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ABSTRACT

We provide a generalization of the Anderson-Rubin (AR) procedurinference on parameters
which represent the dependence between possibly endogenousagaplavariables and distur-
bances in a linear structural equati@mfogeneity parametgrsWe stress the distinction between
regressionand covariance endogeneity parameterSuch parameters have intrinsic interest (be-
cause they measure the effect of latent variables which induce simultaauedity)ay a central role
in selecting an estimation method (such as OLS or IV methods). We observentihegeneity
parameters may not be identifiable and we give the relevant identificatialitiomss. These condi-
tions entail a simple identification correspondence between regressiogesraity parameters and
usual structural parameters, while the identification of covariance enedyg parameters typically
fails as soon as global identification fails. We develop identification-rdimigt-sample tests for
joint hypotheses involving structural and regression endogeneitynedess, as well as marginal
hypotheses on regression endogeneity parameters. For Gausseranweer provide tests and con-
fidence sets based on standard Fisher critical values. For a wide tjz@sumetric non-Gaussian
errors (possibly heavy-tailed), we show that exact Monte Carlo proes can be applied using
the statistics considered. As a special case, this result also holds &rARHype tests on struc-
tural coefficients. For covariance endogeneity parameters, we saipplyymptotic (identification-
robust) distributional theory. Tests for partial exogeneity hypothefsesr(dividual potentially
endogenous explanatory variables) are covered as special Tasegroposed tests are applied to
two empirical examples: the relation between trade and economic growth, amddély studied
problem of returns to education.

Key words: Identification-robust confidence sets; endogeneity; AR-type stajstifection-based
techniques; partial exogeneity test.

Journal of Economic Literature classification: C3; C12; C15; C52.



1. Introduction

Instrumental variable (V) regressions are typically motivated by thetFeatt“explanatory vari-
ables” may be correlated with the error term, so least-squares methods igieddi linconsistent
estimators of model coefficients. As is well-known, IV estimates are obtaigedadbating the
variation in endogenous explanatory variables due to exogenoussegsexcluded from the ex-
planatory variables and correlating this variation with that of the dependeiatble of interest.
Even though coefficients estimated in this way may have interesting interprstibomthe view-
point of economic theory, inference on such “structural parametacgsfidentification difficulties.
Further, it is well known that IV estimators may be very imprecise, while testzanfidence sets
can be highly unreliable, especially when instruments are weakly assowigiteshodel variables
(weak instrumenjs This has led to a large literature on reliable inference in the presenceadf w
instruments; see the reviews of Stock, Wright and Yogo (2002) anduD(2®03).

Research on weak instruments has focused on inference for thecimoeffiof endogenous
variables in so-called “IV regressions”. This leaves out the parameftarsh specifically deter-
mine simultaneity features, such as the covariances between endogeplanary variables and
disturbances. These parameters can be of interest for sevemrahse&gst, they provide direct
measures of the importance of latent variables, which are typically un@usend may simultane-
ously affect a number of observable endogenous variables. Thesevariables are in a sense left
out from structural equations, but they remain hidden in structural dastwes. For example, in
a wide set of economic models, they may represent unobserved lateftlesy such as “surprise
variables” which play a role in models with expectations [see Barro (19Duour and Jasiak
(2001)]. Secondthe simultaneity covariance (or regression) coefficients determine the gtima
bias of least-squares methods. Information on the size of such biasée ceeful in interpret-
ing least-squares estimates and related statistibgd, information on the parameters of hidden
variables (which induce simultaneity) may be important for selecting statistioakdures. Even
if instruments are “strong”, it is well known that IV estimators may be conatolgrless efficient
than least-squares estimators; see Kiviet and Niemczyk (2007, 204R), Trhatoka and Dufour
(2011a), Kiviet and Pleus (2012) and Kiviet (2013). Indeed, thig bwthe case even when en-
dogeneity is present. If a variable is not correlated (or only weakhetated) with the error term,
instrumenting it can lead to sizable efficiency losses in estimation. Assessig avid which
variables should be instrumented is an important issue for the estimation dfisifunodels.

We stress here the view that linear structural models (IV regressionsheanterpreted as
regressions with missing regressors. If the latter were included, thearkl we no simultaneity
bias, so no correction for simultaneity (such as IV methods) would be dedthés feature allows
one to define a model transformation which maps a linear structural equaadméar regression
where all the explanatory variables are uncorrelated with the error termcallthis equation
the orthogonalized structural equatipmand we use it extensively. Interestingly, the latter is not a
reduced-form equation. Instead, it involves the structural paramaftérserest, but also includes
endogeneity parametevghich are “hidden” in the original structural equation.

The problem stems from the fact that the missing regressors are unetbs&wspite this dif-
ficulty, we show that procedures similar to the one proposed by Andersdirubin (1949, AR)
can be applied to the orthogonalized equation. This allows one to make icégantly on both
the parameters of the original structural equation and endogeneity garanievo types of endo-
geneity parameters are consideramjression endogeneity parametargicovariance endogeneity
parameters Under standard conditions, where instruments are strictly exogendusraors are
Gaussian, the tests and confidence sets derived in this way are exagrroposed methods do not



require identification assumptions, so they can be characterizddragfication-robust For more
general inference on transformations of the parameters in the orthamgmhstructural equation,
we propose projection methods, for such techniques allow for a simple fantele distributional
theory and preserve robustness to identification assumptions.

To be more specific, we consider a model of the form

y=YB+Xy+u

wherey is an observed dependent variableis a matrix of observed (possibly) endogenous re-
gressors, an&; is a matrix of exogenous variables. We observe that AR-type proceduag

be applied to test hypotheses on the transformed pararfietef3 + a, wherea represents re-
gression coefficients af on the reduced-form errors of (regression endogeneity paramefers
Identification-robust inference fa itself is then derived by exploiting the possibility of making
identification-robust inference gB. Then, inference on covariances (say,) betweenu andY
(covariance endogeneity parametecan be derived by considering linear transformationa. of

We stress that regression and covariance endogeneity parameteugk-tineoretically related
— play distinct but complementary roles: regression endogeneity paramepgesent the effect
of reduced-form innovations on while covariance endogeneity parameters determine the need to
instrument different variables . Whenoy,=0,Y can be treated as exogenous (so IV estimation
is not warranted). So-called exogeneity tests typically test the hypoitngsis 0. It is easy to see
that oy, = 0 if and only ifa= 0 (provided the covariance matrix between reduced-form errors is
nonsingular), but the relationship is more complex in other cases.

In this paper, we emphasize cases wheee 0. We first study formally the identification of
endogeneity parameters. We establish a simple identification corresperutmeen the compo-
nents of3 anda: each component afis identifiable if and only if the corresponding component of
B is identifiable. In contrast, thidoes not holdn general for the covariances,,: as soon as one
element of3 is not identifiable, all components of,, typically fail to be identifiable. In this sense,
ovy is more difficult to interpret thaa. Due to the failure of the exogeneity hypothesis, the distri-
butions of the test statistics are much more complex. It is relatively easy tageduhite-sample
inference fora, but not foray,. So, foroy,, we propose asymptotic tests and confidence sets. Itis
important to note that stronger assumptions are needed for making irderag,, (as opposed
to a). Indeed, we describe general distributional setups wbiggenay not be well-defined [due to
heterogeneity in the model fof, or the non-existence of moments], whiléemains well-defined
and statistically meaningful. In such cases, inferenca @rfeasible, while inference oo, may
not be (even when all parameters in the structural equation of inteeeistentifiable).

By allowing a # 0 (or gy, # 0), we extend earlier results on exogeneity tests, which focus
on the null hypothesisl, : a= 0. The literature on this topic is considerable; see, for example,
Durbin (1954), Wu (1973, 1974, 1983), Revankar and Hartley §),.99ausman (1978), Revankar
(1978), Dufour (1979, 1987), Hwang (1980), Kariya and Hodlmsh(1980), Hausman and Taylor
(1981), Spencer and Berk (1981), Nakamura and Nakamura (1B8g)e (1982), Smith (1983,
1984, 1985), Staiger and Stock (1997), Doko Tchatoka and Duffirlp, 2011a). By contrast,
we consider here the problem of testing any valua @dr ov,) and build confidence sets for these
parameters. By allowing for weak instruments, we extend the results in D{if®a9, 1987) where
Wald-type tests and confidence sets are proposed for inferenaethoy,, under assumptions
which exclude weak instruments. Finally, by considering inference and oy, we extend a
procedure proposed in Dufour and Jasiak (2001) for inferentiesoaggregate paramete= 3 +a
(but nota or gy) in the context of a different model.

On exploiting results from Dufour and Taamouti (2005, 2007), we sugpdlytical forms for



the proposed confidence sets, and we give the necessary angsuffanditions under which they
are bounded. These results can be used to assess partial exoggpeihebes even when iden-
tification is deficient or weak. In order to allow for alternative assumptionsroor distributions,
we show that the proposed AR-type statistics are pivotal as long as dottow a completely
specified distribution (up to an unknown scale — possibly random — pargnveiech may be non-
Gaussian. Due to this invariance property, exact Monte Carlo tests cparfmemed without a
Gaussian assumption [as described in Dufour (2006)]. In particulashew this is feasible un-
der general assumptions which allow considerable heterogeneity in theefrm model fol,
even a completely unspecified model r On allowing for more general error distributions and
weakly exogenous instruments (along with standard high-level asymptstimasions), we also
show that the proposed procedures remain asymptotically valid and iderdificabust. Finally,
we apply the proposed methods to two empirical examples: the relationshipenetrade and eco-
nomic growth [Frankel and Romer (1999), Dufour and Taamouti (20@#ny the model of returns
to education studied by Card (1995) and Kleibergen (2004, Table 21). 4

The paper is organized as follows. Section 2 describes the model ancetitdidéation con-
ditions for endogeneity parameters. Section 3 presents the finite-sampig theinference on
regression endogeneity parameters. Section 4 discusses asymptotjcaheédnference for co-
variance endogeneity parameters. In Section 5, we present empintiabions.

2. Framework: endogeneity parameters and their identification

We consider a standard linear structural equation of the form:
y=YB+X1y+u (2.1)

wherey = [y1,..., yr] is aT x 1 vector of observations on a dependent variable; [Y, ..., Yr|’

is aT x G matrix of observations on (possibly) endogenous explanatory varig8les 1), X;

is aT x kg full-column-rank matrix of strictly exogenous variabless= [us, ..., ur|" is a vector
of structural disturbanceg andy areG x 1 andk; x 1 unknown coefficient vectors. Furthéf,
satisfies the model:

Y = XM +V =XM1+ XolMo +V (2.2)
whereX; is aT x ky matrix of observations on exogenous variables (instrumexts),[Xi, Xo] =
[Xe1,-.., Xet]’ has full-column rankk = k3 + ko, Myand M, arek; x G andk; x G coefficient
matrices,l1 = [y, 1], andV = [V4,..., V1| is aT x G matrix of reduced-form disturbances.
Equation (2.1) is the “structural equation” of interest, while (2.2) reprissae “reduced form” for
Y. On substituting (2.2) into (2.1), we get the reduced formyfor

y=X1m + XoTh +V (23)

wherer; = y+ M1, my =116, andv=Vp+u=|vq,...,vr].

When the errorsi andV have finite means (although this assumption could easily be replaced
by another “location assumption”, such as zero medians), the usuaisaggand sufficient condi-
tion for identification of8 andy (from the first moments of andY) in (2.1) - (2.2) is:

rank(12) = G. (2.4)

If I, =0, the instrumentX, are irrelevant, an@ is completely unidentified. If ¥ rank(I1,) < G,

B is not identifiable, but some linear combinations of the elemensasé identifiable [see Dufour
and Hsiao (2008)]. If1, is close not to have full ranle[g, if some eigenvalues dfi;[1, are close

to zero], some linear combinations Bfare ill-determined by the data, a situation often called



“weak identification” [see Dufour (2003)].

Throughout this papefy, is the identity matrix of ordem. For any full-column-rankl x m
matrix A, P(A) = A(AA) A, M(A) = It — P(A), vedA) is the (Tm) x 1 column vectorization
of Ajand||A|| = [tr(A’A)]% the matrix Euclidian norm. FoA square A > 0 meansA is positive
definite (p.d.), and\ > 0 meand is positive semidefinite (p.s.d.).—m> " stands for convergence in

probability, and «L v for convergence in distribution.

2.1. Identification of endogeneity parameters

We now wish to represent the fact thaaindV can be correlated, allowing for the possibility of
identification failure. It is important to note that the “structural errgr’may not be uniquely
determined by the data wheghandy are not identified. For this, it will be useful to consider
two alternative setups for the disturbance distribution: (A) in the first hreedisturbance vectors
(u, V)" have common finite second momergsctural homoskedasticiy(B) in the second one,
we allow for a large amount of heterogeneity in the distributions of redémed-errors (educed-
form heterogeneily The second setup is more appropriate for practical work, and wetwigb
as far as possible in that direction. But it will be illuminating to first considassa.

Assumption A STRUCTURAL HOMOSKEDASTICITY. The vectors U= (w, V), t=1,..., T,
all have finite second moments with mean zero and the same covariatroe ma

2 /
Oy O-Vu

o s -[  %

} ,  Where3y = IE[\/tVt'} is nonsingular. (2.5)

Under the above assumption, we have:
ovy=EMw]| =EM /B +u] = 3vB + ovu, 02 =02+ B' 5B+ 28 ovu. (2.6)

The covariance vectary, indicates which variables i are “correlated” withu;, so it is a ba-
sic determinant of the level of “endogeneity” of these variables. Notereher, thatoy, is not
identifiable wherf3 is not (for then the “structural errot} is not uniquely determined by the data).
In this context, it will be illuminating to look at the following two regressions: (1¢ timear
regression oty on,

uw=Va+e, t=1...,T, (2.7)
wherea= 2\710\,“ andEe] = 0 for allt; and (2) the linear regressionafon, ,
w=V60+n,t=1...T, (2.8)

where@ = >, oy, andE[Vin,] = 0 for allt. Itis easy to see that
ow=3va, 02=02+dsa=02+0{,2 0w, (2.9)

whereE[e?] = o2 for allt. This entails thata= 0 if and only if oy, = 0, S0 the exogeneity of can

be assessed by testing whethet 0. There is however no simple match between the components
of aandoy, (unless>y is a diagonal matrix). For example af= (a}, a,)’ andoyy = (03,4, 0V )’
wherea; and oy have dimensiors; < G, a; = 0 is not equivalent twy = 0. We calla the
“regression endogeneity parameter”, angd, the “covariance endogeneity parameter”.

As long as the identification condition (2.4) holds, batly, anda are identifiable. This is not
the case, however, when (2.4) does not hold. By contrast, the segnesoefficientd is always
identifiable, because it is uniquely determined by the second moments oétethren errors. Itis
then useful to observe the following identity:

0 =75, ovw=2,(>vB+ovw)=B+a. (2.10)

4



In other words, the surp + a is equal to the regression coefficient\wfon ;. Even thoughB
anda may not be identifiable, the sufi+ a is identifiable (from the first and second moments
of v andV). Further, for any fixeds x 1 vectorw, w6 is identifiable, so the identities’a =
w6 —w Bandoy, = 2ya along with the invertibility of%, entail the following equivalences:

B is identifiable < ais identifiables gy, is identifiable; (2.112)
w B is identifiable < wais identifiables w3, oy, is identifiable . (2.12)

In particular, (2.12) entails a simple identification correspondence betthestomponents g8
anda: for each 1<i < G, g is identifiable= S; is identifiable. In other words, the identification
conditions forB anda are identical. In contrast, the equivalence&d, is identifiable< w3 is
identifiable] and v is identifiables B; is identifiable]do not holdin general: as soon as one
element of3 is not identifiable, all components of,, typically fail to be identifiable. In this sense,
oy is more difficult to interpret thaa.

Setup A requires that the reduced-form disturbaidees= 1, ..., T, have identical second mo-
ments. In many practical situations, this may not be appropriate, especiallynibeal-information
analysis which focuses on the structural equation of interest (2.1prrétthn the marginal distri-
bution of the explanatory variablés To allow for more heterogeneity among the observations in
Y, we consider the following alternative assumptions (wh&rés thet-th row of X).

Assumption B SECOND-ORDER REDUCEDBFORM HETEROGENEITY For some fixed vector a

in R®, we have:
u=Va+e (2.13)

where e, V and X have finite second moméiiig,= O, and e is uncorrelated with V and.X

Assumption C REDUCED-FORM HETEROGENEITY Equation(2.13) holds withE|[e | Vt, Xet] =
0,t=1,...,T.

Assumptions B and C allow substantial heterogeneity in the distribution of therlzhsites
Vi, t=1,..., T. The latter need not be identically distributed or independent. Assumption B main-
tains the existence of second moments [even though the covariance mEt(ng\ilé) may vary
with t] and define® through a zero mean and orthogonality witlandX. Assumption C replaces
this condition by a zero conditional mean; no further restrictioW as imposed. The existence of
moments fol; and X,; is not required. An important case where Assumption B holds is the one
whereV ande are independent (strong linear structural decomposition). Given (Beldhree con-
ditionsE[a |\, Xi] =0, E[& |Y;, Xt] = 0 andE[& | Y;, 4, Xit] = 0 are equivalent. In such cases,
oyvy may not be well-defined [due to heterogeneity in the modelyfoor the non-existence of
moments], bua remains statistically meaningful.

In view of the decomposition (2.13), equation (2.1) can be viewed as asggn model with
missing regressors. On substituting (2.13) into (2.1), we get:

y=YB+Xy+Va+e (2.14)

whereeis uncorrelated with all the regressors. Because of this property, W@ dat) theorthog-
onalized structural equatioassociated with (2.2), arethe orthogonalized structural disturbance
vector! In this equation, the original structural parametg@sandy) can be interpreted as regres-
sion coefficients, along with the regression endogeneity parametée see thah represents the

1The form (2.14) was orignally proposed by Revankar and Hartley3)1Lfor the purpose of testing complete exo-
geneity(a= 0). As pointed out in Dufour (1979, 1987), the disributional theory is suttstily simpler in that case and
does not allow one to test more general restrictiona @mecause the covariance matrix is modified).



effect of the latent variabM. Even though (2.14) is a regression equatiofi Xi, V) is orthogonal
to the disturbance], it is quite distinct from the reduced-form equation (2.3) yor

The orthogonalized structural equation is quite helpful for interpretingeincaefficients. A
structural model of the form (2.1) - (2.2) often represents a causaltste to explairy. The en-
dogenous variableg/ andY) are determined by two types of inputs: observable exogenous vari-
ables ¥K; and X;) and unobserved variableg @nde). X; has both a direct effe¢i;y) ony and
an indirect effec(X;1/7:1 3 throughY), while X, only has an indirect effe¢Xo/1,3). Similarly,V
represents unobserved variableg( shocks, latent variables, expectation errors) which have both
a direct effect{Va) and an indirect effeatv 3), while e represents idiosyncratic shocksytevhich
are orthogonal t&. Finally, we may interpret the suMB +Va=V (B + a) as the net final effect
(both direct and indirect) of ony. In the context of a causal interpretation, the coefficient vectors
B, aandp + a have useful distinct interpretationf: represents the impact §f[in particular, its
systematic componelg(Y) = X111 + X2/1,] ony, athe direct effect of the latent variableony,
andp + athe total effect oW ony. Statistical inference on each one of the coefficients has its own
independent interest.

The identification ofa can be studied through the orthogonalized structural equation. By (2.2),

y=YO0+X11 + X1, + € (2.15)
wheref = 3 +a, m; = y— a, 115, = —[1»a, andeis uncorrelated with all the regressgh§ X;
andXy). Equation (2.15) is a regression equation obtained by addirtg the original structural
equation or, equivalently, by addingto the reduced form (2.3) for. We call (2.15) theextended
reduced formassociated with (2.2). As soon as the ma#ix [Y, X3, Xp] has full-column rank
with probability one lmost surelya.s)], the parameters of equation (2.15) are identifiable (a.s.),
because they are uniquely determined by the linear projectiopsoofY; andX,; fort =1,..., T
[under Assumption B] or by the corresponding conditional means [uadsumption C]. This
is the case in particular fo® = B + a (with probability one) wherzZ has full-column rank with
probability one. This rank condition holds in particular when the matrixas full column rank
(a.s., conditional oiX), e.qg. if its distribution is absolutely continuous. This entails again thist
identifiable if and only if3 is identifiable, and similarly betweawria andw 3 for anyw € R®. This
establishes the following identification result fgrwhere “identification” refers to the conditional
distributions ofy; givenY; andX,;,t=1,..., T.

Proposition 2.1 IDENTIFICATION OF REGRESSION ENDOGENEITY PARAMETERSUnder the
model given by2.2), (2.3) and Assumption B or C, suppose the maftrixXi, X] has full column
rank. Then a+ 3 is identifiable, and the following two equivalences hold:

ais identifiable= S is identifiable ; (2.16)
for any we R®, wa is identifiable= w3 is identifiable (2.17)

Under Assumption B, covariance endogeneity parameters may depénthdeed, it is easy
to see thak [Vite] = E MV, ]a= oyt , which may depend onif E[\;V, | does. However, identifi-
cation of the parameters,; remains determined by the identificationapfvhenever the reduced-
form covariance (which are parameters of reduced forms) are idéigifimference on covariance
endogeneity parameters requires additional assumptions. In sections4 amre will see that
finite-sample inference methods can be derived for regression emeibgparameters under the
relatively “weak” Assumption B, while only asymptotically justified methods will begosed
for covariance endogeneity parameters. For covariances, we wil foie the case wherey; is
constant.



2.2. Statistical problems

In this paper, we consider the problem of testing hypotheses and builalifigence sets for regres-
sion endogeneity paramete®) and covariance endogeneity parameterg,), allowing for the
possibility of identification failure (or weak identification). We develop infere procedures for
the full vectorsa anday, as well as linear transformations of these paramet&@sndw gy,. In
view of the identification difficulties present here, we emphasize methoddich a finite-sample
distributional theory is possible [see Dufour (1997, 2003)], at leastadly.

In line with the above discussion of the identification of endogeneity paraseterobserve
that inference ora can be tackled more easily than inferencean, so we study this problem
first. The problem of testing hypotheses of the fdfigiag) : a = ap can be viewed as an extension
of the classical Anderson and Rubin (1949, AR) problem on tedtin@3,) : B = B,. There is,
however, an additional complication: the variaklés not observable. For this reason, substantial
adjustments are required. To achieve our purpose, we propose g\stieebuilds on two-stage
confidence procedures [Dufour (1990)], projection methods [Du{®990, 1987), Abdelkhalek
and Dufour (1998), Dufour and Jasiak (2001), Dufour and Taan{@Q05)], and Monte Carlo
tests [Dufour (2006)].

Specifically, in order to build a confidence set with level & for a, choosexr; andas, such
thatO<a=a1+02,<1,0< a1 <1land0< a, < 1 We can then proceed as follows:

(1) we build an identification-robust confidence set with level &1 for 3; several methods are
available to do this; in view of the existence of a finite-sample distributional y{@smwell as com-
putational simplicity), we focus on the Anderson and Rubin (1949, ARjaamh; but alternative
procedures could be exploited for that purpése;

(2) we build an identification-robust confidence set for the €um 3 + a, which happens to be an
identifiable parameter; we show this can be done easily though simple iegresthods;

(3) the confidence sets g and @ are combined to obtain a simultaneous confidence set for the
stacked parameter vectpr= (B’, 8')'; by the Boole-Bonferroni inequality, this yields a confidence
set for¢ with level 1— a (at least), as in Dufour (1990);

(4) confidence sets fa= 6 — 3 and any linear transformatiaa may then be derived by projec-
tion; these confidence sets have level & ;

(5) confidence sets fary, andw gy, can finally be built using the relationship,, = 2va.

For inference om, we develop a finite-sample approach which remains valid irrespective of a
sumptions on the distribution ® In addition, we observe that the test statistics used for inference
on S [the AR-type statistic] an@ enjoy invariance properties which allow the application of Monte
Carlo test methods: as long as the distribution of the etraggsspecified up to an unknown scale
parameter, exact tests can be performef8 and6 through a small number of Monte Carlo simula-
tions [see Dufour (2006)]. For inference on both regression avar@mce endogeneity parameters
(aandoyy), we also provide a large-sample distributional theory based on starglamptotic as-
sumptions which relax various restrictions used in the finite-sample theorprégbsed methods
do not make identification assumptions @neither in finite samples or asymptotically.

2Such procedures include, for example, the methods proposed byekeit (2002) or Moreira (2003). No finite-
sample distributional theory is, however, available for these methodshefuthese are not robust to missing instru-
ments; see Dufour (2003) and Dufour and Taamouti (2007).



3. Finite-sample inference for regression endogeneity parameters

In this section, we study the problem of building identification-robust testcanfidence sets for
the regression endogeneity parametérom a finite-sample viewpoint. Along with (2.1) - (2.2),
we suppose that Assumption B holds under (at least) one of the followingjtmms on model
disturbances.

Assumption 3.1 CONDITIONAL SCALE MODEL FOR STRUCTURAL ERRORS U= og(X)u,
where g(X) is a (possibly random function of X such thaP[o(X) # 0|X] = 1, and the con-
ditional distribution ofu given X is completely specified.

Assumption 3.2 CONDITIONAL SCALE MODEL FOR ORTHOGONALIZED STRUCTURAL ER
RORS e= 01(X)¢g, whereoy(X) is a (possibly random function of X such thaP|[o1(X) #
0| X] =1, and the conditional distribution of given X is completely specified.

Assumption 3.1 means the distribution wfiven X only depends oiX and a (typically un-
known) scale factoo(X). The scale factor can also be random, so we can b@%e = o (X, v).
Of course, this holds when ever= o v, whereo is an unknown positive constant ant indepen-
dent of X with a completely specified distribution. In this context, the standard Gausssama-
tion is obtained by takingu ~ N[O, It]. But non-Gaussian distributions are covered, including
heavy-tailed distributions which may lack moments (such as the Cauchy distmpuS8omilarly,
Assumption 3.2 means the distributionegiven X only depends oiX and a (typically unknown,
possibly random) scale factor; (X), so again a standard Gaussian model is obtained by assuming
thato1(X) is fixed (givenX) ande ~ N[O, IT]. In general, assumptions 3.1 and 3.2 do not entail
each other. However, it is easy to see that both hold when the véuttwé]’, t,,..., T, areii.d.
(given X) with finite second moments and the decomposition specified by Assumption B holds
This will be the casa fortiori if the vectors[ut,\/t']’, t,,..., T, areii.d. multinormal (giverx).

We will study in turn the following problemgl) test and build confidence sets {ér (2) test
and build confidence sets fér= (8 + a; (3) test and build confidence sets far(4) test and build
confidence sets for scalar linear transformatiotes

3.1. AR-type tests for with possibly non-Gaussian errors

Since this will be a basic building block for inference on endogeneity paeaseave consider first
the problem of testing the hypothesis

Hg(Bo) : B = Bo (3.1)

wheref3, is any given possible value . Several methods have been proposed for that purpose.
However, since we wish to use an identification-robust procedure limha finite-sample theory
can easily be obtained and does not require assumptions on the distridutiowe focus on the
Anderson and Rubin (1949, AR) procedure. So we consider thefdramsd equation:

y—YBo = X17f) + Xory + VP (3.2)
wherers) = y+ M1 (B —By), M= IMa(B—Bo) andv® = u+V (B — By). Sincern = 0 underH (B,),
itis natural to consider the correspondifgstatistic in order to testig(3,) :
(Y=YBo)' (M1 —M)(y—YBg)/ka (3.3)
(Y=YBo)M(y—YBo)/(T —K) '

whereM; = M(X;) andM = M(X). Under the usual assumption whare- N[0, g?I1] indepen-
dently of X, the conditional distribution oAR(B,) underHg(B,) is F (k2, T —K). In the following

AR(BO) =
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proposition, we characterize by invariance the distributiofR({3,) under the general Assumption
3.1

Proposition 3.1 NULL DISTRIBUTION OF AR STATISTICS UNDER SCALE STRUCTURAL ERROR
MODEL. Suppose the assumptiofsl), (2.2) and 3.1 hold. If3 = B,, we have:

- U’(Ml — M)U/kz
ARBo) = v'Mu/(T —k)
and the conditional distribution of AfB,) given X only depends on X and the distributiorvof

The proof is given in Appendix. This proposition means that the conditioakdistribution
of AR(By), given X, only depends on the distribution of The distribution ofV plays no role
here, so no decomposition assumption [such as A or B] is needed. If thigution of u |X can
be simulated, one can get exact tests basedRif,) through the Monte Carlo test method [see
Dufour (2006)], even if this conditional distribution is non-Gaussian.ti@rmore, the exact test
obtained in this way is robust to weak instruments as well as instrument exclesgen if the
distribution ofu| X does not have moments (e.g., the Cauchy distribuficFis may be useful in
financial models with fat-tailed error distributions, such as the Studdistribution.

When the normality assumption holo(su ~ NIO, IT]) and X is exogenous, we have
AR(Bg) ~ F(k2, T — k), so thatHg(B,) can be assessed by using a critical region of the form
{AR(By) > f(a)}, wheref(a) = Fq(kz, T —K) is the(1— a)-quantile of theF (ko, T — k) distri-
bution. A confidence set with level-1a for 3 is then given by

%p(a) = {Bo: AR(Bo) < Fa(ke, T —K)} = {B:Q(B) <0} (3.5)

whereQ(B) = B'AB+bB+c, A=Y'HY, b= —2Y'Hy, c=yHy, H = My — [1+ f (a)(+2)]M,
andf(a) = Fy(ke, T —k); see Dufour and Taamouti (2005).

(3.4)

3.2. Inference onf

Let us now consider the problem of testing the hypothEgi®,) : 6 = 8o, wherefy is a given
vector of dimensiorG, and Assumption 3.2 holds. This can be done by considering the extended
reduced form in (2.15). By Assumption 3.2,is independent o¥, X; and X, and (2.15) is a
linear regression model. As soon as the maifixX;, X,] has full-column rank, the parameters of
equation (2.15) can be tested through stanfatests.

We will now assume thdl, X;, Xo] has full-column rank with probability one. This property
holds as soon as = [X3, Xz] has full column rank an¥ has a continuous distribution (conditional
on X). TheF-statistic for testindg(6o) is

~ (B=60)'(Y'MY)(8—60)/G
ol M@/ G K

3By “robustness to weak instruments”, we mean the fact that the null diitibof the test statistic remains valid
even if rankll,] < G, so3 may not be identifiable from the available data. By “robustness to excind&gdments”, we
mean that the test remains valid eveiY ilepends on additional explanatory variak¥s) which are not taken in IV-
based inference; for further discussion of this issue, see Dufalifaamouti (2007). Of course, identification failure
(or weak identification) typically affects test power and confidence satigion. For example, if identification fails
completely(rankIT;] = 0), it is impossible to distinguish between alternative valuef ,ond a valid test oHg(Bg)
should have power not larger than its level. Further, confidence satddéntified parameters should be uninformative
(e.g, unbounded) with high probability; see Dufour (1997).

(3.6)




where 8 = (Y'MY)~1Y'My is the OLS estimate 06 in (2.15), M = M(X), X = [X1, Xz], and

Z=1[Y,X1,Xs]. Whenv ~ N[O, IT], we have:Fg(6g) ~ F(G, T —k—G) underHg(8p). Under

the more general assumption 3.2, it is easy to see that

MY (Y'MY)~Y'Me/G

Fo(60) = —;

eM(2)e/(T-G—k)

underHg(6p). On observing that the conditional distribution®&f(6o), givenY andX, does not

involve any nuisance parameter, the critical value can be obtained by simulatgalso important

to note that this distribution does not depend &y so the same critical value can be applied

irrespective 0By. The main difference with the Gaussian case is that the critical value mayalepen

onY andX. Irrespective of the case, we shall denotechy,) the critical value foFg(0o).
From (3.6), a confidence set with level-lo for 6 can be obtained by invertirfey (6o) :

Cfe {90 Fg 90 <f } {90 Q 90 <O} (3.8)

whereQ(6) = 6-0)(Y MY)(G 6)—-Co=06 A6+b’6+c co— fa )Gs2 S =yM(2)y/(T -
G-k),A=Y'MY, b= —2A0 = —2Y'My, C= BAB S =16 (Y'MY)8 — G = yHy,andH =
P(MY) — f(a)[G/(T — G — k)]M;. Since the matrixA is positive definite (with probability one),
the quadric sety(a) is an ellipsoid (hence bounded); see Dufour and Taamouti (2005).206i8
reflects the fact thafl is an identifiable parameter. As a result, the corresponding projecti@ubas
confidence sets for scalar transformationg are also bounded intervals.

In view of the form (2.15) as a linear regression, we can test in the sampnkngar restrictions
of the formHwg(yy) : W6 = y,, wherewis aG x 1 vector andy, is known constant. We can then
use the correspondirtgstatistic

(3.7)

wo -y,
sw/ (Y'MY)~1w]1/2

and rejecHyo(Y,) When [two(Yo)| > cw(a), wherecy(a) is the critical value for a test with level
a. In the Gaussian caskyg(Y,) follows a Student distribution witfi — G —k degrees of freedom,
so we can takey (o) =t(a2; T — G—Kk). Whene follows a non-Gaussian distribution, we have

(T—G—KY2W(Y'MY)~1Y'Me
twe(Vo) = 1/2
(E'M(Z)e) ™ W (Y'MY)~1w]1/2
underHwg(Yp), so that the distribution dfye(y,) can be simulated lik&(8o) in (3.7).

(3.9)

two(Yo) =

(3.10)

3.3. Jointinference onf and regression endogeneity parameters

We can now derive confidence sets for the vectffsa’)’ and(B’, 8')’. Consider the set:
©p.0)(a1, 02) ={(65, Bo)': Bo € €p(01) , B0 € Ba(a2)} = {(6, Bo)' : Q(Bo) <0, Q(Bo) <0}
By the Boole-Bonferroni inequality, we have:

P[B € 6p(a1)andd € €p(a2)] > 1-P[B ¢ 6p(a1)] — P[0 ¢ €p(az)] >1—a1—az (3.11)

S0%(, 6)(01, 02) is a confidence set fqB’, 8') with level 1— a, wherea = a1+ a». In view of
the identity@ = 3 4 a, we can writeQ(8) in (3.8) as a function of anda:

Q(6) = Q(B+a) = dAa+ (b+2AB)a+[c+bB+BABl,

so that we get a confidence set with level & for 8 anda by taking
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©(5,a(@) = {(Bo: 8)' : Q(Bo) < 0andQ(B,+ao) < 0} (3.12)

Thus, finite-sample inference on the structural (possibly unidentifialdednpetera can be
achieved. Of course, i is not identified, a valid confidence set will cover the set of all possi-
ble values (or be unbounded) with probability-Ir [see Dufour (1997)].

3.4. Confidence sets for regression endogeneity parameters

We can now build “marginal” confidence sets for the endogeneity coeffioiectora. In view
of the possibility of identification failure, this is most easily done by projectiomrigpies.
Let g(B,a) be any function of anda. Since the even(f, a) € ¢ a(a) entailsg(B, a) €

9[%(p. a)(a)], Whereg[%(g o) (a)] = {d(B, a) : (B, @) € C(p,a)(a)}, we have:
P[g(B, a) € 9l%(s, ()] > PI(B. @) € G(p,a(a)] > 1~a. (3.13)
On takingg(B, a) = a € R®, we see that
%a(a)={a:(B,a) € Cﬁ_ﬁ a(a) for someB} = {a: Q(B +a) < 0 andQ(B) < 0 for someB}

is a confidence set with level-la for a.
WhenG = 1, the matricesA, A, b, b, c andcin (3.8) reduce to scalars, and the different
confidence sets take the following simple forms:

Cp(ay) = {B:AB2+bB+c§O}, Colaz)={0: AB2 1B +C<0}, (3.14)
a(a) = {a: AB?+bB+c<0,AZ+ (b+2AB)a+[C+bB+ABY <0}. (3.15)

Closed forms for the seftég (al) and%p(a2) are easily derived by finding the roots of the second-

order polynomial equatlonAB +bB+c=0 andA6% + b6 +¢c =0 [as in Dufour and Jasiak
(2001)], while the se¥,(a) can be obtained by finding the roots of the equation

A& +b(B)a+c{B) = 0 whereb(B) = b+ 2AB andc(B) = c+ b + AB?, for each € €3(a1).

We shall now focus on building confidence sets for scalar linear tremstionsg(a) = wa =
woO —w g, wherewis aG x 1 vector. Conceptually, the simplest approach consists in applying
the projection method t@%(a ), which yields the confidence set:
Gwa(0) = gwl[€a(a)] ={d:d=waforsomeac %,(a)}
= {d:d=wa, Q(B+a) <0andQ(B) < 0for someB}.

But it will be more efficient to exploit the linear structure of model (2.15)jckhallows one to
build a confidence interval fox' 6.

Following Dufour and Taamouti (2005, 2007), confidence setg{08) = w3 andgy(6) =
gw = W 6 can be derived frorfs (1) and%p(az) as follows:

Gwp(a1) = gu[€p(a1)] = {x1:xa =W, Q(B) <0} = {x1:xa =wWp, B'AB+b'B+c <0}
whereA, b andc are defined as in (3.5). Far6, we can use &—type confidence interval based
ont(yp):

Gwo(02) = Gul%a(a2)] = {Vo [two(Vo)| < cw(@2)} = {yo: WO —yo| <D(a2)}  (3.16)

whereD(az) = cu(a2) G(W8), 5(WB) = sw (Y'MY)w|¥2 with s = [yM(Z)y]Y2/(T -G —
k)1/2, andcy(a>) is the critical value for a test with level, based onyg(y,) [in (3.9)]. Setting
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Cowp.we) (01, 02) = {(X,Y) 1X € Gup(ar)andy € Gyo(az)}, (3.17)
we see that g, we) (A1, a2) is a confidence set fdw/' B, w0) with level 1— a1 — a:
P[(WB, W8) € Cp.we) (a1, 02)] = PIWP € Gyp(a1)andw'6 € bwe(az)] > 1—a  (3.18)

wherea = a1+ a. For any poink € R and any subséf C R, setx— A= {zeR:z=x—yandy e
A}. Sincewa=w6 —w 3, itis clear that

(WB, WO) € Cwp.wo) (a1, a2) & WB—wWae Gyp(ar)andwd € Guo(as)
SwWaewb—%yp(a) andw e € Gyo(az),

Pwae W8 —Gyp(a1) andwe € Gye(az)] =PWp € Gyp(ai)andw € Guo(az)]
>1—-a1—aqQs.
Now, consider the set
bwa(01, a2) ={zeR:zey—Cyp(ay) for somey € Gwo(a2)}. (3.19)
Since the evenfwa e w6 — 6,yp(a1) andw 6 € %wo(a2)} entailswa e Gya(a1, az), we have:
P[Wa € Gya(a1, 02)] > PWB € Gup(a1)andwd € Gye(az)] > 1—a1—as  (3.20)
andéya(ay, a2) is a confidence set with leveH a1 — o, for wa.
Since %wo(02) is a bounded interval, the shape €f.,(a1, a2) can be deduced easily by
using the results given in Dufour and Taamouti (2005, 2007). We foauthe case wherA is

nonsingular [an event with probability one as soon as the distributisfRgB,) is continuous] and
w # 0. Then the se¥,g(a1) may then rewritten as follows: A is positive definite,

%wp(a1) = |WB—D(a), wB+D(ay)|, ifd>0
-0, if d <0,

wheref = —3A~1b, d = WA~ 'b— candD(a1) = \/d (WA-1w); if A has exactly one negative
eigenvalue and < 0,

Gup(o1) = | —e, W -D(ay)|U|WB+D(ay), +oo |, if WA W<O,

= R\{Wp}, if WA~ lw=0;

otherwise, 6y g(01) = R. 6yg(a1) = 0 corresponds to a case where the model is not consistent
with the data [so thatya(a1, az) = 0 as well], whileGyg(a1) =R and6p(a1) = R\{wp}

indicate thatw/f3 is not identifiable and similarly fow'a [so that%ya(a1, a2) = R]. This yields
the following confidence sets fova: if Ais positive definite,

%\,\/a(al, (12) = [V\/(é—[})—Du(Gl, (12) , V\/(é—ﬁ)—i—Du(Gl, 02)} , ifd>0,
=0, ifd<0,

(3.21)

(3.22)

whereDy (a1, a2) = D(a1) +D(ay); if A has exactly one negative eigenvaluéd—lw < 0 and
d <0,

Gwa(d1, a2) = } —o0, W(8—B)—Di(ay, 0(2)} U [V\/(é_ﬁ)+DL(aL az), 4o [ (3.23)

whereDy (a1, a2) = D(a1) —D(a>); otherwiseZya(a1, a2) = R. These results may be extended
to cases wherA is singular, as done by Dufour and Taamouti (2007).
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3.5. Exact Monte Carlo identification-robust tests with non-Gaussian errors

Suppose now that the conditional distributionudfgiven X) is continuous, so that the conditional
distribution of AR(j3,) under the null hypothesidg(8,) is also continuous. We can then proceed
as follows to obtain an exact Monte Carlo testf(3,) with levela (0 < a < 1):

(1) choosea* andN so thatar = (I[a*N]+1) /(N+1);

(2) for given 3,, compute the test statisthR©) (Bo) based on the observed data;

(3) generateN i.i.d. error vectorw () = [l ... o), j=1,... N, according to the specified
distribution ofu |X , and compute the corresponding stati®tR!), j =1, ..., N, following (3.4);
note the distribution oAR(3,) does not depend on the specific vaBgtested, so there is no need
to make it depend ofy;

(4) compute the simulate@-value function: pR[X] = {1+ 3"; 1[ARD > x]} /(N + 1), where
1[C] =1 if conditionC holds, andl [C] = 0 otherwise;

(5) reject the null hypothesidg (B,) at levela when py[ARY (Bg)] < a.

Under the null hypothesislz(B,), P[pn[AR?(B,)] < a] = a, so that we have a test with
level a. If the distribution of the test statistic is not continuous, the MC test proeeckam easily
be adapted by using “tie-breaking” method described in Dufour (26@rrespondingly, a con-
fidence set with level ¥ a for 3 is given by the set of all valug8, which are not rejected by the
above MC test. More precisely, the set

(@) = {Bo: PuIARO (By)] > a} (3.24)

is a confidence set with level-la for 8. On noting that the distribution qtR(BO) does not depend
on 4, we can use a single simulation for all valyggs settingfy(a*) = Fy(1—a*), the set

@a(a; N) = {Bo: ARO < f“N(a*)} (3.25)

is equivalent ta6z(a) — with probability one — and so has level-la. On replacing> and< by
> and< in (3.24) - (3.25), itis also clear that the séi8, : pn[AR? (B,)] > a} and

@p(a; N) = {By : ARV (Bo) < fu(a™)} (3.26)

constitute confidence sets fBrwith level 1— a (though possibly a little larger than-1a). The
quadric form given in (3.5) also remains valid witha ) = fn(a™).

4. Asymptotic theory for inference on endogeneity parameters

In this section, we examine the validity of the procedures developed in S&umder weaker
distributional assumptions, and we show how inference on covariaogeneity parameters can
be made. On noting that equations (3.2) and (2.15) constitute standard égezggion models (at
least under the null hypothegs= ), it is straightforward to find high-level regularity conditions
under which the tests based AR() andFg(8o) are asymptotically valid.

For AR(B,), we can consider the following general assumption.

Assumption 4.1 When the sample size T converges to infinity, the following convergendts res
hold jointly: (@) 1X'u 2 0; (b) 2u'u-® 02 > 0, x'X % 5 with detX’X) # 0; (c) =X 5
Wy, Wxy~ N[O, 042x], where X= [X1, X3].

4Wwithout the correction for continuity, the algorithm proposed for statistics waititinuous distributions yields a
conservative test,e. the probability of rejection under the null hypothesis is not larger than thenad level (o).
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The above conditions are easy to interpret: (a) represents the asymptodiganality between
u and the instruments iX, (b) may be viewed as laws of large numbersd@ndX, while (c) is a
central limit property. Then, it is a simple exercise to see that

AR(Bo) = X*(ko) /2, whenB = . (4.1)
Similarly, for Fg(6o), we can suppose the following.

Assumption 4.2 When the sample size T converges to infinity, the following convergendts res
hold jointly: () $Z'e % 0; (b) $ee > 02 > 0, 12'Z % 5, with det2'2) #0; (¢) £Z'e =
Wze, Wze~ N[O, 0357, where Z=[Y, Xy, Xa].

Then
Fo(60) = x(G)/G, when6 = 6. (4.2)

The asymptotic distributions in (4.1) and (4.2) hold irrespective whether 8teumentsX are
weak or strong. Further, as soon as assumptions 4.1 and 4.2 hold, fitenoa procedures
described in Section 3 remain “asymptotically valid” witia1) = x?(a1; k2) /k2 and f(az) =
Xx?(az; G)/G, wherex?(a1; ko) andx?(ay; G) are respectively the-2 a; and 1- a, quantiles of
the corresponding? distributions. Of course, the Gaussian-based Fisher critical values|smy a
be used (for they converge to the chi-square critical valuds-asw).

We can now consider inference for covariance endogeneity paranaetgr The problem of
building confidence sets far,, is especially important for assessing partial exogeneity hypotheses.
Sincea; =0, j =1,...,G does not entaiby ; = 0(where 1< j < G), confidence sets on the
components oh cannot directly be used to assess for example, the exogeneity of epebsar
Yj, j =1,...,G. Confidence sets and tests foyy can be deduced from those arthrough the
relationshipoyy = Syagiven in (2.9). On replacing by >, 1oy, in %a(a), we see that the set

Con,(Q;Zy) = {ovu€R®:oyy,=Syaandac €a(a)}

= {ow€eR®:Q(B+ 5, ovy) <0andQ(B) < 0forsomeB}  (4.3)

is a confidence set with level-1a for oy,. This set is simply the image &f;(a) by the linear
transformatiory(x) = Syx. The difficulty here comes from the fact th&§ is unknown. Letsy, =

V'V /(T —k) whereV = M(X)Y is the matrix of least-squares residuals from the first-step regression
(2.2). Under standard regularity conditions, we have:

5y B sy (4.4)

where det>y) > 0. If B, andag are the true values @@ anda, the relations9y = B+ ap and
Ovw = 2vap entail thatFg(0p) can be rewritten as follows:

(6—Bo—2y"0vw0) (Y'MY) (8 — Bo— 2, "ovin) /G
yM(2)y/(T -G—Kk) ’
Replacingy by 3v, we get the approximate pivotal functiéi (8, + 3, *ovw). If (4.4) holds,
it is easy to see (by continuity) th& (B, + 5 1ovw) and Fg(B, + %, lovw) are asymptoti-
cally equivalent with a nondegenerate distribution, wiggrand oy o are the true parameter val-
ues. Consequently, the confidence set of typg,(a) based orFg (B, + 5\710\/“0) as opposed to
Fo(Bo+ Z\jlawo) has level - a asymptotically. This set is simply the image@é£(a) by the
linear transformationy(k) = Sy, i.e.

(05 3v) = {Ovy € R®: Q(B + 5, ovy) < 0andQ(B) < 0 for someB} . (4.6)

Fo(Bo+ 2y ovw) = (4.5)
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Finally, confidence sets for the component&gf, and more generally for linear combinations
w gy, can be derived from those arla as described in Section 3.4. Fby given, the relation
ovy = 2yaentails that a confidence set fotoy,, (with level 1— a) can be obtained by computing
a confidence set (at leveHa) for wja with w; = >y w. WhenZy is estimated by:‘v, takingwy =
Syw yields a confidence set fary, with level 1— o asymptotically.

5. Empirical applications

We will now apply the methods proposed above to two empirical examples: d ofdde relation
between trade and economic growth, previously studied in Frankel am#iRd999) and Dufour
and Taamouti (2007), and the model of returns to education studied by(Ta95) and Kleibergen
(2004, Table 2, p. 421).

5.1. Trade and growth

The trade and growth model studies the relationship between standarssgfdnd openness.
Frankel and Romer (1999) argued that trade share (ratio of imporkports to GDP) which is the
commonly used indicator of openness may be endogenous. The equatiied ssLgiven by:

In(Income) = B+ BTrade + y,In(Pop) + y,In(Area) +uj,i=1,...,N (5.1)

where Income is the income per capita, Trade is measured as a ratio of impdréx@orts to
GDP, Pop is the logarithm of the country population, and Area is the logarittine country area.
The instrument suggested is constructed on the basis of geograplactehnistics. The first stage
equation is then given by:

Trade = bg+b1Z +c1Pop +cAreg +Vi,i=1,..., N, (5.2)

wherez; is a constructed instrument. We use the sample of 150 countries and theedfatal®85.
Dufour and Taamouti (2005) showed that the fitted instrument in this sampié very weak®

The identification-robust confidence intervals with level 97.5%3fand6 = 3, +a, that result
on inverting AR(3) andtg(Yy,) are given by:4¢g(a) = {/30: 0.238% — 4.760,40.04 < 0} =
[0.01, 20.62] and%p(a) = [—-0.05, 0.47]. The results reported are based on the critical values of
theF-distributions of Section 3. The Monte Carlo method as described in Sectigiv8bsimilar
results even with 1000 replications. We see thigta ) is a bounded interval, thus confirming that
identification is not weak in this model. The estimates of regression and cosergadogeneity
parameters are given lay="—1.82 andd, = —0.38, respectively. The confidence inter/aigith
level 95% fora and oy, are given by:

%a(a) = [-20.67,0.46) and %, (a)=[—4.33,0.09.

Both confidence intervals are bounded and contain the estimatesnofoy,, from observed data.
Both confidence intervals, though include zero, are left skewed at 2arparticular, the upper
bound foréy,,(a) is very close to zero. So the true covariance and regression endygese
rameters can be actually large, thus indicating the importance of omitting variaiteora) and

5TheF-statistic in the first stage (5.2) is about 13, see also Frankel and Ra889, Table 2, p.385).
SNote that the confidence interval with level 95% &andoy, obtained on invertindR(B,,) andFg(68o) are similar
to those reported here.
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trade share endogeneity (fox,,). The latter is likely plausible as the discrepancy between the
OLS estimate of3 (B s= 0.28) and the 2SLS estimatf{s, = 2.03) is relatively large.

5.2. Card model of education and earnings

We will also apply the methods proposed to the following alternative model stbgli€ard (1995)
for the return of education to earnings:

¥i = Y1iB1 +Yai B+ Y3 B3+ Xi Y+ Ui, (5.3)
(Y, Yai, Yai) = Xgi M1+ X5 M2+ Vi, (5.4)

whereYj; is the length of education of individud| (Y, Yai) = (exper, expe|2) contains the ex-
perience éxpe) and experience squared of individualwhere exper = age — 6 — Yii; Xij =

(1, race, smsa south)’ consists of a constant and indicator variables for race, residence in a
metropolitan area, and residence in the south of the United Statey; antthe logarithm of the
wage of individuali. All variables inX; are assumed exogenous; is the vector of instruments
that containsage agée® of individual i, and proximity-to-college indicators for educational attain-
ment; these areproximity to 2- and 4-year collegeKleibergen (2004, Table 2, p. 421) shows
that the proximity-to-college indicator instruments are not very strong. &jenis important to be
careful when interpreting the 2SLS estimates of this model. We follow the mdtgyddeveloped

in this paper for building projection-based confidence intervals of the oaeis of the regression
and covariance endogeneity parameters(a;, ay,a3)’ andoyy = (Ovu, Ovie, Oviz)’-

The data analyzed are from the National Longitudinal Survey of Youeg krom 1966 to
1981). We use the cross-sectional 1976 subsample which containoB8éfrations. After ac-
counting for missing data, the final sample has 2061 observations. Tiablearcontained in the
data set are: two variables indicating the proximity to college, the length obédagclog wages,
experience, 1Q score, age, racial, metropolitan, family, and regionabitos.

To build confidence sets with level 95% farand oy, we takea; = a, = 0.025 The
identification-robust confidence sets with level®% for 8 = (B8, B,, B3)’ and6 = 3 + a, based
on inverting AR(B,) and Fg(68o) are given by: ¢5(a) = {Bq: BoABy—b/By+0.37< 0} and
%o(a) = {60: 6pA00+b'8p+0.63< 0}, where

07 617 8734 ~ 77072  —77070 —1328773
A=| 614 17088 321082 |,A=| -77070 77072 1328770 |, (5.5)
87.34 321082 6173062 —1328773 1328770 27027774

b= (-0.8,-15.62, —2859)" andb = (—33.59,33.59, 838 17)".The matrixA has exactly one neg-
ative eigenvalue, while all eigenvalues/hre positive. Hence&;(a) is an unbounded ellipsoid,
while ¢p(a) is a bounded ellipsoid, thus confirming tréats identified whilef is not. Then, for
any scalar linear transformationsd, a confidence set with leveH.a is given by (3.16) withd =
(0.279,0.312 —0.003) andD(a>) = 0.72[w/ (Y’MY)~1w]%/2. Forw/8, we can obtain a projection-
based confidence set with level-la; by using (3.21) with3 = (—0.361 0.218 —0.010),
d=—-1.55<0andD(a1) = [-1.55VA1w]Y/2 whenw A~1w < 0. For inference o, we also use
the following estimates:

—0.102 —0.492 A 376 —-3.75 —-6475
a= 0.102 , Oyu= 0.492 , 2y = -375 374 6476 .
—0.004 7.634 —64.75 6476 131714
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Table 1. Card model of education and earnings
Projection-based confidence intervals for endogeneity parametéts|¢osl)

Without IQ variable
Regression endogeneity Covariance endogeneity
Cay | ]=0,047U[L45 4] | Coyy | |- 0,041 U[9.08 +oof
Cay | | —0,—0.120U[-0.03 400 | €5y | ] —,—9.08U[—-0.41, +0o]
Cag | —,0.002U[0.03,4+[ | €oy, | | —%,—16535 U[—7.65 4]
With 1Q variable

Cay ] —0,0.55U[0.73,+] Coyy | —,0.24| U[3.19, 40|
Cay R Coye | ] —®,—3.19U[—0.24, 4o
Cag | ] —,0.000U[0.013 4 | Coq | |— 00, —5205 U[—4.37,+0o]

The 2SLS estimate @ is 3,5, s= (0.190, 0.019, 0.001)’, and the eigenvalues 61}, wherefT,
is the OLS estimate af, from (5.4), are:(0.0003 0.095 3858326). The value 003 is quite
close to zero, which suggests instruments are wWeak.

Table 1 presents the projection-based confidence intervals with levef@S#gividual com-
ponents of endogeneity parameteasaid oyv,). In the first part of the table, thi€) variable is
omitted from the model, and it is included in the second part. The results are simtiflaand
without this variable: the confidence intervals for all componentsarfd oy, are unbounded. So,
all components of both endogeneity parameters are weakly identified. Wailestimate ofg
(43 = —0.004) seems very close to zero, the corresponding covariance estimate: 7.634 is
relatively large, which confirms the fact that= 0 does necessarily not implies thay,; = 0, as
argued in Section 2.1. All confidence intervals, thought unboundedaitozero, suggesting that
there is not enough information from the data to: (1) support the pressruas due to omitted
variables (regression endogeneity parameters- 1, 2,3, measure the importance of omitted vari-
ables), and (2) reject the partial exogeneity of sbboolingandexperiencevariables (covariance
endogeneity parameterdy;,i = 1,2, 3, measure the endogeneity of the corresponding varighle
Meanwhile, though zero belongs to the 95% confidence intervals of alt themmeters, it may
be the case that the true values of these parameters are actually lamesebte the 95% corre-
sponding confidence intervals are unbounded. So, the use of thataitype statistics based on
the estimates o& and oy, in the extended regression (2.14), wh¥tés replace by = MY, to
build confidence intervals for scalar linear transformatietesandw oy, can be misleading when
identification is weak. The Monte Carlo simulations indicate that $tigpe confidence intervals
have poor coverage probabilities (which may even be equal to zera) idbatification is weak,
while the coverage probabilities of the projection method developed in this pegalways above
1— a irrespective of whether identification is strong or weak, wheis the nominal level.

APPENDIX

"The results reported are based on the critical values df tHistributions of Section 3. The Monte Carlo method as
described in Section 3.5 gives similar results even with 1000 replicationbpth (1) Gaussian errors, and (2) Student-
type errors with three degrees of freedom.
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A. Proof

PROOF OFPROPOSITION3.1  On multiplying the two sides of (3.2) byl andM; — M, we see
that:

M(y—YBo) = Mu+MV(B—f),
(M1 =M)(y=YBo) = MiXolTo(B—Bo)+ (M1—M)u+ (M1 —M)V(B—Bo). (A1)
When Assumption 3.1 holds arfti= 3, this entails:
M(y—YBo) = a(X)Mu, (M1 —=M)(y—YB) = 0 (X)(M1 —M)u.

Thus, theAR-statistic in (3.3) can be rewritten as:
O'(X)ZU/(M]_ — M)U/kz . U’(Ml — M)U/kz
o(X)2u'Mu/(T—k)  u0'Mu/(T—k) °

AR(Bo) =

Hence, the null conditional distribution 8R(S,), givenX, only depends oo andX. If normality
holds conditional orX, i.e. v|X ~ N[0, It],we havev’Mu ~ x?(T —k) andv’(M; —M)u ~
Xx°(k2). SinceM(M; —M) = 0, hencev’Mu andu’(M; — M)u are independent conditional ¢h
ConsequentlyAR(By) ~ F(kz, T —K). O
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