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Identification-robust inference for endogeneity parameters
in linear structural models

Firmin Doko Tchatoka’, Jean-Marie Dufour *

Résumé/abstract

We provide a generalization of the Anderson-Rubin (AR) procedure for inference on parameters which
represent the dependence between possibly endogenous explanatory variables and disturbances in a linear
structural equation (endogeneity parameters). We focus on second-order dependence and stress the
distinction between regression and covariance endogeneity parameters. Such parameters have intrinsic
interest (because they measure the effect of “common factors” which induce simultaneity) and play a
central role in selecting an estimation method (because they determine “simultaneity biases” associated
with least-square methods). We observe that endogeneity parameters may not be identifiable and we give
the relevant identification conditions. These conditions entail a simple identification correspondence
between regression endogeneity parameters and usual structural parameters, while the identification of
covariance endogeneity parameters typically fails as soon as global identification fails. We develop
identification-robust finite-sample tests for joint hypotheses involving structural and regression endogeneity
parameters, as well as marginal hypotheses on regression endogeneity parameters. For Gaussian errors, we
provide tests and confidence sets based on standard Fisher critical values. For a wide class of parametric
non-Gaussian errors (possibly heavy-tailed), we also show that exact Monte Carlo procedures can be
applied using the statistics considered. As a special case, this result also holds for usual AR-type tests on
structural coefficients. For covariance endogeneity parameters, we supply an asymptotic (identification-
robust) distributional theory. Tests for partial exogeneity hypotheses (for individual potentially endogenous
explanatory variables) are covered as special cases. The proposed tests are applied in three empirical
examples: a model of the relation trade and economic growth; and two models of the returns to educations:
the well-known study of Bound, Angrist and Balker (1995), and an alternative model considered by Card
(1995).

Mots clés/keys words : Identification-robust confidence sets; endogeneity; AR-type
statistic; projection-based techniques; partial exogeneity test.
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1. Introduction

Instrumental variable (IV) regressions are typically motivated by thetfat “explanatory vari-
ables” may be correlated with the error term, so least-squares methods iggédl nconsistent
estimators of model coefficients. Such IV parameter estimates can be itedrasameasures of the
relationship between variables, once the “effect” of common “driving™éxogenous”) variables
has been eliminated. Even though coefficients estimated in this way may hawsiinmigrinter-
pretations from the viewpoint of economic theory, inference on suchcstral parameters” faces
identification difficulties. Further, it is well known that IV estimators may beyverprecise, and
inference procedures (such as tests and confidence sets) carlyeuhigpliable, especially when
instruments are weakly associated with model variablesak instrumenjs This has led to a large
literature aimed at producing reliable inference in the presence of wealritents; see the reviews
of Stock, Wright and Yogo (2002) and Dufour (2003).

Research on weak instruments has focused on inference for thewoeffiof endogenous vari-
ables in so-called “IV regressions”. This leaves out the parameterdvgpiecifically determine
simultaneity features, such as the covariances between endogentauaexy variables and distur-
bances. These parameters can be of interest for several reegetyghey provide direct measures
of the importance of latent variables, which are typically unobserved aggmaltaneously affect
a number of observable endogenous variables. These latent vaaablesa sense left out from
structural equations, but they remain hidden in structural disturbaRoesexample, in a wide set
of economic models, they may represent unobserved latent variabdbsasusurprise variables”
which play a role in models with expectations [see Barro (1977), DufodrJasiak (2001)]Sec-
ond, the simultaneity covariance (or regression) coefficients determine the tstirbhas of least-
squares methods. Information on the size of such biases can be usefetjpreting least-squares
estimates and related statisticBhird, information on the parameters of hidden variables (which
induce simultaneity) may be important for selecting statistical procedures iEwmstruments are
“strong”, it is well known that IV estimators may be considerably less effidiban least-squares
estimators; see Kiviet and Niemczyk (2007, 2012), Doko Tchatoka ariolud (2011a), Kiviet and
Pleus (2012) and Kiviet (2013). Indeed, this may be the case evemeviimgeneity is present. If a
variable is not correlated (or only weakly correlated) with the error terstrumenting it can lead to
sizable efficiency losses in estimation. Assessing when and which varshgekl be instrumented
is an important issue for the estimation of structural models.

We stress here the view that linear structural models (IV regressionshecanterpreted as
regressions with missing regressors. |If the latter were included, tharkl we no simultaneity
bias, so no correction for simultaneity (such as IV methods) would be deddiés feature allows
one to define a model transformation which maps a linear structural equatdmgar regression
where all the explanatory variables are uncorrelated with the error tere.cali this equation
the orthogonalized structural equatiomnd we use it extensively. Interestingly, the latter is not a
reduced-form equation. Instead, it involves the structural paramettémterest, but also includes
endogeneity parametevghich are “hidden” in the original structural equation.

The problem stems from the fact that the missing regressors are unetbs&wespite this dif-
ficulty, we show that procedures similar to the one proposed by AndemsdriRubin (1949, AR)



can be applied to the orthogonalized equation. This allows one to make icégantly on both
the parameters of the original structural equation and endogeneity garanievo types of endo-
geneity parameters are consideresfjression endogeneity parametarsicovariance endogeneity
parameters Under standard conditions, where instruments are strictly exogenousreors are
Gaussian, the tests and confidence sets derived in this way are exagroplosed methods do not
require identification assumptions, so they can be characterize@iffication-robust For more
general inference on transformations of the parameters in the ortHagmhatructural equation,
we propose projection methods, for such techniques allow for a simple $ianitgrle distributional
theory and preserve robustness to identification assumptions.

To be more specific, we consider a model of the form

y=YB+Xiy+u

wherey is an observed dependent variableis a matrix of observed (possibly) endogenous re-
gressors, ani; is a matrix of exogenous variables. We observe that AR-type procedoay

be applied to test hypotheses on the transformed pararfiete3 + a, where a represents re-
gression coefficients afi on the reduced-form errors of (regression endogeneity paramefers
Identification-robust inference far itself is then derived by exploiting the possibility of making
identification-robust inference of. Then, inference on covariances (say,) betweenu andY
(covariance endogeneity parametecan be derived by considering linear transformationa. of

We stress that regression and covariance endogeneity parameteugk theoretically related
— play distinct but complementary roles: regression endogeneity paramepresent the effect
of reduced-form innovations oy while covariance endogeneity parameters determine the need to
instrument different variables M. Whenoy, = 0, Y can be treated as exogenous (so IV estimation
is not warranted). So-called exogeneity tests typically test the hypothigsis 0. It is easy to see
that oy, = 0 if and only ifa = 0 (provided the covariance matrix between reduced-form errors is
nonsingular), but the relationship is more complex in other cases.

In this paper, we emphasize cases wheté 0. We first study formally the identification of
endogeneity parameters. We establish a simple identification correspenustmeen the compo-
nents of anda: each component @ is identifiable if and only if the corresponding component of
B is identifiable. In contrast, thidoes not holdn general for the covariances,,: as soon as one
element off3 is not identifiable, all components of,, typically fail to be identifiable. In this sense,
ovy is more difficult to interpret thaa. Due to the failure of the exogeneity hypothesis, the distri-
butions of the test statistics are much more complex. It is relatively easy tag@dohite-sample
inference fora, but not foroy,. So, foray,, we propose asymptotic tests and confidence sets. It
is important to note that stronger assumptions are needed for making cdereay, (as opposed
to a). Indeed, we describe general distributional setups waigganay not be well-defined [due to
heterogeneity in the model fof, or the non-existence of moments], whiléemains well-defined
and statistically meaningful. In such cases, inferenca mfeasible, while inference oo, may
not be (even when all parameters in the structural equation of inteeeisteatifiable).

By allowing a # 0 (or oy, # 0), we extend earlier results on exogeneity tests, which focus
on the null hypothesi$l, : a = 0. The literature on this topic is considerable; see, for exam-
ple, Durbin (1954), Wu (1973, 1974, 1983a, 1983b), RevankdrHartley (1973), Farebrother



(1976), Hausman (1978), Revankar (1978), Dufour (1979, 198@usman and Taylor (1981),
Hwang (1980, 1985), Kariya and Hodoshima (1980), Hausman andrfd®81), Spencer and Berk
(1981), Nakamura and Nakamura (1981, 1985), Engle (1982), HDAI84, 1983b, 1983a), Smith
(1983, 1984, 1985), Ruud (1984, 2000), Davidson and Mackiih®85, 1985, 1989, 1990, 1993),
Newey (1985a, 1985b), Thurman (1986), Smith and Pesaran (1M¥8pagala (1992), Wong
(1996), Ahn (1997), Staiger and Stock (1997), , Baum, Schafférstiiman (2003), Hahn, Ham
and Moon (2010), Chmelarova and Hill (2010), Jeong and Yoon (R0did Kiviet and Pleus
(2012).

By contrast, we consider here the problem of testing any valaéafay,,) and build confidence
sets for these parameters. By allowing for weak instruments, we extenestlitsrin Dufour (1979,
1987) where Wald-type tests and confidence sets are proposeddarioé ora and oy, under
assumptions which exclude weak instruments. Finally, by considering ntfer@na and gy, we
extend a procedure proposed in Dufour and Jasiak (2001) foeimferon the aggregate parameter
6 = 3 +a (but nota or ay,) in the context of a different model.

On exploiting results from Dufour and Taamouti (2005, 2007), we sugpétytical forms for
the proposed confidence sets, and we give the necessary angstuéfanditions under which they
are bounded. These results can be used to assess partial exoggpethebes even when iden-
tification is deficient or weak. In order to allow for alternative assumptionsroor distributions,
we show that the proposed AR-type statistics are pivotal as long as tite tallow a completely
specified distribution (up to an unknown scale parameter), which may b&aaasian. Due to this
invariance property, exact Monte Carlo tests can be performed with@aiasian assumption [as
described in Dufour (2006)]. In particular, we show this is feasibleeugeéneral assumptions which
allow considerable heterogeneity in the reduced-form modeY faven a completely unspecified
model forY. On allowing for more general error distributions and weakly exogem@sisuments
(along with standard high-level asymptotic assumptions), we also show thatdposed proce-
dures remain asymptotically valid and identification-robust.

Finally, we apply the proposed methods to three empirical examples: a motied cflation
between trade and economic growth, previously studied in Frankel am$iRd999) and Dufour
and Taamouti (2007); and two models of the returns to educations, the melirkstudy of Bound,
Jaeger and Baker (1995), and an alternative model consideredtyi®85) and Kleibergen (2004,
Table 2, p. 421).

The paper is organized as follows. Section 2 describes the model ancetiidigétion con-
ditions for endogeneity parameters. Section 3 presents the finite-sampfg theaference on
regression endogeneity parameters. Section 4 discusses asymptotiatieorference for covari-
ance endogeneity parameters. Section 5 illustrates the theoretical resulighthinree empirical
applications: a model of the relationship between trade and growth, and taelsnaf returns to
schooling. We conclude in Section 6. Proofs are presented in appendix.

2. Framework: endogeneity parameters and their identification

We consider a standard linear structural equation of the form:



y=YB+X1y+u (2.2)

wherey = [y1,..., yr] is aT x 1 vector of observations on a dependent variable; [Yi,..., Yr]’
is aT x G matrix of observations on (possibly) endogenous explanatory varigBles 1), X;
is aT x k; full-column-rank matrix of strictly exogenous variables= [u,..., ur|" is a vector
of structural disturbanceg andy areG x 1 andk; x 1 unknown coefficient vectors. Furthéf,
satisfies the model:

Y =XIMT+V =XM1+ Xl +V (2.2)

whereX; is aT x ky matrix of observations on exogenous variables (instrumexts),[ Xz, Xp] =
[Xe1,- .-, Xe1]" has full-column rank = k; + kp, My andl1, arek; x G andk, x G coefficient matri-
ces,[1 = [, ], andV = [Vi,..., V] is aT x G matrix of reduced-form disturbances. Equation
(2.1) is the “structural equation” of interest, while (2.2) represents thduted form” fory. On
substituting (2.2) into (2.1), we get the reduced formyfor

y=Xim +Xom +V (2.3)

whererm; = y+ M1, mp =116, andv=Vp+u=|vq,...,vr|.

When the errorstandV have finite means (although this assumption could easily be replaced by
another “location assumption”, such as zero medians), the usual apcags sufficient condition
for identification of3 andy (from the first moments of andY) in (2.1) - (2.2) is:

rank(l1;) = G. (2.4)

If I, =0, the instrumentX, are irrelevant, an@ is completely unidentified. If ¥ rank(l1,) < G,
B is not identifiable, but some linear combinations of the elemenBsart identifiable [see Dufour
and Hsiao (2008)]. If1, is close not to have full ranle[g, if some eigenvalues d1,/1, are close to
zero], some linear combinations Bfare ill-determined by the data, a situation often called “weak
identification” [see Dufour (2003)].

Throughout this papety, is the identity matrix of ordem. For any full-column-rankl x m
matrix A, P(A) = A(AA)"IA, M(A) = I — P(A), vedA) is the (Tm) x 1 column vectorization
of Ajand ||A|| = [tr(A’A)]% the matrix Euclidian norm. FoA square A > 0 meansA is positive
definite (p.d.), and\ > 0 meandA is positive semidefinite (p.s.d.)— " stands for convergence in

probability, and “L o for convergence in distribution.

2.1. Identification of endogeneity parameters

We now wish to represent the fact thaandV can be correlated, allowing for the possibility of
identification failure. It is important to note that the “structural erraf”"may not be uniquely
determined by the data wheh and y are not identified. For this, it will be useful to consider
two alternative setups for the disturbance distribution: (A) in the first treedisturbance vectors
(u, V)" have common finite second momergggctural homoskedasticity(B) in the second one,
we allow for a large amount of heterogeneity in the distributions of redfmed-errors feduced-
form heterogeneily The second setup is more appropriate for practical work, and wetwigh as



far as possible in that direction. But it will be illuminating to first consider s&up

Assumption A STRUCTURAL HOMOSKEDASTICITY. The vectors U= (u, V), t=1,..., T,
all have finite second moments with mean zero and the same covariatroe ma

2 /
au GVu

} ,  Wheresy = E[\/t\/t'} is nonsingular. (2.5)

Under the above assumption, we have:
ovy=EMV] = EM(WB+ ] = ZvB + 0vu, 05 =05+ B'ZB+2B'0vu.  (2.6)

The covariance vectaoy, indicates which variables iM are “correlated” withuy, so it is a ba-
sic determinant of the level of “endogeneity” of these variables. Notegher, thatoy, is not
identifiable wherf is not (for then the “structural errot} is not uniquely determined by the data).
In this context, it will be illuminating to look at the following two regressions: (1§ timear
regression oty on,
w=Va+te, t=1..T, (2.7)

wherea = 2\710\/“ andEVe] = 0 for allt; and (2) the linear regressionafon; ,
w=Wo0+n,t=1,..,T, (2.8)
where@ = >, Yoy, andE[Vin,] = O for allt. Itis easy to see that
ow=3va, 02=o02+dsa=02+0(,2  ow, (2.9)

whereE|[e?] = o2 for all t. This entails thata= 0 if and only if oy, = 0, so the exogeneity of can

be assessed by testing whethet 0. There is however no simple match between the components of
aandoy, (unless3y is a diagonal matrix). For example,af= (a3, a,)" andovy = (03,4, Op)’
wherea; and gy have dimensiors; < G, a; = 0 is not equivalent tay,; = 0. We calla the
“regression endogeneity parameter”, ang, the “covariance endogeneity parameter”.

As long as the identification condition (2.4) holds, boty, anda are identifiable. This is not
the case, however, when (2.4) does not hold. By contrast, the samnesoefficientd is always
identifiable, because it is uniquely determined by the second moments oédethue errors. It is
then useful to observe the following identity:

0 =15, ovw=2, (>vB+ow) =B+a. (2.10)

In other words, the surfl + a is equal to the regression coefficientpbn ;. Even thoughB anda
may not be identifiable, the suiv-ais identifiable (from the first and second moments ahdV).
Further, for any fixed x 1 vectorw, W 6 is identifiable, so the identitiega=w 6 —w 3 andoy, =
2yaalong with the invertibility of2y, entail the following equivalences:

B is identifiable < ais identifiable= gy, is identifiable; (2.12)



w B is identifiable < wais identifiable= w3, Loy, is identifiable . (2.12)

In particular, (2.12) entails a simple identification correspondence bettheecomponents o8
anda: for each 1<i < G, g is identifiables B, is identifiable. In other words, the identification
conditions forf3 anda are identical. In contrast, the equivalencesdy, is identifiable< w3 is
identifiable] and gy is identifiable< B; is identifiable]do not holdin general: as soon as one
element off is not identifiable, all components of,,, typically fail to be identifiable. In this sense,
ovy is more difficult to interpret thag.

Setup A requires that the reduced-form disturbadMees=1,..., T, have identical second mo-
ments. In many practical situations, this may not be appropriate, especialiyriites-information
analysis which focuses on the structural equation of interest (2.1¢rdan the marginal distribu-
tion of the explanatory variablés To allow for more heterogeneity among the observations in
we consider the following alternative assumptions (wh&ges thet-th row of X).

Assumption B SECOND-ORDER REDUCEBFORM HETEROGENEITY. For some fixed vector a in
RC, we have:
u=Va+e (2.13)

where e, V and X have finite second moméiiig,= 0, and e is uncorrelated with V and.X

Assumption C REDUCED-FORM HETEROGENEITY Equation(2.13) holds withE[e |V, Xt =
0,t=1,...,T.

Assumptions B and C allow substantial heterogeneity in the distribution of therluhsttes
Vi, t=1,..., T. The latter need not be identically distributed or independent. Assumption B main-
tains the existence of second moments [even though the covariance rriﬁ(mg may vary with
t] and defines through a zero mean and orthogonality withand X. Assumption C replaces this
condition by a zero conditional mean; no further restriction/os imposed. The existence of mo-
ments forV; andX,; is not required. An important case where Assumption B holds is the oneewher
V ande are independent (strong linear structural decomposition). Given (Beljhree conditions
Ela |V, Xi] =0, E[& |V, X&) = 0 andE[e | Y;, U, Xet] = 0 are equivalent. In such casesy, may
not be well-defined [due to heterogeneity in the modeNpor the non-existence of moments], but
aremains statistically meaningful.

In view of the decomposition (2.13), equation (2.1) can be viewed as asggn model with
missing regressors. On substituting (2.13) into (2.1), we get:

y=YB+X1y+Va+e (2.14)

wheree is uncorrelated with all the regressors. Because of this property, W& dat) theorthog-
onalized structural equatioassociated with (2.2), aretthe orthogonalized structural disturbance
vector! In this equation, the original structural parametg8sandy) can be interpreted as regres-

IThe form (2.14) was orignally proposed by Revankar and Hartley3)L¢r the purpose of testing complete exo-
geneity(a= 0). As pointed out in Dufour (1979, 1987), the disributional theory is sutbitily simpler in that case and
does not allow one to test more general restrictiona (irecause the covariance matrix is modified).



sion coefficients, along with the regression endogeneity parametide see that represents the
effect of the latent variablé. Even though (2.14) is a regression equatiofl X1, V) is orthogonal
to the disturbance], it is quite distinct from the reduced-form equation (2.3) yor

The orthogonalized structural equation is quite helpful for interpretingeihooefficients. A
structural model of the form (2.1) - (2.2) often represents a causaltgte to explairy. The en-
dogenous variable§/ andY) are determined by two types of inputs: observable exogenous vari-
ables ¥; and X;) and unobserved variableg @nde). X; has both a direct effe¢iX; y) ony and
an indirect effec{ X111 throughY'), while X, only has an indirect effedX,/1,3). Similarly, V
represents unobserved variablegy( shocks, latent variables, expectation errors) which have both
a direct effectVa) and an indirect effecfv 3), while e represents idiosyncratic shocksytavhich
are orthogonal t&. Finally, we may interpret the sumMfg +Va=V (B +a) as the net final effect
(both direct and indirect) df ony. In the context of a causal interpretation, the coefficient vectors
B, aandf + a have useful distinct interpretationf: represents the impact &f[in particular, its
systematic componei(Y) = X;/11 + X2/12] onYy, a the direct effect of the latent variabieonyy,
and g + athe total effect o/ ony. Statistical inference on each one of the coefficients has its own
independent interest.

The identification ofa can be studied through the orthogonalized structural equation. By (2.2),

y:Y6+X1n’{+X2n’£+e (2.15)

where@ = B +a, m; = y—Ma, m, = —[1a, ande is uncorrelated with all the regressai§ X;
andXy). Equation (2.15) is a regression equation obtained by addirtg the original structural
equation or, equivalently, by addingto the reduced form (2.3) for. We call (2.15) theextended
reduced formassociated with (2.2). As soon as the mafix [Y, X3, Xz] has full-column rank
with probability one flmost surelya.s)], the parameters of equation (2.15) are identifiable (a.s.),
because they are uniquely determined by the linear projectiopsoofY; andX,; fort =1,..., T
[under Assumption B] or by the corresponding conditional means [uesimmption C]. This is the
case in particular fof = 3 +a (with probability one) wheZ has full-column rank with probability
one. This rank condition holds in particular when the matrixas full column rank (a.s., conditional
on X), e.qg.if its distribution is absolutely continuous. This entails again thistidentifiable if and
only if B8 is identifiable, and similarly betwear'a andw for anyw € R€. This establishes the
following identification result fom, where “identification” refers to the conditional distributions of
yi givenY; andXy, t =1,..., T.

Proposition 2.1 IDENTIFICATION OF REGRESSION ENDOGENEITY PARAMETERS Under the
model given by2.2), (2.3) and Assumption B or C, suppose the maf¥ixX;, X;] has full column
rank. Then a+ 3 is identifiable, and the following two equivalences hold:

a is identifiable= f is identifiable ; (2.16)
for any we R®, wa is identifiable= W 3 is identifiable (2.17)

The decomposition assumption (2.13) can also be formulated in terms of theedeftum
disturbancer [as in (2.8)] rather than the structural disturbance



V=VB4n (2.18)

for some fixed vectof in R®, where each element of has mean zero and is uncorrelated with
VandX, again without any other assumption on the distributio’ ofThis means that the linear
regressions; =V/ 0+ ny, t,,..., T, can all be written in terms of the same coefficient vedor
The latter is uniquely determined (identifiable) as soon as the mathias full column rank (with
probability one), so the identification gfis irrelevant. Even though conditions (2.13) and (2.18) are
quite different (because the dependent variable is not the same),rtheguivalent in the context
of the model we study here. This can be seen by rewriting the reduaad208) as follows:

y = Xam4 Yo+ = Xa(y+ MiB) +Xo(M2B) +VO+n
= (XM +XolM2)B+X1y+VO+n=YB+Xy+V(O0—-B)+n. (2.19)

By matching the latter equation with the structural form (2.1), we get

u=V(6—-B)+n (2.20)

provided[Y, X;| has full-column rank. Sincg andV are uncorrelated, this entails that (2.13) holds
with a= 6 — B ande= . Conversely, under Assumption B, we have from the reduced form: (2.3)

v=VB+u=V(B+a)+e (2.21)

which is equivalent to (2.18) witl) = B+a= 0 andn = e We can thus state the following
proposition.

Proposition 2.2 EQUIVALENCE BETWEEN STRUCTURAL AND REDUCEBFORM ERROR DECOM

POSITIONS Under the assumptior{2.2) and(2.3), suppose the matrify, X;, Xp] has full column
rank with probability one. Then the assumptid2sl3) and (2.18) are equivalent witth = 3+ a

andn =e

The identityn = e entails that the residual vector from the regression ohV is uniquely
determined (identifiable) evenifitself may not be. The orthogonalized structural equation (2.14)
may thus be rewritten as

Y=YB+Xy+V(0—B)+n=XMB+Xy+VO+n (2.22)

where0 is a regression vector between two reduced-form disturbaivoesV) andn the corre-
sponding error. This shows clearly that different regression esmgity parametera= 6 — 3 are
obtained by “sweepingB over its identification set.

Under Assumption B, covariance endogeneity parameters may depdnthdeed, it is easy
to see thaE [Viu;| = IE[VtVt'] a= gy , which may depend onif E [Vt\/t’] does. However, identifi-
cation of the parameters,; remains determined by the identificationayfwhenever the reduced-
form covariance (which are parameters of reduced forms) are idéiftifimference on covariance
endogeneity parameters requires additional assumptions. In sectiotgl 3vea will see that finite-
sample inference methods can be derived for regression endogesraitygiers under the relatively



“weak” Assumption B, while only asymptotically justified methods will be propdsedovariance
endogeneity parameters. For covariances, we will focus on the case @i, is constant.

2.2. Statistical problems

In this paper, we consider the problem of testing hypotheses and builnirfiglence sets for regres-
sion endogeneity paramete@) and covariance endogeneity parameters,), allowing for the
possibility of identification failure (or weak identification). We develop infexe procedures for
the full vectorsa andoy,, as well as linear transformations of these parametasandw gy, In
view of the identification difficulties present here, we emphasize methodehich a finite-sample
distributional theory is possible [see Dufour (1997, 2003)], at leattaly.

In line with the above discussion of the identification of endogeneity parasyeterobserve
that inference ora can be tackled more easily than inferenceag, so we study this problem
first. The problem of testing hypotheses of the fdfgiay) : a = ap can be viewed as an extension
of the classical Anderson and Rubin (1949, AR) problem on tedtin@3,) : B = B,. There is,
however, an additional complication: the variaklés not observable. For this reason, substantial
adjustments are required. To achieve our purpose, we propose g\stifrze builds on two-stage
confidence procedures [Dufour (1990)], projection methods [Du{@990, 1987), Abdelkhalek
and Dufour (1998), Dufour and Jasiak (2001), Dufour and Taan@2005)], and Monte Carlo tests
[Dufour (2006)].

Specifically, in order to build a confidence set with levetl & for a, choosea; anda, such
thatO<a=a;+a,< 1 0< a1 <1andO< a, < 1. We can then proceed as follows:

(1) we build an identification-robust confidence set with level &4 for 3; several methods are
available to do this; in view of the existence of a finite-sample distributional yi@srwell as com-
putational simplicity), we focus on the Anderson and Rubin (1949, AR)agmh; but alternative
procedures could be exploited for that purpése;

(2) we build an identification-robust confidence set for the €um 3 + a, which happens to be an
identifiable parameter; we show this can be done easily though simple iegresthods;

(3) the confidence sets fg@ and 8 are combined to obtain a simultaneous confidence set for the
stacked parameter vectgr= (B’, 8')'; by the Boole-Bonferroni inequality, this yields a confidence
set forg with level 1— a (at least), as in Dufour (1990);

(4) confidence sets fa= 6 — 3 and any linear transformatioMa may then be derived by projec-
tion; these confidence sets have level & ;

(5) confidence sets fary, andw gy, can finally be built using the relationship,, = 2va.

For inference om, we develop a finite-sample approach which remains valid irrespectivg of a
sumptions on the distribution & In addition, we observe that the test statistics used for inference
on B [the AR-type statistic] an@ enjoy invariance properties which allow the application of Monte
Carlo test methods: as long as the distribution of the ewassspecified up to an unknown scale
parameter, exact tests can be performe@ amd6 through a small number of Monte Carlo simula-
tions [see Dufour (2006)]. For inference on both regression anarimce endogeneity parameters

2Such procedures include, for example, the methods proposed byeKjeib (2002) or Moreira (2003). No finite-
sample distributional theory is, however, available for these methodhefuthese are not robust to missing instruments;
see Dufour (2003) and Dufour and Taamouti (2007).



(aandoyy), we also provide a large-sample distributional theory based on starsiargtotic as-
sumptions which relax various restrictions used in the finite-sample theorprédglosed methods
do not make identification assumptions @neither in finite samples or asymptotically.

3. Finite-sample inference for regression endogeneity parameters

In this section, we study the problem of building identification-robust testanfidence sets for
the regression endogeneity parametdrom a finite-sample viewpoint. Along with (2.1) - (2.2),
we suppose that Assumption B holds under (at least) one of the followinditmns on model
disturbances.

Assumption 3.1 CONDITIONAL SCALE MODEL FOR STRUCTURAL ERRORS u= o(X) v, where
o(X) is a (possibly random function of X such thaP[o(X) # 0|X] = 1, and the conditional
distribution ofu given X is completely specified.

Assumption 3.2 CONDITIONAL SCALE MODEL FOR ORTHOGONALIZED STRUCTURAL ERR@S.
e= 01(X) €&, whereo1(X) is a (possibly randomfunction of X such thalP[o1(X) # 0| X] = 1,
and the conditional distribution of given X is completely specified.

Assumption 3.1 means the distribution wigiven X only depends orX and a (typically un-
known) scale factoo(X). The scale factor can also be random, so we can bd¥ = a(X, v).
Of course, this holds when ever= ¢ v, whereo is an unknown positive constant and indepen-
dent of X with a completely specified distribution. In this context, the standard Gausssama-
tion is obtained by takingu ~ NIO, IT]. But non-Gaussian distributions are covered, including
heavy-tailed distributions which may lack moments (such as the Cauchy distnpuSmilarly,
Assumption 3.2 means the distributionefiven X only depends oiX and a (typically unknown,
possibly random) scale factor; (X), so again a standard Gaussian model is obtained by assuming
that 01(X) is fixed (givenX) ande ~ N[O, It]. In general, assumptions 3.1 and 3.2 do not entail
each other. However, it is easy to see that both hold when the véatovs] |, t,,..., T, are i.i.d.
(givenX) with finite second moments and the decomposition specified by Assumption B fibids
will be the case fortiori if the vectors[ut,\/t'}', t,,..., T, arei.i.d. multinormal (giverX).

We will study in turn the following problems:

1. test and build confidence sets féxr
2. test and build confidence sets e 3 + a;
3. test and build confidence sets for

4. test and build confidence sets for scalar linear transformati@ns
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3.1. AR-type tests for3 with possibly non-Gaussian errors

Since this will be a basic building block for inference on endogeneity paeasjave consider first
the problem of testing the hypothesis

Hp(Bo) : B =Bo (3.1)

wheref3, is any given possible value @. Several methods have been proposed for that purpose.
However, since we wish to use an identification-robust procedure fia@haa finite-sample theory
can easily be obtained and does not require assumptions on the distribdu¥owe focus on the
Anderson and Rubin (1949, AR) procedure. So we consider thefdramsd equation:

y—YBo = X178 + Xor) +\° (3.2)

wheren? = y+ M(B — Bo), 1§ = Ma(B — By) andv® = u+V (B — By). Sincer = 0 undeHg (By),
itis natural to consider the correspondifgstatistic in order to tedtig(3,) :

(Y=YBo)' (M1 —M)(y—YBo)/ke
(Y=YBo)'M(y—YBo)/(T —K)

whereM; = M(X;) andM = M(X). Under the usual assumption where- N[0, g°I1] indepen-
dently of X, the conditional distribution oAR(f3,) underHg(B,) is F (k2, T —K). In the following
proposition, we characterize by invariance the distributioAR({3,) under the general Assumption
3.1

AR(By) = (3.3)

Proposition 3.1 NULL DISTRIBUTION OF AR STATISTICS UNDER SCALE STRUCTURAL ERROR
MODEL. Suppose the assumptiofisl), (2.2) and 3.1 hold. If3 = B, we have:

' (M1 —M)u/ky

AR(BO) =~ o 1T~k (3.4)

and the conditional distribution of AfB,) given X only depends on X and the distributiorvof

The proof is given in Appendix. This proposition means that the conditionkldistribution
of AR(By), given X, only depends on the distribution of. The distribution ofV plays no role
here, so no decomposition assumption [such as A or B] is needed. If theutien of v |X can be
simulated, one can get exact tests basefR(f3 ) through the Monte Carlo test method [see Dufour
(2006)], even if this conditional distribution is non-Gaussian. Furtheemibie exact test obtained
in this way is robust to weak instruments as well as instrument exclusion ethendfstribution of
u| X does not have moments (e.qg., the Cauchy distribufidif)is may be useful in financial models
with fat-tailed error distributions, such as the Studedhitribution.

3By “robustness to weak instruments”, we mean the fact that the null distibof the test statistic remains valid
even if ranklT,] < G, so B may not be identifiable from the available data. By “robustness to exclidédiments”,
we mean that the test remains valid evel iflepends on additional explanatory variab|¥s) which are not taken in
IV-based inference; for further discussion of this issue, see Duafiod Taamouti (2007). Of course, identification failure
(or weak identification) typically affects test power and confidence satigion. For example, if identification fails
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When the normality assumption hold@ ~ NI[O, IT]) and X is exogenous, we have
AR(Bo) ~ F(ke, T —k), so thatHg(B,) can be assessed by using a critical region of the form
{AR(By) > f(a)}, wheref(a) = Fy(ko, T —K) is the(1— a)-quantile of theF (kp, T — k) distri-
bution. A confidence set with level-1a for  is then given by

%p(a) = {Bo: AR(Bo) < Fa(ke, T—K)} = {B:Q(B) < 0} (3.5)

whereQ(B) = B'/AB+bB+c, A=Y'HY, b= —2Y'Hy, c=yHy, H = M1 — [1+ f(a)(£%)]M,
andf(a) = Fy(ke, T —k); see Dufour and Taamouti (2005).

3.2. Inference onf

Let us now consider the problem of testing the hypothelgi€,) : 6 = 80, where 8y is a given
vector of dimensiorG, and Assumption 3.2 holds. This can be done by considering the extended
reduced form in (2.15). By Assumption 3&is independent of, X; andX,, and (2.15) is a linear
regression model. As soon as the maltvixXy, Xp| has full-column rank, the parameters of equation
(2.15) can be tested through standartests.

We will now assume thdty, Xi, Xz] has full-column rank with probability one. This property
holds as soon as = [X1, Xz] has full column rank an¥ has a continuous distribution (conditional
on X). TheF-statistic for testindg(6o) is

(B —60)'(Y'MY)(6—60)/G
YM(2)y/(T —G—k)
whered = (Y'MY)~1Y’'My is the OLS estimate o in (2.15),M = M(X), X = [Xy, Xo], andZ =

[Y, X1, X2]. Whenu ~ N[O, It], we have:Fg(6o) ~ F(G, T —k—G) underHg(8p). Under the more
general assumption 3.2, it is easy to see that

Fo(6o) = (3.6)

£MY (Y'MY)~Y'Me /G

Fo(80) = N Z)e /T -Gk

(3.7)

underHg(6p). On observing that the conditional distribution&f(68o), givenY and X, does not
involve any nuisance parameter, the critical value can be obtained by simultie also impor-
tant to note that this distribution does not dependgnso the same critical value can be applied
irrespective of8g. The main difference with the Gaussian case is that the critical value maydaiepen
onY andX. Irrespective of the case, we shall denotechy,) the critical value foFg(0o).

From (3.6), a confidence set with level-lo for 6 can be obtained by invertirfey (6o) :

%p(a) = {00:Fa(80) < f(a)} = {B0:Q(80) <O} (3.8)

whereQ(0) = (6 — 6) (Y'MY) (6 — 8) —Go = O'AB + DO +C, Go = f(a)GL, £ =yM(Z)y/(T —

completely(rankf1,] = 0), it is impossible to distinguish between alternative valueg oand a valid test oHg(Bg)
should have power not larger than its level. Further, confidence setsd#ntified parameters should be uninformative
(e.g, unbounded) with high probability; see Dufour (1997).
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G—k), A=Y'MY, b= —2A8 = —2Y'My, ¢ = 8'A6 — = 8'(Y'MY)8 — & = y'Hy,andH =
P(MY) — f(a)[G/(T —G—k)]Mz. Since the matriA is positive definite (with probability one), the
quadric setsp(a) is an ellipsoid (hence bounded); see Dufour and Taamouti (2005).200iFs
reflects the fact thaff is an identifiable parameter. As a result, the corresponding projecti@ttbas
confidence sets for scalar transformatiang are also bounded intervals.

In view of the form (2.15) as a linear regression, we can test in the saménear restrictions
of the formHy g (yp) : WO = y,, wherew is aG x 1 vector andy, is known constant. We can then
use the correspondirigstatistic

wo -y,

w(Y'MY)~1w] /2 (39

two(Yo) = S

and rejecHyo(Yp) When [two(Yo)| > cw(a), wherecy(a) is the critical value for a test with level
a. In the Gaussian caskyg () follows a Student distribution witli — G — k degrees of freedom,
so we can takey(a) =t(az; T — G —k). Whene follows a non-Gaussian distribution, we have

(T-—G—-KY2wW(Y'MY)~1Y'Me

3.10
(&M(Z)E)l/Z[W(Y,MY)_lw}l/Z ( )

two(Yo) =

underHy(Yp), So that the distribution dfyg(y,) can be simulated lik€g(6o) in (3.7).

3.3. Jointinference onf and regression endogeneity parameters

We can now derive confidence sets for the vect@fsa’)’ and(B’, 8’)’. Consider the set:

©p.0)(a1, 02) = {(60, Bo)": Bo € €p(a1) , Bo € Ga(a2)} ={(66, Bo)': Q(Bo) <0, Q(B0) <O}
By the Boole-Bonferroni inequality, we have:
P[B € €p(a1)andd € Gg(az)] > 1-P[B ¢ ¢p(a1)] —P[6 ¢ CGp(a2)] > 1-a1—az (3.11)

S0, 6) (01, 02) is a confidence set fqB’, 8') with level 1— a, wherea = a1 + a. In view of
the identity@ = 3 + a, we can writeQ(8) in (3.8) as a function of anda:

Q(6) = Q(B+a) = dAa+ (b+2AB)a+[c+b B+ BABl,

so that we get a confidence set with level & for B anda by taking

%(p,a)(a) = {(Bo, @)" : Q(Bo) < 0andQ(B, +a0) < 0} (3.12)

Thus, finite-sample inference on the structural (possibly unidentifiabl@ppetea can be achieved.
Of course, ifais not identified, a valid confidence set will cover the set of all possiligega(or be
unbounded) with probability o [see Dufour (1997)].
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3.4. Confidence sets for regression endogeneity parameters

We can now build “marginal” confidence sets for the endogeneity coefficextora. In view of the
possibility of identification failure, this is most easily done by projection tectesquetg(, a) be
any function off3 anda. Since the event3, a) € 6 4 (a) entailsg(B, a) € g[%(g 4 ()], where

9[%(p,a(a)] = {9(B,a) : (B, a) € €(p,a(a)}, we have:
P[g(B. a) € g%(p,5(a)] 2 PI(B. 2) € Cp,a(a)] 2 1-a. (3.13)
On takingg(B, a) = a € R®, we see that
ta(a)={a:(B,a) € %zﬁya)(a) for someB} = {a: Q(B +a) < 0 andQ(B) < 0 for some3}

is a confidence set with level-la for a.
When G = 1, the matricesA, A, b, b, c andcin (3.8) reduce to scalars, and the different
confidence sets take the following simple forms:

Cp(ar) = {B:A32+b3+cgo}, Golaz) ={0: AB?+bO+C<0},  (3.14)
aa) = {a:AB?+bB+c<0, A&+ (b+2AB)a+[c+bB+AB% <0}. (3.15)

Closed forms for the sets(a1) and%p(a2) are easily derived by finding the roots of the second-

order polynomial equations3? + b +c= 0 andAB?+ b6 +c = 0 [as in Dufour and Jasiak (2001)],
while the seté;(a) can be obtained by finding the roots of the equation

A& +b(B)a+¢(B) = 0 whereb(B) = b+ 2AB andc(B) = ¢+ bpB + AB? , for eachp ¢ tp(ay).

We shall now focus on building confidence sets for scalar linear tremsfonsg(a) = wa =
w60 —w B, wherewis aG x 1 vector. Conceptually, the simplest approach consists in applying the
projection method t&;(a), which yields the confidence set:

bwa(d) = ow[%a(a)]={d:d=waforsomeac %(a)}

= {d:d=wa, Q(+a) <0andQ(B) < 0for someB}.

But it will be more efficient to exploit the linear structure of model (2.15)ichtallows one to build
a confidence interval fow/ 6.

Following Dufour and Taamouti (2005, 2007), confidence setg\f¢f) = w3 andgy(0) =
gw = W 6 can be derived frorfgs (1) and %y (az) as follows:

Gwp(01) = Ow[p(a1)] = {x1:xa =W, Q(B) <0} = {x1:xa =wWp, B'AB+bB+c<0}

whereA, b andc are defined as in (3.5). Far0, we can use &-type confidence interval based on
t(Yo):

Guwo(02) = Gula(a2)] = {¥o ! ltwa(yo)| < Gu(@2)} = {¥o: WB—yo| <D(a2)}  (3.16)
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whereD(a3) = cy(a2) F(WB), G(WB) = sw (Y'MY)w]Y/2 with s = [yM(Z)y]¥2/(T — G —
k)1/2, andcy(a>) is the critical value for a test with level, based ony g (y,) [in (3.9)]. Setting

Cowp.we) (a1, 02) = {(x,y) : X € Gup(ar)andy € Gwo(az)}, (3.17)
we see that(wp, we) (a1, a>) is a confidence set fdqw/ 8, W 60) with level 1— a1 — a»:
P{(WB, W8) € Clwp,we)(a1, a2)] =PWP € Gyp(a)andw 6 € Gwo(02)] >1—a (3.18)

wherea = a1+ a». For any poink € R and any subsé&fC R, setx— A= {ze R:z=x—yandy €
A}. Sincewa=w68 —wf, itis clear that

(WB, WO) € Cwp.wo) (01, 02) & WO —Wac Gyp(ar)andw 8 € Gye(az)
S WaeWb —%yp(a1) andwo € Gye(az),

P[Wae W6 —Gyp(a1) andwe € Gue(az)] =PWP € Gup(a1)andw € Gy (az)]
>1—-a1—0Qs.

Now, consider the set
bwa(Q1,02) ={zeR:zecy—%yp(ay) for somey c ‘5;/9(012)}. (3.19)
Since the evenfwa c W6 — 6yg(a1) andw 6 € %wo(a2)} entailswa € Gya(a1, az), we have:
P[Wa € Gya(a1, 02)] > P[WB € Cyp(a1)andwd € Gyo(az)] > 1—a1—as  (3.20)

andéya(ai, a2) is a confidence set with level-d a1 — o, for wa.

Since%g(a2) is a bounded interval, the shapedif,(a1, a2) can be deduced easily by using
the results given in Dufour and Taamouti (2005, 2007). We focus ocetbe wherd is nonsingular
[an event with probability one as soon as the distributioARff,) is continuous] anev # 0. Then
the seté,yg(a1) may then rewritten as follows: A is positive definite,

Guplar) = V\/B—D(al),w[sw(al)], if d >0,
=0, if d<0,

where3 = —1A b, d = YA 'b—candD(a1) = /d(WA-Iw); if A has exactly one negative
eigenvalue and < 0,
— | 3_ 3 i ~1
Gwp(aa) —} °°7\~/\/B D(Ul)}U[V\/BJrD(O’l)HFW{v if WA= w <0, (3.21)
= R\{Wg}, if WA lw=0;

otherwise, gy g(a1) = R. Gyp(a1) = 0 corresponds to a case where the model is not consistent
with the data [so thaiya(a1, az) = 0 as well], whileGyg(a1) = R and€yg(a1) = R\{w S}
indicate thatv g is not identifiable and similarly foa [so that®ya(a1, a2) = R]. This yields the
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following confidence sets faw'a : if Ais positive definite,

Gwala1, 002) = V\/(é—B)—Du(Gl,Gz),V\/(é—ﬁ)-ﬁ-Du(Gl,az) , ifd>0,
=0, ifd<0,

(3.22)

whereDy (a1, az) = D(a1) +D(ay); if A has exactly one negative eigenvaluéA—*w < 0 and
d<o0,

Guvalr, @z) = | —o0, W(8—B) ~Di(ay, a2)| U [W(O—B)+Di(as, az), +oo | (3.23)

whereD (a1, az) = D(a1) —D(a3); otherwise Gya(a1, a2) = R. These results may be extended
to cases wherA is singular, as done by Dufour and Taamouti (2007).

3.5. Exact Monte Carlo identification-robust tests with non-Gaussian errors

Suppose now that the conditional distributionuofgiven X) is continuous, so that the conditional
distribution of AR(3) under the null hypothesidg(B,) is also continuous. We can then proceed
as follows to obtain an exact Monte Carlo testf(3,) with levela (0 < a < 1):
(1) choosea* andN so thata = (I[a*N]+1) /(N+1);
(2) for given 3,, compute the test statistaR©) (Bo) based on the observed data;
(3) generateN i.i.d. error vectorw ) = [u(l”,... , o7 j=1,... N, according to the specified
distribution ofu [X, and compute the corresponding stati®tR)), j = 1, ..., N, following (3.4);
note the distribution oAR(f3,) does not depend on the specific vaiietested, so there is no need
to make it depend ofi;
(4) compute the simulateg-value function: py[x] = {1+ 3[L; 1[ARD > X} /(N + 1), where
1[C] = 1 if conditionC holds, andL[C] = O otherwise;
(5) reject the null hypothesidg(B,) at levela when py [AR<°)(BO)] <a.

Under the null hypothesids (B,), P[pn[ARY (Bo)] < a] = a, so that we have a test with level
a. If the distribution of the test statistic is not continuous, the MC test proeedan easily be
adapted by using “tie-breaking” method described in Dufour (2606)orrespondingly, a confi-
dence set with level & a for 8 is given by the set of all valug8, which are not rejected by the
above MC test. More precisely, the set

(@) = { Bo: BuARO(Bo)] > a} (3.24)

is a confidence set with levelHa for 8. On noting that the distribution &R(S) does not depend
on 34, we can use a single simulation for all valyggs settingfy(a*) = Fy(1—a*), the set

@p(a;N) = {Bo: ARY < ﬂ\,(a*)} (3.25)

4Wwithout the correction for continuity, the algorithm proposed for statistics wdtftinuous distributions yields a
conservative test,e. the probability of rejection under the null hypothesis is not larger than thenad level (o).
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is equivalent taz (a) — with probability one — and so has level-lor. On replacing> and< by >
and< in (3.24) - (3.25), it is also clear that the séf8, : pn[ARY (By)] > a} and

@p(a;N) = {Bo: ARY(Bo) < fu(a*)} (3.26)

constitute confidence sets fBrwith level 1— a (though possibly a little larger than-1a). The
quadric form given in (3.5) also remains valid witha ) = fn(a™).

4. Asymptotic theory for inference on endogeneity parameters

In this section, we examine the validity of the procedures developed in S&timuer weaker
distributional assumptions, and we show how inference on covariamgeneity parameters can
be made. On noting that equations (3.2) and (2.15) constitute standard égeassion models (at
least under the null hypothegs= 3), it is straightforward to find high-level regularity conditions
under which the tests based AR() andFg(8o) are asymptotically valid.

For AR(B,), we can consider the following general assumption.

Assumption 4.1 When the sample size T converges to infinity, the following convergendssres
hold jointly: (a) £X'u -2 0; (b) 2u'u 2 02 > 0, 1X'X 2 =y with det(X'X) # 0; (c) =X L
Wy, Wxy~ N[O, 045x], where X= [X1, X3].

The above conditions are easy to interpret: (a) represents the asympttwigarality between
u and the instruments iK, (b) may be viewed as laws of large numbersd@ndX, while (c) is a
central limit property. Then, it is a simple exercise to see that

AR(Bo) = X°(k2) /K2, whenB = Bo. (4.1)
Similarly, for Fg(6o), we can suppose the following.

Assumption 4.2 When the sample size T converges to infinity, the following convergendts res
hold jointly: (a) $Z'e % 0; (b) $e P 02 >0, $2/Z B 57 with detZ'2) # 0; () %Z'e =
Wze, Wze~ N[O, 0357, where Z=[Y, Xy, Xa].

Then
Fo(60) = x4(G)/G, when6 = 6. (4.2)

The asymptotic distributions in (4.1) and (4.2) hold irrespective whether sitiiments< are weak
or strong. Further, as soon as assumptions 4.1 and 4.2 hold, the coafgfesedures described in
Section 3 remain “asymptotically valid” witfi(a1) = x2(a1; ko) /ke and f(a2) = x?(az; G)/G,
wherex?(a1; ko) andx?(a»; G) are respectively the-1 a; and 1- a, quantiles of the correspond-
ing x? distributions. Of course, the Gaussian-based Fisher critical valueslstalyeaused (for they
converge to the chi-square critical valuesTas- ).

We can now consider inference for covariance endogeneity paranasigr The problem of
building confidence sets fary, is especially important for assessing partial exogeneity hypotheses.
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Sincea; =0, j =1,...,G does not entaib,,j = 0(where 1< j < G), confidence sets on the
components o& cannot directly be used to assess for example, the exogeneity of emebser
Yj, ] =1,...,G. Confidence sets and tests fafy, can be deduced from those arthrough the
relationshipoy, = 2yagiven in (2.9). On replacing by Z\jla\/u in a(a), we see that the set

Con,(Q;2y) = {ovueR®:oyy=Syaandac €a(a)}
= {ovueR®:Q(B+ 2, 0vy) <0andQ(B) <OforsomeB}  (4.3)

is a confidence set with level-1a for oy, This set is simply the image &f,(a) by the linear
transformatiorg(x) = 2y x. The difficulty here comes from the fact thay is unknown. Letﬁv =

V'V /(T —k) whereV = M(X)Y is the matrix of least-squares residuals from the first-step regression
(2.2). Under standard regularity conditions, we have:

Sy S5y (4.4)

where det>y) > 0. If B, andag are the true values @8 anda, the relationsfg = 3, + ap and
Ovw = 2vap entail thatFg(0p) can be rewritten as follows:

(0—Bo— =, ovw) (Y'MY)(6 — By — 5, ovi0) /G
YM(2)y/(T —G-K) '

ReplacingZy by 3y, we get the approximate pivotal functi®® (8, + 3 *ovw). If (4.4) holds,

it is easy to see (by continuity) th&p (B, + fglawo) and Fp(B, + %, tovp) are asymptoti-
cally equivalent with a nondegenerate distribution, wilgrand oy o are the true parameter val-
ues. Consequently, the confidence set of typg,(a) based orFg (B, + f\jlovw) as opposed to
FQ(BO+Z\710VUO) has level - a asymptotically. This set is simply the image @f(a) by the
linear transformatiog(X) = 3y x, i.e.

Fo(Bo+ 2y 0vwo) = (4.5)

Cova(A; 3v) = {Ovy € R®: Q(B + 5, Lovy) < 0andQ(B) < 0 for someB}. (4.6)

Finally, confidence sets for the component@9f, and more generally for linear combinations
W oyy, can be derived from those aa as described in Section 3.4. Fdy given, the relation
ovy = 2va entails that a confidence set fofoy, (with level 1— a) can be obtained by computing
a confidence set (at leveHa) for wja with wy = >yw. Whenzy is estimated b)iv, takingwy =
Sywyields a confidence set far,, with level 1— a asymptotically.

5. Empirical applications

We will now apply the methods proposed above to three empirical exampledel afahe relation
between trade and economic growth, previously studied in Frankel am$iRd999) and Dufour
and Taamouti (2007); and two models of the returns to educations, the meslirkstudy of Bound
et al. (1995), and an alternative model considered by Card (1993 laibergen (2004, Table 2, p.
421).
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5.1. Trade and growth

The trade and growth model studies the relationship between standardmgfdnd openness.
Frankel and Romer (1999) argued that trade share (ratio of imporiporte to GDP) which is the
commonly used indicator of openness may be endogenous. The equatiied $tgiven by:

In(Income) = B, + BTrade+ y;In(Pop) + y,In(Area) +u,i=1,...,N (5.1)

where Income is the income per capita, Trade is measured as a ratio of impdréxgorts to
GDP, Pop is the logarithm of the country population, and Area is the logarithine @ountry area.
The instrument suggested is constructed on the basis of geographactehniztics. The first stage
equation is then given by:

Trade = bg+b1Z +c1Pop +cAreg +Vi,i=1,..., N, (5.2)

whereZz; is a constructed instrument. We use the sample of 150 countries and theedfatial®85.
Dufour and Taamouti (2005) showed that the fitted instrument in this sampié very weak®

The identification-robust confidence intervals with level 97.5%F@and 6 = 3, + a, that re-
sult on invertingAR(B,) andte(y,) are given by (a) = {BO : 0.2385—4.760,+0.04 < O} =
[0.01, 20.62] and%p(a) = [—0.05, 0.47]. The results reported are based on the critical values of
the F-distributions of Section 3. The Monte Carlo method as described in Sectigiv@ssimilar
results even with 1000 replications. We see thata) is a bounded interval, thus confirming that
identification is not weak in this model. The estimates of regression and cosar@dogeneity
parameters are given lay="—1.82 andd,y = —0.38, respectively. The confidence inter/aisith
level 95% fora and oy, are given by:

%a(a) = [-2067,0.46) and %y, (a) = [—4.33,0.09.

Both confidence intervals are bounded and contain the estimatesmafoy, from observed data.
Both confidence intervals, though include zero, are left skewed at Zerparticular, the upper
bound for%y,,(a) is very close to zero. So the true covariance and regression endygesae
rameters can be actually large, thus indicating the importance of omitting variabtef§ora) and
trade share endogeneity (fot). The latter is likely plausible as the discrepancy between the OLS
estimate of3 (8o s= 0.28) and the 2SLS estimatf {5, s= 2.03) is relatively large.

5.2. Angrist-Krueger model of education and earnings

We now consider the problem of estimating the returns to schooling. The rsidiés a relation-
ship between log weekly earning and the number of years of educaticsesarhl other covariates
(age, squared age, year of birth, ... ). Several authors includingisira;md Krueger (1991) ar-
gued that schooling may be endogenous in this model and proposed teusghihguarter as an

5TheF-statistic in the first stage (5.2) is about 13, see also Frankel and Ra8%9, Table 2, p.385).
SNote that the confidence interval with level 95% &andoy, obtained on invertindR(3,) andFg(6o) are similar
to those reported here.
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Table 1. Projection-based confidence sets for different parameteasrnimg equation

AR-type CS’s 97.5% 95%
Cg, () {By:—2.38283+0.3328, —0.107< 0} | {B;: —2.22962+0.313, —0.1< 0}
Co(a) {6:3.5278% —0.56 +-0.018< 0} {6:3.5279? — .50 4+ 0.018< 0}
=[0.0701 0.071q =[.0702 .071§
Co(a) based onyyg(Vy) [.0707 .0710 [.0707, .071(0

Projection-based CS’s 95% 90%
%a(a) R R
Coy, (@) R R

instrument to estimate the returns to schooling consistently. The reason isluadé/born in the
first quarter of the year start school at an older age, and can dhemdfop out after completing less
schooling than individuals born near the end of the year. Hence, indilddorn at the beginning
of the year are likely to earn less than those born during the rest of the Beand et al. (1995)
however, showed that the quarter of birth instruments are very we&olo Tchatoka and Dufour
(2011b, 2011a), we show that DWH tests cannot detect the endogehsdlyooling in this model,
since the instruments have poor quality [see Dufour and Taamouti (2007)]

Here, we assess whether schooling is exogenous by using the projaetibad developed in
this paper. The model is specified by

ki
y = Bo+BlE+ZlViXi+U, (5.3)
ko - k1
E = no+zlmzi+§l<pixi+v (5.4)

wherey is log-weekly earningsk: is the number of years of education (possibly endogenous),
contains the exogenous covariates (age, age squared, 10 dummi@shfaf lyear). Z contains
40 dummies obtained by interacting the quarter of birth with the year of birth.isnbdel, 3,
measures the return to education. The data set consists of the 5% pu@diaragle of the 1980 US
census for men born between 1930 and 1939. The sample size is 32BH9ations.

Table 1 presents the results. We observe #jgta) is unbounded indicating tha is not
identified. Howevergy(a) is bounded The latter result confirms the fact thas always identified
even if identification is weak (weak instrument). As a resé}i,a) and %y, (o) are unbounded in
all cases. That indicates clearly that identification is an issue in this model.

5.3. Card model of education and earnings

We will also apply the methods proposed to the following alternative model stbgli€drd (1995)
for the return of education to earnings:
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Yi = Y1iB1 + Yai B+ Yz B3+ Xii Y+ Ui, (5.5)
(Yai, Yai, Yai) = Xqi M1+ X5 M2+, (5.6)

whereYj; is the length of education of individual (Y2, Ysi) = (exper, expeﬁ) contains the ex-
perience €xpe) and experience squared of individualvhere exper = agg — 6 — Yij; Xqi =

(1, racq, smsga south)’ consists of a constant and indicator variables for race, residence in a
metropolitan area, and residence in the south of the United Statesy; &nthe logarithm of the
wage of individuali. All variables inX; are assumed exogenous;; is the vector of instruments
that containsage agé® of individual i, and proximity-to-college indicators for educational attain-
ment; these areproximity to 2- and 4-year collegeKleibergen (2004, Table 2, p. 421) shows
that the proximity-to-college indicator instruments are not very strong. ¢jénis important to be
careful when interpreting the 2SLS estimates of this model. We follow the mdtyyddeveloped

in this paper for building projection-based confidence intervals of the oosms of the regression
and covariance endogeneity paramegets(as, a2, a3)’ andoyy = (Ovu, Ovie, Ovig)'-

The data analyzed are from the National Longitudinal Survey of Yourg rom 1966 to
1981). We use the cross-sectional 1976 subsample which containsoB6é&frations. After ac-
counting for missing data, the final sample has 2061 observations. Tiablearcontained in the
data set are: two variables indicating the proximity to college, the length ohddnclog wages,
experience, 1Q score, age, racial, metropolitan, family, and regionakitwls.

To build confidence sets with level 95% far and oy, we takea; = a, = 0.025 The
identification-robust confidence sets with level®% for 3 = (84, B,, B3)’ and6 = B +a, based
on inverting AR(,) and Fg(68o) are given by: ¢5(a) = {Bg: BoABy—b'By+0.37< 0} and
¢o(a) ={60: 6uAB0+ b8+ 0.63< 0}, where

0.7 6.17 8734 _ 77072 —77070 —-1328773
A= 6.14 17088 321082 |,A= —77070 77072 1328770 , (5.7)
87.34 321082 6173062 —1328773 1328770 27027774

b= (-0.8,-15.62 —2859)" andb = (—3359,33.59,83817)". The matrixA has exactly one neg-
ative eigenvalue, while all eigenvaluesMre positive. Hencegz(a) is an unbounded ellipsoid,
while %p(a) is a bounded ellipsoid, thus confirming théis identified whilef is not. Then, for
any scalar linear transformations8, a confidence set with level-La is given by (3.16) with =
(0.279,0.312 —0.003) andD(a) = 0.72[w(Y’MY)~1w]¥/2. Forw/B, we can obtain a projection-
based confidence set with level-1a; by using (3.21) withB = (—0.361 0.218 —0.010),
d = —1.55< 0 andD(a;) = [-1.55WA~1w]Y/2 whenw A~*w < 0. For inference ora, we also
use the following estimates:

—0.102 —0.492 A 376 —-3.75 —6475
a= 0.102 , Oyu= 0.492 EDIVES -375 374 6476 .
—0.004 7.634 —64.75 6476 131714

The 2SLS estimate g is 3,5, 5= (0.190,0.019 0.001), and the eigenvalues 61}/, wherefT,
is the OLS estimate affl; from (5.6), are:(0.0003 0.095, 3858326). The value 00003 is quite
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Table 2. Card model of education and earnings
Projection-based confidence intervals for endogeneity parameté«s|¢osl)

Without IQ variable
Regression endogeneity Covariance endogeneity
Cay | —,0.47] U [1.45, +oo] Coyu | — ,0.41] U[9.08, 400
Cay | | —0,-0.120U[-0.03 400 | €5y | | —,—9.08U[-0.41, +oo]
Cag ] —,0.002U[0.03, 400 | Ggyg | ] —%,—16535U[-7.65 4]
With |Q variable

Ca ] —©0,0.55U[0.73,+] Coyy | —,0.24| U [3.19, 40|
Cay R Coye | ] —®,—3.19U[—0.24, 4o
Cag | ] —,0.000U[0.013 4 | €o5 | |— 00, —5205 U[—4.37,+0o]

close to zero, which suggests instruments are wWeak.

Table 2 presents the projection-based confidence intervals with leveld@5@tlividual compo-
nents of endogeneity parameteasaidoyy). In the first part of the table, tH€) variable is omitted
from the model, and it is included in the second part. The results are similar mdtivithout this
variable: the confidence intervals for all componenta ahd oy, are unbounded. So, all compo-
nents of both endogeneity parameters are weakly identified. While the estinagt@g—= —0.004)
seems very close to zero, the corresponding covariance estipgie- 7.634 is relatively large,
which confirms the fact that; = 0 does necessarily not implies thag,; = 0, as argued in Section
2.1. All confidence intervals, thought unbounded, contain zero,esiig that there is not enough
information from the data to: (1) support the presence of bias due to ométébies (regression
endogeneity parameteasi = 1,2,3, measure the importance of omitted variables), and (2) reject
the partial exogeneity of thechoolingandexperiencevariables (covariance endogeneity parame-
tersovyi,i = 1,2, 3, measure the endogeneity of the corresponding varigpl®&eanwhile, though
zero belongs to the 95% confidence intervals of all these parameters, iberidne case that the
true values of these parameters are actually large, because the the 988paading confidence
intervals are unbounded. So, the use of the standiyple statistics based on the estimates of
and oy, in the extended regression (2.14), whetés replace bV = MY, to build confidence
intervals for scalar linear transformations&a andw oy, can be misleading when identification is
weak. The Monte Carlo simulations indicate that stitype confidence intervals have poor cover-
age probabilities (which may even be equal to zero) when identification is, wiéle the coverage
probabilities of the projection method developed in this paper are alwayg dboa irrespective
of whether identification is strong or weak, wheras the nominal level.

"The results reported are based on the critical values df tHistributions of Section 3. The Monte Carlo method as
described in Section 3.5 gives similar results even with 1000 replicationbpth (1) Gaussian errors, and (2) Student-
type errors with three degrees of freedom.

22



6. Conclusion

In this paper, we have studied the problem of testing hypotheses and builgirfidence sets on
endogeneity parameters. Such parameters have both intrinsic and statistieast, because they
represent the effect of “common factors” which induce simultaneity atetaéne simultaneity bi-
ases (along with other features of the data). We stressed the useffidetsguishing betweere-
gression endogeneity parametéas andcovariance endogeneity parametées,,): regression en-
dogeneity parameters measure the effect of “missing variables” in lineatwgtal equations, while
covariance endogeneity parameters directly indicate which variables ntegabed as “exogenous”
in statistical inference. Further, regression endogeneity parameterbartagted relatively easily,
and we proposed finite-sample inference methods for these. Infepanoevariance endogeneity
parameters involves additional nuisance parametegs the unknown covariance matr;), so
only asymptotically justified methods were given toy,,.

The identification of endogeneity parameters was also discussed. Afteulfding necessary
and sufficient conditions for the identification of such parameters, werebgd a simple equivalence
between the identification of individual regression endogeneity parasr{et¢rand the identifica-
tion of the corresponding structural parameigts, while this feature does not hold for covariance
endogeneity parameters. In view of the possibility of identification failurentifieation-robust
inference procedures were proposed for endogeneity paramé&mrgoint hypotheses involving
structural and regression endogeneity parameters, as well as méngoéheses on regression en-
dogeneity parameters, finite-sample procedures were proposedr Qadssian errors, the tests
and confidence sets are based on standard Fisher critical valueswike class of parametric non-
Gaussian errors (possibly heavy-tailed), exact Monte Carlo proesdian be applied using the
statistics considered. As a special case, this result also holds forARttgpe tests and confidence
sets on structural coefficients.

We showed that the proposed finite-sample procedwees those based on a Gaussian as-
sumption on the errors) remain asymptotically valid under weaker distribussaimptions. Tests
of partial exogeneity hypotheses (for individual potentially endogsreplanatory variables) are
covered as instances of the class of proposed procedures. Thptatig theory also yields infer-
ence for covariance endogeneity. Even though the asymptotic theorlyigmproximate in finite
samples, it is robust to identification assumptions. Finally, the proposeddurEs were applied to
two empirical examples: the relation between trade and economic growth, emddély studied
problem of returns to education.
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APPENDIX

A. Proof

PrROOF OoFPrROPOSITION3.1  On multiplying the two sides of (3.2) byl andM; — M, we see
that:

M(y—YBo) = Mu+MV(B—p),
(M1—=M)(Y=YBo) = MiXol2(B—Bo)+ (Mi—M)u+ (M1 —MV(B—By). (A1)

When Assumption 3.1 holds aiftl= 3, this entails:
M(y—YBp) = a(X)Mu, (M1 —M)(y—YBy) = a(X)(M1—M)u.
Thus, theAR-statistic in (3.3) can be rewritten as:

a(X)20' (M1 —M)u/ky  U'(My—M)u/ky
o(X)2u'Mu /(T —-k)  U'Mu/(T —k) °

AR(Bo) =

Hence, the null conditional distribution 8R(3,), givenX, only depends oo andX. If normality
holds conditional orX, i.e. u|X ~ N0, It],we haveu’Mu ~ x?(T —k) and v’(M; — M)u ~
Xx?(k2). SinceM(M; —M) = 0, hencev’Mu andu’(M; — M)u are independent conditional ot
ConsequentlyAR(B) ~ F(kz, T —K). O
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