40 dummiedruments). The basic idea is that
individuals born in the first quarter of the year start schettchn older age, and can therefore drop
out after completing less schooling than individuals boeamthe end of the year. Consequently,
individuals born at the beginning of the year are likely tonel@ss than those born during the rest
of the year. The first stage model faris then given by

ko kg

E=m+_;mxa +_;qqxi +V (8.4)

whereX is the instrument matrix. It is well known that the instrurteeX constructed in this way
are very weak and explains very little of the variation in eation; see Bound et al. (1995). The
data set consists of the 5% public-use sample of the 1980 bi&isdor men born between 1930
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Table 6. Exogeneity in education and earning model

Statistics | Estimation| Standardo-value (%) | MC p-value (%) | MC p-value (%)
(Gaussian errors)  [t(3)-errors]
4 0.68 93.99 49.91 49.93
A4 1.34 24.76 24.26 24.30
b 1.34 24.76 24.26 24.30
W) 1.35 24.54 24.26 24.30
7 2.04 16.11 22.49 22.99
) 1.35 24.54 24.26 24.30
T3 1.35 22.48 24.26 24.30
T4 1.35 24.54 24.26 24.30

and 1939. The sample contains 329 509 observations.

As in Section 8.2, we want to assess the exogeneity of eduncii(8.3) - (8.4). Table 6 shows
the results of the tests with both the usual and exact Montk @étical values. As seen, the
values of all tests are quite large, thus suggesting thes ibdittle evidence against the exogeneity
of the education variable, even at 15% nominal level. Thiamsehat either the education variable
is effectively exogenous or the instruments used are veoy gothat the power of the test is flat, as
shown in Section 6. The latter scenario is highly plausitdeifthe previous literature [for example,
see Bound et al. (1995)]. This viewed is reinforced by thelsthacrepancy between the OLS
estimate (0.07) and the 2SLS estimate (0.083,0f

9. Conclusion

This paper develops a finite-sample theory of the distrioutif standard Durbin-Wu-Hausman and
Revankar-Hartley specification tests under both the nydokiyesis of exogeneity (level) and the
alternative hypothesis of endogeneity (power), with ohwitt identification. Our analysis provides
several new insights and extensions of earlier procedures.

Our study of the finite-sample distributions of the statistinder the null hypothesis shows that
all tests are robust to weak instruments, missing instrasne@nmisspecified reduced forms — in the
sense that level is controlled. Indeed, we provided a génkesacterization of the structure of the
test statistics which allows one to perform exact Monte €$ts under general parametric distri-
butional assumptions, which are in no way restricted to thesSian case, including heavy-tailed
distributions without moments. The tests so obtained aaeteawen in cases where identification
fails (or is weak) and conventional asymptotic theory bseaddwwn.

After proving a general invariance property, we providedharacterization of the power of
the tests that clearly exhibits the factors which deternpioeer. We showed that exogeneity tests
have no power in the extreme case where all IVs are weak pgirtol Staiger and Stock (1997),
and Guggenberger (2010)], but typically have power as ssoweahave one strong instrument.
Consequently, exogeneity tests can detect an exogeneiyepn even if not all model parameters
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are identified, provided at least some parameters are fidhei.

Though the exact distributional theory given in this papuires relatively specific distribu-
tional assumptions, the “finite-sample” procedures pregicemain asymptotically valid in the same
way (in the sense that test level is controlled) under stahalsymptotic assumptions. We study this
problem in a separate paper [Doko Tchatoka and Dufour (20E&irther, even if exogeneity hy-
potheses can have economic interest by themselves, wehagotsere how exogeneity tests can

be fruitfully applied to build pretest estimators which geally dominate OLS and 2SLS estimators
when the exogeneity of explanatory variables is in unaertai
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APPENDIX

A. Wu and Hausman test statistics

We show here that Durbin-Wu statistics can be expresseckisaime way as alternative Hausman
statistics. The statistic§, | =1, 2, 3,4 are defined in Wu (1973, egs. (2.1), (2.18), (3.16), and
(3.20)) as:

7 Q Q Q Q

= K1@7%:K2@7%:K3@7%:K4@7 (A1)
Q= (by—by) [(Y'AY) T (Y'ALY)™ ] (b —by), (A.2)
Qi = (Y-Yb)'Ax(y—Yh), Q=Qs—Q", (A.3)
Qi = (y=Yb)'A(y—Yh),Qz=(y—Yh)A(y—Yhy), (A.4)
b = (YAY) YAy i=12 A =My, A =M-M, (A.5)

whereb; is the ordinary least squares estimatoBofandb; is the instrumental variables method
estimator of3. So, in our notationgy); = 3 andb, = 3. From (3.8) - (3.13), we have:

Q" = T(B-BYAYB-B)=T&%B-B)E*(B-B). (A.6)
Qi = T62, Q=T6%, Q=T46?, (A7)
Q@ = QU-Q=T&-T(B-BYAB-B)=T5%. (A.8)

Hence, we can ert@ as:
'%:Kl(ﬁ_ﬁ)lzlil(ﬁ_ﬁ)ﬂ |:17273747

wherek|, and%; are defined in (3.8)-(3.13). _
To obtain (3.17), setp = (B — B)'A~Y(B — B). Thend? = &2 — %, T4 = K4a.%/ 62, and

R T (B)6D) _ (Fafxa)
hence 7 P P 1
a_ (R/k) _ 7 (A.10)

Ks (BJK)+1 Ttk (Ko BB)+1

In the sequel of this appendix, we shall use the followingrimdbrmulas which are easily
established by algebraic manipulations [on the invertybdf matrix differences, see Harville (1997,
Theorem 18.2.4)].

Lemma A.1 DIFFERENCE OF MATRIX INVERSES Let A and B be two nonsingularxr matrices.
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Then

Al-Btl = BiB-AAl=AB-AB?
A YA-ABAA=B1BAB-BBL (A.11)

Furthermore, A1 — B~ is nonsingular if and only if B- A is nonsingular. If B- A is nonsingular,
we have:

(At-BHt = AB-AB=A-AA-B 'A=A+AB-AA=AA+B-A A
= B(B-A!A=BB-A"B-B=B[(B-A)1-B 1B
= AA-AB!A)A=B(BAB-B)!B. (A.12)

Itis easy to see from condition (2.6) th@1y, Qs and5y are nonsingular. On settify= Qy
andB = Q, s, we get:

_A A_l/ l/ _1/ _l/ _lA/A_A
B-A=Qs _Q|V—_I_YM1Y TYNlY—TY(Ml Nl)Y—TYMY—TVV—ZV,(A.13)

s0 Qi s— Qu is nonsingular. By Lemma A.A = Qi — O ¢ = A1 — B1is also nonsingular,
and

At = A+AB—ATA=Qy+ Qv (Qs— Q) Oy = O + Qv 5, O
= % [Y/NLY +Y'NLY (Y'MY) "LY'Ny Y] = %Y’Nl [T +Y(YMY)"IYNY.  (A.14)
From the above form, it is clear that L is positive definite. Note also that
At = BB-A)B-B=Qs(Qs— Qv) t0s— Qs=Qs3 Qs Qs
= %[(Y’MlY)(Y’MY)‘l(Y’MlY) —(Y'M1Y)] = %Y’Ml[Y(Y’MY)‘lY’ —17]MyY.  (A.15)

The latter shows that 2 only depends on the least-squares residigl andMY.

B. Regression interpretation of DWH test statistics

Let us now consider the regressions (3.22)-(3.25). Uaing Y +V, Y = X[1 and [1 =
(X’X)~1X'Y, we see that the 2SLS residual veatdormodel (2.1) based on the instrument matrix
X = [X1, Xz] can be written as

A~

i = y—YB—AZﬁVA:fy—\?B—XlVZ—\A/B:Ml(y—YB)—\A/[}
= Mi(y—YB-VB)=Mi(y—Yp) (B.1)
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whereﬁ and y are the 2SLS estimators @ and y, and the different sum-of-squares functions
satisfy:

S(6)=s.(6,), Wi=5(6")=s.(6%) =860, é(é) (y-YBYM(y-YB), (B.2)
S

S.(6,). (B.3)

LetR=[0 0 Ig |,andR, =1l 0 —lg |, so thatRb=a andR.6, = B —a. The null
hypothesesly : a= 0 andH : B = b can thus be written as

Ho:RO=0, HE:R.6,=0. (B.4)

Further,8, = [B’ 7,07 and 80 = [B’ v, B] whereB andy are the OLS estimators @& andy
based on the model (2.1), and

Bl .
RO = [Ic 0 —lg ] y]BB, (B.5)
b
8 = 6.+Zz)R[R(Z *)-1&]*1— : (B.6)
S6)-s6.,) = (Q?—é*)’ Z.2,(8°-6,) = (R.6.) [Ru( Fq 'R.B.), ®B7)
whereZ, = [Y, X1, V]. On writing Z, = [X1, V], whereX; = [Y, X1], we get:
5 [ (XX) 0 i1 [ (XKt 0
22| 5V gy | @2t = [ gia ] o
o1 | YY Y% 71_ Wy Wog
(Xlxl) L= |: X]/.? )(ixl :| - |: WlY Wll :| (Bg)
whereWyy = [(Y¥) = V/Xq (X{X1) " 2X¥] 1 = [V'M¥ ]t = [Y/(My — M)Y] 2,
Wey  Wyg 0 lc Wy
TR=| Wy Wi 0 0 [=| Wy [. (810
0o o0 vV)' ]| —lg —(vv)-t
R.(Z.Z) ™R, =Wyy+ (VV) 7, (B.11)
L BB Wy e s
O0—0.=| y—7 | =| Wy | My+OV) T (b-p). (B.12)
B—b —(Vv)
From the latter equation, we see that
B— B =Woy Moy + (V)] (B B) = Why Wy + (V) 1] "4, (B.13)
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whered’= B—B is the OLS estimate @ in (3.23). Hence, we have

Wy + (VV) ]\MY(B B) )
= {[Y'(M=M)Y] "2 (V)Y (M = M)Y(B - B), (B.14)

a=b-p

which entails that

S6%-56) = (R6)[R(ZZ)'R] " (RA)

By {IV(My —M)Y] 2+ (W) 1) (B ) o
B=BYTY' (M= MYJ{Y' (M= M)Y] "+ (V) 2} Y (M = M)Y] (B — B)
B = BYWy Wy -+ (YMY) Wi (B—B)

B — BYWoF Mhry + (Y'M1Y — W) " Wt (B — B). (B.15)
Using Lemma A.1 withA = \/\QYl andB = Y’M,Y in (B.15), we then get:

S60)-s6.) = (B-B)YWy [WYY+(Y M1Y —Wi) ] Wit (B — B)

~BYA[A - (B-A)TAB-B)=(B-B)B AT HE-B)
“BYAY (ML= M)Y] P (YMY) B -B)

BY 1N ~ QBB =T(B—BYA*(B—P) (B.16)
whereQy = Y'(M;—M)Y andQ s = 1Y'M,Y. Since we havé. (8°) — S.(6,) = S(8°) — 5(6),
we get from (B.16), (3.13) and (3.30):

S(6) =S(6°) —[S.(69) —S.(8.)) =S(6°) ~T(B—B)A " (B—B)=T&3. (8.17)
Itis also clear from (3.13) and (3.30) that
S(6°) =T62 S.(0%) =Ta2. (B.18)

Hence, except fap7i, the other statistics can be expressed as:

=T (S(GO)—AS(é)> L =T (S(éo)is(é)> , (B.19)
S.(62) S(6°)
:%:m<§E%%%$>. (B.22)
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C. Proofs

To establish Proposition 4.1, it will be useful to state sdrasic identities for the different compo-
nents of alternative exogeneity test statistics.

Lemma C.1 PROPERTIES OF EXOGENEITY STATISTICS COMPONENTS The random vectors
and matrices in3.1) - (3.14) satisfy the following identities: setting

By =: (YM1Y) YY'My, Bo=:(Y'N1Y) 2Y'Ny, (C.1)
Ci=:By—Bi, ¥ =ClA'C;, No=:lt —MYA, (C.2)

we have
BiM;=B;, BoM;=B;N;=B;, BiY=B,Y =lg, (C.3)
CiY =0, CX =0, CPMY]=0, CiM;=CMMY]=Cy, (C.49)
MiYA =PM1Y], Mi¥Mi=M¥ =W M =Y, (C.5)
MiYeM1 =Yk, MiAM;=MAM=A,, (C.6)
81332818’2:823’2%@[81, BzB’:%Ql(,l, (C.7)
clc’lz%(le ~Qd) = %A clw_%cl, %%:%%, (C.8)
B—B=(B—B1)y=Cry=Ci(Mzy), (C.9)
(B—BYA B~ B) =y ¥y=(My) % (M), (C.10)
y-YB=[lr—YBly, y-YB=[r-YBly, (C.11)
0=Ms(y—YB) =M[Yly = MiM[MY]y = M[MyY](Mzy), (C.12)
M(y—YB) = MM[MY]y = MM[MyY](M1y), (C.13)

Ni(y—YB) = MiP(y—YB)=MiM[MiPY]Py=M[N;Y|N;y

= PMy(y—YB) =M[PMY]P(My), (C.14)
0=Mu(y—YB) =No(M1y), M(y—YB)=MNz(Msy), (C.15)
g2 = %(Mly)’Né Nz (M1y), (C.16)

62 = ZYMMly = TyMIMIM:Y]y = = (M1y) MIM:Y] (My) €47
5% = 2YNuMINIYINgy = < (Myy) PM [P MY P (M), €19
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57— (May) { Y] -, | (M), (.19)

Y Yy = £y PV MIVly = T (Myy) PIMIVIX] (M), (C.20)
58 = 2y MiZly= 2 (M1y)MiZ](Myy). (c21)

ProOF OFLEMMA C.1  Using the idempotence bf; and (3.15), we see that:

BiM1 = (Y'M1Y)~YY'MiM; = (Y'M1Y)"Y'M; = By, (C.22)
BoMz = [Y/Ny Y] Y/NiM1 = [Y/NiY]71Y/Ny = By = BoNy = Bo(Mp — M), (C.23)
M1Y Ar = MY (Y/M1Y)"1Y/My = P(M1Y), (C.24)
CiM; =ByM;—B1M; =B, —B;=C;, CX;=CiM;X; =0, (C.25)
B1Y = (Y/M1Y) 2Y'MyY = Ig = (Y'N1Y) " Y/NY = By, (C.26)
C1Y =BoY —ByY =0, (C.27)
CiPM1Y] = [(Y/N7Y)"3Y/Np — (Y/M1Y) " 2Y/M] M1Y (Y/MY) Y/ My

= [(Y'N1Y)"YY/NyY — (YM1Y) "Y' MyY] (Y/M1Y) ~2Y'My
= (Ig—Ilg)(Y'MY)"YY'M; =0, (C.28)
CIMMyY] =Cy [Ir — PMyY] =Cp, (C.29)
MMM =M[Y], MiM[Z]M;=M[Z], (C.30)

1

1 - _ — —
Mi$RM1 = ?{MlM YIM1 —M{M[Z]M1} =Yk, MAM; = ?MlM[Z]Ml =/;, (C.31)

so (C.3)-(C.6) are established. (C.7) and (C.8) followatlyefrom (3.15) and the definitions of
B1, B2, C1 and . We get (C.9) and (C.10) by using the definitionsfnd 3 in (3.4) - (3.5).
(C.11) follows on using (3.4) and (3.5). (C.12) comes from fitact that the residualdi(y —Yp)
are obtained by minimizingly — Y8 — Xyy||? with respect toy, or equivalently|ly — Y — Xyy/|?
with respect tq3 andy. (C.13) follows from (C.12) and noting thd = M M;. Similarly, the first
identity in (C.14) comes from the fact that the residudisP(y — Y 3) = M1 (y — PY[3) are obtained
by minimizing ||ly— PY — X1y||? with respect toy, or equivalently by minimizingly — PY — X y||?
with respect tq3 andy. The others follow on noting th&d; = M; P = PM; and

M1 M[M:PY]P = M[PM1Y]M;P = M[PM;Y]PM;.. (C.32)
To get (C.15) and (C.16), we note that

G=y—YB— X =Mi(y—YB) =My [lT — YAy = [Ir — MiY A](M1y) = No(M1y)  (C.33)
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hence

~2

G°=—0l= = (y YB) MMy (y—YP) = 1(M1Y) NoN2(Myy). (C.34)

Further, using (3.11) - (3.3), (C.12) and (C.14), we see that

62 = Z(y~YBYMa(y—YB) = TyM[Yly= TyMiM[MiY]y = < (MayM[M:¥](Msy), (C.35)

62 = 2~ YBYNily—YF) =Ty~ YB)PMP(y-YB)
- ZyNm [NMMy—%(Mly) MPMyYJP (Myy) (C.36)

B = 6 (B-BYANB-B) = T{YMIMIMLY]y} Y %y
= (Mayy { VMY 9} (M), (C37)

are established. Finally, (C.20) and 1féllow by observing thaMlM[ ]

3)
M[YM; = M [YJM; andM;iM[Z] = MiM[Z] = M[Z], so thatMP[M[Y]Xz]M1 = P[M[Y]X,] and
M = M([Z]. O

Using Lemma C.1, we can now prove Proposition 4.1.

PRoOOF OFPROPOSITION4.1  We first note that

(Bz—Bl)y:CDh (C.38)

(B-BYA =y 'Cy=y Wy, (C.39)
so that, by the definitions (3.1) - (3.3),

B-BYAYB-B) yWy

T =k(B-B)EB-B) =k = =200 1=1,234  (C40)
0 0
T(-py5E-p-TEBANED) YUY o5 cay
where, using Lemma C.1,
52 = £y~ YB)Naly - YB) = Ty NiMINgY]Nyy =Y Avy. (C42)
~222}/|\/|1{%M['V|1Y] ‘1”} M1y) =Y Azy, (C.43)
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- - 1
=0%= f)/ MiNsNoM1y = Y Agy, (C.44)

~ N 1 ,-= 1 —
§=6%=yMN]y=ZYMiMMY]M1y =Y Asy. (C.45)
65 =62 =y Ay, 05=06"=YyAay. (C.46)
For 7, we have
A =TB-BYEB-B) =TYC S Cly=T (Y YY) (C.47)
where A A A A A
51 =820~ 6207 = (Y Ay) Ot — (Y Agy) Q2 (C.48)
The result forZ follows directly by using (3.3). O

In order to characterize the null distributions of the téatistics (Theorem 4.2), it will be useful
to first spell out some algebraic properties of the weightivagrices in Proposition 4.1. This is done
by the following lemma.

Lemma C.2 PROPERTIES OF WEIGHTING MATRICES IN EXOGENEITY STATISTICS The matri-
cesW, A1, Ng, A4, YR and /A, in (4.1) - (4.6) satisfy the following identities:

No=N—Y CiN =Ci Ao =¥YN =¥ N =YR/N\, =0, (C.49)
1 1

CiNg= ?017 YNy = f"%’ (C.50)

M AM =A Ll =1,....4. (C.51)

Further, the matrices ¥,, TA1, TA2, TA4, T4k and TA, are symmetric idempotent.
PROOF OFLEMMA C.2  To get (C.49) - (C.50), we observe that:

1 —
N =My <?M[M1Y]—%> My =Ny —Mi¥ My =Ny — W, (C.52)
_ 1 n 1 - ~ ~
CiNiPINtY] = Z[Bo— BaJNiNaY QYN = ?[Ql(,lY’Nl — QY MINLY Qi Y'Ny
1,4 R . . 1. .
= = [QAY/NLY QY — QYN QY INg = = QY — QY INg
1A A
= ?[lelv’Nl — QdY'M1IN; = [B — B1]Ny = CiNy, (C.53)
CiM1 PM1Y] = CiMyY (Y/M1Y)~YY'M; =0, (C.54)
M[Y]M[Z] = M[Z], (C.55)
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hence

1. - 1 — 1
CiM=C; <?N1|V| [NLY] N1> = ?ClNl M[NyY|N; = ?ClNl (It —=PN1Y]) Ny =0,

1- 1 -
CiA; = CM; GM[MM - %> My = =CaMiM[M;Y My —CaM1 ¥ My

1 - 1.1
= ZCiMy(Ir —PIMiY]))My — G = ZC; — =C1 =0,

1 — 1 — 1
Cig = fCll\/IlM[l\/llY]l\/ll = ?ClMlM[I\/IlY] = fCl,

1., - — 1., - — 1., - 1
WAy = ?C’lmlcl MiM[MY]M; = ?C’lmlcl MiM[M1Y] = ?C’lmlcl =%,
1~ 1 1
%o = %M TMMY] =% IMi =% (A=) = s - H =0,

1 — — —
e = 2 {MIY] = M[Z]}M[Z] = 0.

(C.56)

(C.57)

(C.58)
(C.59)

(C.60)

(C.61)

(C.51) follow directly from the idempotence df; and the definitions of\;, 1 = 1,..., 4. Finally,

the idempotence and symmetry of the weight matrices candekeld as follows:
(TY)(TW) = TCACCATIC, =T?ClA™? <%£> AIC, =TCA ¢
= TY=T %’,
(TAD(TAL) = (NtM[N7Y]Ny) (NtM[N7Y]N) = NpM[NiY]Np = TAg = TA{,
(T A4)(T Ag) = MIM[M1Y M1 M1 M[M1Y]Mg = MiM[MiYIM; = T Ay =T A,
(TA)(TA2) = T*(Aa—¥) (Ma—¥) =T?(AaAa— ¥, — WAa+ W Y)
1 2
= T2 <—/\4— ?%ju—%) =T(N—W)=TA=TAS,

ProOOF OFTHEOREM4.2  Using Lemma C.1, we first note the following identities:

B1Y = (Y'M1Y) Y'MyY =l = (Y/N1Y) 1Y'NyY =By,
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(C.63)
(C.64)

(C.65)

(C.66)
(C.67)

(C.68)



M[M1Y]M1Y = M[N;Y]N1Y =0, BiXg=BoX; =0, NiX;=M;X; =0, (C.69)
NoM1Y = (It — MY A))MaY = (Mp — MiYAQ)Y = My(Y —YAY) =0, NoMiX =0, (C.70)

MIY]Y = M[Z]Y =0, M[Y]X; = M[Z]X; = 0, P[M[Y]Xz]M[Y] = M[Y]P[M[Y]X]M[Y] . (C.71)
Then

Cry= (B2—B1)(YB + Xy +u) =Cyu, (C.72)
YWy=yCiA\Ciy=UuCjA ICiu=u ¥, (C.73)
y ALy = %y Ny M[N7Y] Ny = %u’ Ny M[N7Y]Npu = U Aqu, (C.74)
1 — —
Y A2y = Y Mi(M[M1Y] — %) My = UMy (M[M1Y] — %) Miu = U Az u, (C.75)
1 1
Yy Azy= ?)/ M1N;NoMpy = TU/Ml NoN2M; U, (C.76)
1,-= 1 ,-=
)//\4y:?§/M[ ]VZTU/M[ Ju=uAgu, (C.77)
1, o1 ——
YUy = FYPMNY]PM[Y]y==yYMY|PM[Y]X|M[Y]y
_ %mm PIM[Y]Xo] M¥]u = %u’ PIM[Y]X] MY]u= Uy,  (C.78)
o 1= 1,-
&= f)/M[Z]y: = M[Z]u. (C.79)

Further, whera = 0, we haveu = 01(X) £, and the expressions in (4.7) - (4.8) follow from (4.1) -

(4.3) in Proposition 4.1 onaeis replaced by (X) € in (C.72) - (C.79).01(X) disappears because
it can be factorized in both the numerator and the denomirmditeach statistic. O

PROOF OFPROPOSITIONS.1  We must study how the statistics defined in (3.1) - (3.2nge
wheny andY are replaced by* = yR;1+Y R andY* =Y Ry». This can be done by looking at the
way the relevant variables in (3.4) - (3.14) change. We fiost that

A * 1 * * A A * 1 * * A
Qy = TY 'NiY* = (Y Rzz)’Nl(Y Ro) = R’22_Q|V Ro2, Qis= ?Y 'MY* = R'ZZQLSRZZ, (C.80)
hence A A A A A A
A= (Qy) = (Qle) =Ry (A — Q9 (Ryp) = Ry A(Ry,)' (C.81)
Using Lemma C.1, we also get:

Bi = (Y'MY")"Y’M1 = [(YR2)'Mi(Y Re2)] H(Y R2) M1 = Ry2 (Y'MY) Y’ My
= Ry,;Bi, (C.82)
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= (Y'NiY*)"2Y*'N; = Ry5 (Y'N1Y) YNy = RyJ By, (C.83)

C; =B;—B;=R,jC;, CjY=R,;CiY =0, (C.84)
B =Biy' = RyaBi(yRu1 + Y Re) = RuRy1 B + Ry Rt (C.85)
B* =By = RuRy1 B +Ry3Ru, (C.86)
BB =Ciy =RuR; (B B). (C.87)
0 = My(y —Y*B*) = My(YRu1+Y R — Y Rea(RuRs2B + RyaRo1))
= RuMi(y—YB)=Ru0, (C.88)
0 = My(y" —Y*B*) = Ml(yR11+YR21—YR22(R11R§21[~3 +Ry;Ro1)) =Ru10, (C.89)
hence, sincé\;X; = 0,
~x2 1*\*/'** R2 A2 ~ 2 1~*/~* R2 ~2
0% =070 10°, 07 =00 =R 0%, (C.90)
~ %2 1 % %/ N 1 *
0;° = f(W—Y B*)Nu(y" —Y*B*) = $(W Y*B =X ) Na(y* —Y*B* — XaF)
l ~k ~k 1 ~ ~ T
= 7 'N :Rilfu/Nlu:Ril T, (C.91)
~%x2 A% A P
6 = 67— (BB (A NE B
= R§,6°—(B- B)'(Rllez) RooA ~Rea(RuRy3) (B — B)
= R4[6%—(B—B)AHB-B) =R.63, (C.92)
5 = 8% = (RLGP)R; A(Ry;) = RiiRy; (674) (Ryz )
= R§1R§212| (Rgzl)/v i1=1,23,4, (C.93)
S =RLR;5(Ry), =123 (C.94)

It follows that the.7] and.”Z] exogeneity test statistics based on the transformed datiaemtical
to those based on the original data:

= k(BB (&) B - B) o
= (B- )(Rllez)[Rfle ZI(Rzz)] l(Rllezl)(B—B)

= K(B— ) ( ) F,1=1,2,3 4, (C.95)
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= T(B-B)(RuRs) IR:Re: &) (Re) ] (RuRps ) (B~ B) = A, j=1,2,3. (C.96)
Finally, the invariance of the statisti# is obtained by observing that
y'M[Zly = RGyMZly, y'M[Yly =R yMY]y, (C.97)

whereZ* = [Y*, Xy, Xo] andY* = [Y*, X3], SOR%, cancels out inZ O

PROOF OFTHEOREM6.1  Sinceu=Va+ 01(X) €, we can use the identities (C.72) - (C.79) and

replacey by Va+ 01(X) € in (4.1) - (4.1). The expressions (6.2) - (6.4) then followotigh division
of the numerator and denominator of each statistichX). O

PROOF OFTHEOREMG6.2  This result follows by applying the invariance propestyProposition
5.1 withR defined as in (5.2)y is then replaced by* = Xjy+ [V — g(X1, X2, X3, V, [1)]a+ e [see
(5.5)], and the identities (C.72) - (C.79) hold withreplaced by

U, = [V —g(Xe, X, Xa, V, IM)]a+e. (C.98)

Further, in view of (C.5) and (4.4) - (3.14), each one of theérivas¥,, A1,..., A4, ¥, Yk andAr
remains the same if it is pre- and postmultipliedNdy, i.e.

W= MWM, A =MAM, =123 4, (C.99)
W=M¥ My, Y, =MYM;1, Ar=MiArMy, (C.100)

sou, can in turn be replaced by
Miu. = —MaV — g(X1, Xo, X3, V; IT)]a+ Mz e (C.101)

in (C.72) - (C.79). Upon division of the numerator and denwator of each statistic btyl()?), we
get the expressions (6.6) - (6.8). O

PROOF OFTHEOREM 6.3  The result follows from well known properties of the natnand
chi-square distributions: & ~ Nq[u, In] andA is a fixed idempotenh x n matrix of rankr, then
XAx~ x2[r; WAy . Conditional orX andV, ¥, is fixed, and

Y (&) = s (&) +Mag = Mi{[V — g(Xe, X2, X3, V, T)]a+ e} = My (u +€) (C.102)

wherep = [V —g(X1, Xz, Xa, V, I1)]ais fixed ance ~ Ny, I]. By Lemmas C.1and C.Z,¥, TAy,
TNz, TA4, TYR and TA, are symmetric idempotent, and each of these matrices remairiant
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through by pre- and post-multiplication i [M1 %, M1 =4, etc.]. Thus

Sy (@), W] = Ty, (@)%, (&)= (1+&)My(T¥)Mi(k+¢) (C.103)
(H+&)(TW)(u+e)~xrankTW); W'(TW)pu]  (C.104)

where
rankTY) =tr(TW) =tr(TCLA™ICy) =tn(TATIC,C)) =tr(TAT1A) =G,  (C.105)
H(TW) p= My (T W) Myt = [y (@) (T W)y (&) = Sty (@), Y] = 3(8, %) . (C.106)
The proofs for the other quadratic forms are similar, with tbllowing degrees of freedom vary:

rank(T A1) = tr{Ny M[NyY] Ny} = tr{N; } — tr{P[NyY]} = tr{M1 — M} — tr{NY (Y/NyY) " 1Y'N;}
= (T —kq) — (T —kyg — ko) —tr{(Y'NyY)"Y'NY} = ko — G, (C.107)

rankKTA2) = tr{T My (TIM[MyY] — &) M1} = tr{M;M[M1Y]M} —tr{T &}

= tr{My} —tr{P[MyY]} —tr{TW¥} =T —k; — 2G, (C.108)
rank(T Ag) = tr{M;M[M1Y]M1} = tr{M1} —tr{P[M1Y]} =T — ky — G, (C.109)
rank(T 4R) = tr{M[Y] -M[Z]} = (T —ki— G) — (T — k1 — G —kp) = kg, (C.110)
rankTAR) =tr(TAR) =tr{M[Z]} =T — G — ky — ky. (C.111)

The independence properties follow from the orthogomralitjiven in (C.49) and the normality
assumption. O

PROOF OFCOROLLARY 6.4  These results directly from Theorem 6.3 and the defmitibthe
doubly noncentraF -distribution. O
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