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Résumé/abstract  

 

We provide a generalization of the Anderson-Rubin (AR) procedure for inference on parameters which 

represent the dependence between possibly endogenous explanatory variables and disturbances in a linear 

structural equation (endogeneity parameters). We focus on second-order dependence and stress the 

distinction between regression and covariance endogeneity parameters. Such parameters have intrinsic 

interest (because they measure the effect of “common factors” which induce simultaneity) and play a 

central role in selecting an estimation method (because they determine “simultaneity biases” associated 

with least-square methods). We observe that endogeneity parameters may not be identifiable and we give 

the relevant identification conditions. These conditions entail a simple identification correspondence 

between regression endogeneity parameters and usual structural parameters, while the identification of 

covariance endogeneity parameters typically fails as soon as global identification fails. We develop 

identification-robust finite-sample tests for joint hypotheses involving structural and regression endogeneity 

parameters, as well as marginal hypotheses on regression endogeneity parameters. For Gaussian errors, we 

provide tests and confidence sets based on standard Fisher critical values. For a wide class of parametric 

non-Gaussian errors (possibly heavy-tailed), we also show that exact Monte Carlo procedures can be 

applied using the statistics considered. As a special case, this result also holds for usual AR-type tests on 

structural coefficients. For covariance endogeneity parameters, we supply an asymptotic (identification-

robust) distributional theory. Tests for partial exogeneity hypotheses (for individual potentially endogenous 

explanatory variables) are covered as special cases. The proposed tests are applied in three empirical 

examples: a model of the relation trade and economic growth; and two models of the returns to educations: 

the well-known study of Bound, Angrist and Balker (1995), and an alternative model considered by Card 

(1995). 

 

Mots clés/keys words : Identification-robust confidence sets; endogeneity; AR-type 

statistic; projection-based techniques; partial exogeneity test.  
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1. Introduction

Instrumental variable (IV) regressions are typically motivated by the factthat “explanatory vari-
ables” may be correlated with the error term, so least-squares methods yield biased inconsistent
estimators of model coefficients. Such IV parameter estimates can be interpreted as measures of the
relationship between variables, once the “effect” of common “driving” (or “exogenous”) variables
has been eliminated. Even though coefficients estimated in this way may have interesting inter-
pretations from the viewpoint of economic theory, inference on such “structural parameters” faces
identification difficulties. Further, it is well known that IV estimators may be very imprecise, and
inference procedures (such as tests and confidence sets) can be highly unreliable, especially when
instruments are weakly associated with model variables (weak instruments). This has led to a large
literature aimed at producing reliable inference in the presence of weak instruments; see the reviews
of Stock, Wright and Yogo (2002) and Dufour (2003).

Research on weak instruments has focused on inference for the coefficients of endogenous vari-
ables in so-called “IV regressions”. This leaves out the parameters which specifically determine
simultaneity features, such as the covariances between endogenous explanatory variables and distur-
bances. These parameters can be of interest for several reasons.First, they provide direct measures
of the importance of latent variables, which are typically unobserved and may simultaneously affect
a number of observable endogenous variables. These latent variablesare in a sense left out from
structural equations, but they remain hidden in structural disturbances.For example, in a wide set
of economic models, they may represent unobserved latent variables, such as “surprise variables”
which play a role in models with expectations [see Barro (1977), Dufour and Jasiak (2001)].Sec-
ond, the simultaneity covariance (or regression) coefficients determine the estimation bias of least-
squares methods. Information on the size of such biases can be useful ininterpreting least-squares
estimates and related statistics.Third, information on the parameters of hidden variables (which
induce simultaneity) may be important for selecting statistical procedures. Even if instruments are
“strong”, it is well known that IV estimators may be considerably less efficient than least-squares
estimators; see Kiviet and Niemczyk (2007, 2012), Doko Tchatoka and Dufour (2011a), Kiviet and
Pleus (2012) and Kiviet (2013). Indeed, this may be the case even when endogeneity is present. If a
variable is not correlated (or only weakly correlated) with the error term, instrumenting it can lead to
sizable efficiency losses in estimation. Assessing when and which variablesshould be instrumented
is an important issue for the estimation of structural models.

We stress here the view that linear structural models (IV regressions) can be interpreted as
regressions with missing regressors. If the latter were included, there would be no simultaneity
bias, so no correction for simultaneity (such as IV methods) would be needed. This feature allows
one to define a model transformation which maps a linear structural equation toa linear regression
where all the explanatory variables are uncorrelated with the error term. We call this equation
the orthogonalized structural equation, and we use it extensively. Interestingly, the latter is not a
reduced-form equation. Instead, it involves the structural parametersof interest, but also includes
endogeneity parameterswhich are “hidden” in the original structural equation.

The problem stems from the fact that the missing regressors are unobserved. Despite this dif-
ficulty, we show that procedures similar to the one proposed by Andersonand Rubin (1949, AR)
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can be applied to the orthogonalized equation. This allows one to make inference jointly on both
the parameters of the original structural equation and endogeneity parameters. Two types of endo-
geneity parameters are considered:regression endogeneity parametersandcovariance endogeneity
parameters. Under standard conditions, where instruments are strictly exogenous and errors are
Gaussian, the tests and confidence sets derived in this way are exact. The proposed methods do not
require identification assumptions, so they can be characterized asidentification-robust. For more
general inference on transformations of the parameters in the orthogonalized structural equation,
we propose projection methods, for such techniques allow for a simple finite-sample distributional
theory and preserve robustness to identification assumptions.

To be more specific, we consider a model of the form

y = Yβ +X1γ +u

wherey is an observed dependent variable,Y is a matrix of observed (possibly) endogenous re-
gressors, andX1 is a matrix of exogenous variables. We observe that AR-type procedures may
be applied to test hypotheses on the transformed parameterθ = β + a, wherea represents re-
gression coefficients ofu on the reduced-form errors ofY (regression endogeneity parameters).
Identification-robust inference fora itself is then derived by exploiting the possibility of making
identification-robust inference onβ . Then, inference on covariances (sayσVu) betweenu andY
(covariance endogeneity parameters) can be derived by considering linear transformations ofa.

We stress that regression and covariance endogeneity parameters – though theoretically related
– play distinct but complementary roles: regression endogeneity parameters represent the effect
of reduced-form innovations ony, while covariance endogeneity parameters determine the need to
instrument different variables inY. WhenσVu = 0, Y can be treated as exogenous (so IV estimation
is not warranted). So-called exogeneity tests typically test the hypothesisσVu = 0. It is easy to see
that σVu = 0 if and only if a = 0 (provided the covariance matrix between reduced-form errors is
nonsingular), but the relationship is more complex in other cases.

In this paper, we emphasize cases wherea 6= 0. We first study formally the identification of
endogeneity parameters. We establish a simple identification correspondence between the compo-
nents ofβ anda: each component ofa is identifiable if and only if the corresponding component of
β is identifiable. In contrast, thisdoes not holdin general for the covariancesσVu: as soon as one
element ofβ is not identifiable, all components ofσVu typically fail to be identifiable. In this sense,
σVu is more difficult to interpret thana. Due to the failure of the exogeneity hypothesis, the distri-
butions of the test statistics are much more complex. It is relatively easy to produce finite-sample
inference fora, but not forσVu. So, forσVu, we propose asymptotic tests and confidence sets. It
is important to note that stronger assumptions are needed for making inference onσVu (as opposed
to a). Indeed, we describe general distributional setups whereσVu may not be well-defined [due to
heterogeneity in the model forY, or the non-existence of moments], whilea remains well-defined
and statistically meaningful. In such cases, inference ona is feasible, while inference onσVu may
not be (even when all parameters in the structural equation of interest are identifiable).

By allowing a 6= 0 (or σVu 6= 0), we extend earlier results on exogeneity tests, which focus
on the null hypothesisHa : a = 0. The literature on this topic is considerable; see, for exam-
ple, Durbin (1954), Wu (1973, 1974, 1983a, 1983b), Revankar and Hartley (1973), Farebrother
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(1976), Hausman (1978), Revankar (1978), Dufour (1979, 1987), Hausman and Taylor (1981),
Hwang (1980, 1985), Kariya and Hodoshima (1980), Hausman and Taylor (1981), Spencer and Berk
(1981), Nakamura and Nakamura (1981, 1985), Engle (1982), Holly (1982, 1983b, 1983a), Smith
(1983, 1984, 1985), Ruud (1984, 2000), Davidson and Mackinnon(1985, 1985, 1989, 1990, 1993),
Newey (1985a, 1985b), Thurman (1986), Smith and Pesaran (1990),Meepagala (1992), Wong
(1996), Ahn (1997), Staiger and Stock (1997), , Baum, Schaffer and Stillman (2003), Hahn, Ham
and Moon (2010), Chmelarova and Hill (2010), Jeong and Yoon (2010), and Kiviet and Pleus
(2012).

By contrast, we consider here the problem of testing any value ofa (or σVu) and build confidence
sets for these parameters. By allowing for weak instruments, we extend the results in Dufour (1979,
1987) where Wald-type tests and confidence sets are proposed for inference ona andσVu, under
assumptions which exclude weak instruments. Finally, by considering inference ona andσVu, we
extend a procedure proposed in Dufour and Jasiak (2001) for inference on the aggregate parameter
θ = β +a (but nota or σVu) in the context of a different model.

On exploiting results from Dufour and Taamouti (2005, 2007), we supplyanalytical forms for
the proposed confidence sets, and we give the necessary and sufficient conditions under which they
are bounded. These results can be used to assess partial exogeneity hypotheses even when iden-
tification is deficient or weak. In order to allow for alternative assumptions on error distributions,
we show that the proposed AR-type statistics are pivotal as long as the errors follow a completely
specified distribution (up to an unknown scale parameter), which may be non-Gaussian. Due to this
invariance property, exact Monte Carlo tests can be performed without aGaussian assumption [as
described in Dufour (2006)]. In particular, we show this is feasible under general assumptions which
allow considerable heterogeneity in the reduced-form model forY, even a completely unspecified
model forY. On allowing for more general error distributions and weakly exogenousinstruments
(along with standard high-level asymptotic assumptions), we also show that the proposed proce-
dures remain asymptotically valid and identification-robust.

Finally, we apply the proposed methods to three empirical examples: a model ofthe relation
between trade and economic growth, previously studied in Frankel and Romer (1999) and Dufour
and Taamouti (2007); and two models of the returns to educations, the well-known study of Bound,
Jaeger and Baker (1995), and an alternative model considered by Card (1995) and Kleibergen (2004,
Table 2, p. 421).

The paper is organized as follows. Section 2 describes the model and the identification con-
ditions for endogeneity parameters. Section 3 presents the finite-sample theory for inference on
regression endogeneity parameters. Section 4 discusses asymptotic theory and inference for covari-
ance endogeneity parameters. Section 5 illustrates the theoretical results through three empirical
applications: a model of the relationship between trade and growth, and two models of returns to
schooling. We conclude in Section 6. Proofs are presented in appendix.

2. Framework: endogeneity parameters and their identification

We consider a standard linear structural equation of the form:
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y = Yβ +X1γ +u (2.1)

wherey = [y1, . . . , yT ] is aT ×1 vector of observations on a dependent variable,Y = [Y1, . . . , YT ]′

is a T ×G matrix of observations on (possibly) endogenous explanatory variables(G ≥ 1), X1

is a T × k1 full-column-rank matrix of strictly exogenous variables,u = [u1, . . . , uT ]′ is a vector
of structural disturbances,β andγ areG× 1 andk1× 1 unknown coefficient vectors. Further,Y
satisfies the model:

Y = XΠ +V = X1Π1 +X2Π2 +V (2.2)

whereX2 is aT × k2 matrix of observations on exogenous variables (instruments),X = [X1, X2] =
[X•1, . . . , X•T ]′ has full-column rankk = k1+k2, Π1andΠ2 arek1×G andk2×G coefficient matri-
ces,Π = [Π1, Π2], andV = [V1, . . . , VT ]′ is aT ×G matrix of reduced-form disturbances. Equation
(2.1) is the “structural equation” of interest, while (2.2) represents the “reduced form” forY. On
substituting (2.2) into (2.1), we get the reduced form fory:

y = X1π1 +X2π2 +v (2.3)

whereπ1 = γ +Π1β , π2 = Π2β , andv = Vβ +u = [v1, . . . ,vT ]′.
When the errorsu andV have finite means (although this assumption could easily be replaced by

another “location assumption”, such as zero medians), the usual necessary and sufficient condition
for identification ofβ andγ (from the first moments ofy andY) in (2.1) - (2.2) is:

rank(Π2) = G. (2.4)

If Π2 = 0, the instrumentsX2 are irrelevant, andβ is completely unidentified. If 1≤ rank(Π2) < G,
β is not identifiable, but some linear combinations of the elements ofβ are identifiable [see Dufour
and Hsiao (2008)]. IfΠ2 is close not to have full rank [e.g., if some eigenvalues ofΠ ′

2Π2 are close to
zero], some linear combinations ofβ are ill-determined by the data, a situation often called “weak
identification” [see Dufour (2003)].

Throughout this paper,Im is the identity matrix of orderm. For any full-column-rankT ×m
matrix A, P(A) = A(A′A)−1A′, M(A) = IT −P(A), vec(A) is the (Tm)× 1 column vectorization
of A,and‖A‖ = [tr(A′A)]

1
2 the matrix Euclidian norm. ForA square,A > 0 meansA is positive

definite (p.d.), andA≥ 0 meansA is positive semidefinite (p.s.d.). “
p→ ” stands for convergence in

probability, and “
L→ ” for convergence in distribution.

2.1. Identification of endogeneity parameters

We now wish to represent the fact thatu andV can be correlated, allowing for the possibility of
identification failure. It is important to note that the “structural error”ut may not be uniquely
determined by the data whenβ and γ are not identified. For this, it will be useful to consider
two alternative setups for the disturbance distribution: (A) in the first one,the disturbance vectors
(ut , V ′

t )
′ have common finite second moments (structural homoskedasticity); (B) in the second one,

we allow for a large amount of heterogeneity in the distributions of reduced-form errors (reduced-
form heterogeneity). The second setup is more appropriate for practical work, and we wishto go as
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far as possible in that direction. But it will be illuminating to first consider setupA.

Assumption A STRUCTURAL HOMOSKEDASTICITY. The vectors Ut = (ut , V ′
t )

′, t = 1, . . . , T,
all have finite second moments with mean zero and the same covariance matrix

ΣU = E
[

UtU
′
t

]

=

[

σ2
u σ ′

Vu
σVu ΣV

]

, whereΣV = E
[

VtV
′
t

]

is nonsingular. (2.5)

Under the above assumption, we have:

σVv = E[Vtvt ] = E[Vt(V
′
t β +ut ] = ΣVβ +σVu, σ2

v = σ2
u +β ′ΣVβ +2β ′σVu. (2.6)

The covariance vectorσVu indicates which variables inY are “correlated” withut , so it is a ba-
sic determinant of the level of “endogeneity” of these variables. Note, however, thatσVu is not
identifiable whenβ is not (for then the “structural error”ut is not uniquely determined by the data).

In this context, it will be illuminating to look at the following two regressions: (1) the linear
regression ofut onVt ,

ut = V ′
t a+et , t = 1, . . . , T, (2.7)

wherea = Σ−1
V σVu andE[Vtet ] = 0 for all t; and (2) the linear regression ofvt onVt ,

vt = V ′
t θ +η t , t = 1, . . . , T, (2.8)

whereθ = Σ−1
V σVv andE[Vtη t ] = 0 for all t. It is easy to see that

σVu = ΣVa, σ2
u = σ2

e +a′ΣVa = σ2
e +σ ′

VuΣ−1
V σVu, (2.9)

whereE[e2
t ] = σ2

e for all t.This entails that:a= 0 if and only ifσVu = 0, so the exogeneity ofY can
be assessed by testing whethera= 0.There is however no simple match between the components of
a andσVu (unlessΣV is a diagonal matrix). For example, ifa = (a′1, a′2)

′ andσVu = (σ ′
Vu1, σ ′

Vu2)
′

wherea1 andσVu1 have dimensionG1 < G, a1 = 0 is not equivalent toσVu1 = 0. We call a the
“regression endogeneity parameter”, andσVu the “covariance endogeneity parameter”.

As long as the identification condition (2.4) holds, bothσVu anda are identifiable. This is not
the case, however, when (2.4) does not hold. By contrast, the regression coefficientθ is always
identifiable, because it is uniquely determined by the second moments of reduced-form errors. It is
then useful to observe the following identity:

θ = Σ−1
V σVv = Σ−1

V (ΣVβ +σVu) = β +a. (2.10)

In other words, the sumβ +a is equal to the regression coefficient ofvt onVt . Even thoughβ anda
may not be identifiable, the sumβ +a is identifiable (from the first and second moments ofv andV).
Further, for any fixedG×1 vectorw, w′θ is identifiable, so the identitiesw′a= w′θ −w′β andσVu =
ΣVa along with the invertibility ofΣV entail the following equivalences:

β is identifiable ⇔ a is identifiable⇔ σVu is identifiable ; (2.11)
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w′β is identifiable ⇔ w′a is identifiable⇔ w′Σ−1
V σVu is identifiable . (2.12)

In particular, (2.12) entails a simple identification correspondence betweenthe components ofβ
anda: for each 1≤ i ≤ G, ai is identifiable⇔ β i is identifiable. In other words, the identification
conditions forβ anda are identical. In contrast, the equivalences [w′σVu is identifiable⇔ w′β is
identifiable] and [σVui is identifiable⇔ β i is identifiable]do not holdin general: as soon as one
element ofβ is not identifiable, all components ofσVu typically fail to be identifiable. In this sense,
σVu is more difficult to interpret thana.

Setup A requires that the reduced-form disturbancesVt , t = 1, . . . , T, have identical second mo-
ments. In many practical situations, this may not be appropriate, especially in alimited-information
analysis which focuses on the structural equation of interest (2.1), rather than the marginal distribu-
tion of the explanatory variablesY. To allow for more heterogeneity among the observations inY,
we consider the following alternative assumptions (whereX•t is thet-th row ofX).

Assumption B SECOND-ORDER REDUCED-FORM HETEROGENEITY. For some fixed vector a in
R

G, we have:
u = Va+e (2.13)

where e, V and X have finite second moments,E[e] = 0, and e is uncorrelated with V and X.

Assumption C REDUCED-FORM HETEROGENEITY. Equation(2.13) holds withE[et |Vt , X•t ] =
0, t = 1, . . . , T .

Assumptions B and C allow substantial heterogeneity in the distribution of the disturbances
Vt , t = 1, . . . , T. The latter need not be identically distributed or independent. Assumption B main-
tains the existence of second moments [even though the covariance matricesE

(

VtV
′
t

)

may vary with
t] and definese through a zero mean and orthogonality withV andX. Assumption C replaces this
condition by a zero conditional mean; no further restriction onV is imposed. The existence of mo-
ments forVt andX•t is not required. An important case where Assumption B holds is the one where
V ande are independent (strong linear structural decomposition). Given (2.1), the three conditions
E[et |Vt , X•t ] = 0, E[et |Yt , X•t ] = 0 andE[et |Yt , Vt , X•t ] = 0 are equivalent. In such cases,σVu may
not be well-defined [due to heterogeneity in the model forY, or the non-existence of moments], but
a remains statistically meaningful.

In view of the decomposition (2.13), equation (2.1) can be viewed as a regression model with
missing regressors. On substituting (2.13) into (2.1), we get:

y = Yβ +X1γ +Va+e (2.14)

wheree is uncorrelated with all the regressors. Because of this property, we call (2.14) theorthog-
onalized structural equationassociated with (2.2), ande theorthogonalized structural disturbance
vector.1 In this equation, the original structural parameters(β andγ) can be interpreted as regres-

1The form (2.14) was orignally proposed by Revankar and Hartley (1973) for the purpose of testing complete exo-
geneity(a = 0). As pointed out in Dufour (1979, 1987), the disributional theory is substantially simpler in that case and
does not allow one to test more general restrictions ona (because the covariance matrix is modified).
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sion coefficients, along with the regression endogeneity parametera. We see thata represents the
effect of the latent variableV. Even though (2.14) is a regression equation [(Y, X1,V) is orthogonal
to the disturbancee], it is quite distinct from the reduced-form equation (2.3) fory.

The orthogonalized structural equation is quite helpful for interpreting model coefficients. A
structural model of the form (2.1) - (2.2) often represents a causal structure to explainy. The en-
dogenous variables(y andY) are determined by two types of inputs: observable exogenous vari-
ables (X1 and X2) and unobserved variables (V ande). X1 has both a direct effect(X1γ) on y and
an indirect effect(X1Π1β throughY), while X2 only has an indirect effect(X2Π2β ). Similarly, V
represents unobserved variables (e.g., shocks, latent variables, expectation errors) which have both
a direct effect(Va) and an indirect effect(Vβ ), while e represents idiosyncratic shocks toy which
are orthogonal toY. Finally, we may interpret the sumVβ +Va= V(β + a) as the net final effect
(both direct and indirect) ofV on y. In the context of a causal interpretation, the coefficient vectors
β , a andβ + a have useful distinct interpretations:β represents the impact ofY [in particular, its
systematic componentE(Y) = X1Π1 +X2Π2] on y, a the direct effect of the latent variableV on y,
andβ +a the total effect ofV on y. Statistical inference on each one of the coefficients has its own
independent interest.

The identification ofa can be studied through the orthogonalized structural equation. By (2.2),

y = Yθ +X1π∗
1 +X2π∗

2 +e (2.15)

whereθ = β + a, π∗
1 = γ −Π1a, π∗

2 = −Π2a, ande is uncorrelated with all the regressors(Y, X1

andX2). Equation (2.15) is a regression equation obtained by addingX2 to the original structural
equation or, equivalently, by addingY to the reduced form (2.3) fory. We call (2.15) theextended
reduced formassociated with (2.2). As soon as the matrixZ = [Y, X1, X2] has full-column rank
with probability one [almost surely(a.s.)], the parameters of equation (2.15) are identifiable (a.s.),
because they are uniquely determined by the linear projections ofyt onYt andX•t for t = 1, . . . , T
[under Assumption B] or by the corresponding conditional means [underassumption C]. This is the
case in particular forθ = β +a (with probability one) whenZ has full-column rank with probability
one. This rank condition holds in particular when the matrixV has full column rank (a.s., conditional
on X), e.g. if its distribution is absolutely continuous. This entails again thata is identifiable if and
only if β is identifiable, and similarly betweenw′a andw′β for any w ∈ R

G. This establishes the
following identification result fora, where “identification” refers to the conditional distributions of
yt givenYt andX•t , t = 1, . . . , T.

Proposition 2.1 IDENTIFICATION OF REGRESSION ENDOGENEITY PARAMETERS. Under the
model given by(2.2), (2.3) and Assumption B or C, suppose the matrix[Y, X1, X2] has full column
rank. Then a+β is identifiable, and the following two equivalences hold:

a is identifiable⇔ β is identifiable ; (2.16)

for any w∈ R
G, w′a is identifiable⇔ w′β is identifiable. (2.17)

The decomposition assumption (2.13) can also be formulated in terms of the reduced-form
disturbancev [as in (2.8)] rather than the structural disturbanceu:
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v = Vθ̄ +η (2.18)

for some fixed vector̄θ in R
G, where each element ofη has mean zero and is uncorrelated with

V andX, again without any other assumption on the distribution ofV. This means that the linear
regressionsvt = V ′

t θ̄ + η t , t, , . . . , T, can all be written in terms of the same coefficient vectorθ̄ .
The latter is uniquely determined (identifiable) as soon as the matrixV has full column rank (with
probability one), so the identification ofβ is irrelevant. Even though conditions (2.13) and (2.18) are
quite different (because the dependent variable is not the same), they are equivalent in the context
of the model we study here. This can be seen by rewriting the reduced form (2.3) as follows:

y = X1π1 +X2π2 +v = X1(γ +Π1β )+X2(Π2β )+Vθ̄ +η
= (X1Π1 +X2Π2)β +X1γ +Vθ̄ +η = Yβ +X1γ +V(θ̄ −β )+η . (2.19)

By matching the latter equation with the structural form (2.1), we get

u = V(θ̄ −β )+η (2.20)

provided[Y, X1] has full-column rank. Sinceη andV are uncorrelated, this entails that (2.13) holds
with a= θ̄ −β ande= η . Conversely, under Assumption B, we have from the reduced form (2.3):

v = Vβ +u = V(β +a)+e (2.21)

which is equivalent to (2.18) with̄θ = β + a = θ and η = e. We can thus state the following
proposition.

Proposition 2.2 EQUIVALENCE BETWEEN STRUCTURAL AND REDUCED-FORM ERROR DECOM-
POSITIONS. Under the assumptions(2.2) and(2.3), suppose the matrix[Y, X1, X2] has full column
rank with probability one. Then the assumptions(2.13) and (2.18) are equivalent with̄θ = β +a
andη = e.

The identityη = e entails that the residual vector from the regression ofu on V is uniquely
determined (identifiable) even ifu itself may not be. The orthogonalized structural equation (2.14)
may thus be rewritten as

y = Yβ +X1γ +V(θ̄ −β )+η = (XΠ)β +X1γ +Vθ̄ +η (2.22)

whereθ̄ is a regression vector between two reduced-form disturbances(v on V) andη the corre-
sponding error. This shows clearly that different regression endogeneity parametersa = θ̄ −β are
obtained by “sweeping”β over its identification set.

Under Assumption B, covariance endogeneity parameters may depend ont. Indeed, it is easy
to see thatE

[

Vtut
]

= E
[

VtV
′
t

]

a≡ σVut , which may depend ont if E
[

VtV
′
t

]

does. However, identifi-
cation of the parametersσVut remains determined by the identification ofa, whenever the reduced-
form covariance (which are parameters of reduced forms) are identifiable. Inference on covariance
endogeneity parameters requires additional assumptions. In sections 3 and 4, we will see that finite-
sample inference methods can be derived for regression endogeneity parameters under the relatively
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“weak” Assumption B, while only asymptotically justified methods will be proposedfor covariance
endogeneity parameters. For covariances, we will focus on the case whereσVut is constant.

2.2. Statistical problems

In this paper, we consider the problem of testing hypotheses and building confidence sets for regres-
sion endogeneity parameters(a) and covariance endogeneity parameters(σVu), allowing for the
possibility of identification failure (or weak identification). We develop inference procedures for
the full vectorsa andσVu, as well as linear transformations of these parametersw′a andw′σVu. In
view of the identification difficulties present here, we emphasize methods forwhich a finite-sample
distributional theory is possible [see Dufour (1997, 2003)], at least partially.

In line with the above discussion of the identification of endogeneity parameters, we observe
that inference ona can be tackled more easily than inference onσVu, so we study this problem
first. The problem of testing hypotheses of the formHa(a0) : a = a0 can be viewed as an extension
of the classical Anderson and Rubin (1949, AR) problem on testingHβ (β 0) : β = β 0. There is,
however, an additional complication: the variableV is not observable. For this reason, substantial
adjustments are required. To achieve our purpose, we propose a strategy that builds on two-stage
confidence procedures [Dufour (1990)], projection methods [Dufour (1990, 1987), Abdelkhalek
and Dufour (1998), Dufour and Jasiak (2001), Dufour and Taamouti (2005)], and Monte Carlo tests
[Dufour (2006)].

Specifically, in order to build a confidence set with level 1−α for a, chooseα1 andα2 such
that 0< α = α1 +α2 < 1, 0 < α1 < 1 and 0< α2 < 1. We can then proceed as follows:
(1) we build an identification-robust confidence set with level 1−α1 for β ; several methods are
available to do this; in view of the existence of a finite-sample distributional theory (as well as com-
putational simplicity), we focus on the Anderson and Rubin (1949, AR) approach; but alternative
procedures could be exploited for that purpose;2

(2) we build an identification-robust confidence set for the sumθ = β +a, which happens to be an
identifiable parameter; we show this can be done easily though simple regression methods;
(3) the confidence sets forβ andθ are combined to obtain a simultaneous confidence set for the
stacked parameter vectorϕ = (β ′, θ ′)′; by the Boole-Bonferroni inequality, this yields a confidence
set forϕ with level 1−α (at least), as in Dufour (1990);
(4) confidence sets fora = θ −β and any linear transformationw′a may then be derived by projec-
tion; these confidence sets have level 1−α ;
(5) confidence sets forσVu andw′σVu can finally be built using the relationshipσVu = ΣVa.

For inference ona, we develop a finite-sample approach which remains valid irrespective of as-
sumptions on the distribution ofV. In addition, we observe that the test statistics used for inference
onβ [the AR-type statistic] andθ enjoy invariance properties which allow the application of Monte
Carlo test methods: as long as the distribution of the errorsu is specified up to an unknown scale
parameter, exact tests can be performed onβ andθ through a small number of Monte Carlo simula-
tions [see Dufour (2006)]. For inference on both regression and covariance endogeneity parameters

2Such procedures include, for example, the methods proposed by Kleibergen (2002) or Moreira (2003). No finite-
sample distributional theory is, however, available for these methods. Further, these are not robust to missing instruments;
see Dufour (2003) and Dufour and Taamouti (2007).
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(a andσVu), we also provide a large-sample distributional theory based on standard asymptotic as-
sumptions which relax various restrictions used in the finite-sample theory. Allproposed methods
do not make identification assumptions onβ , either in finite samples or asymptotically.

3. Finite-sample inference for regression endogeneity parameters

In this section, we study the problem of building identification-robust tests and confidence sets for
the regression endogeneity parametera from a finite-sample viewpoint. Along with (2.1) - (2.2),
we suppose that Assumption B holds under (at least) one of the following conditions on model
disturbances.

Assumption 3.1 CONDITIONAL SCALE MODEL FOR STRUCTURAL ERRORS. u= σ(X)υ, where
σ(X) is a (possibly random) function of X such thatP[σ(X) 6= 0|X] = 1, and the conditional
distribution ofυ given X is completely specified.

Assumption 3.2 CONDITIONAL SCALE MODEL FOR ORTHOGONALIZED STRUCTURAL ERRORS.
e= σ1(X)ε , whereσ1(X) is a (possibly random) function of X such thatP[σ1(X) 6= 0|X] = 1,

and the conditional distribution ofε given X is completely specified.

Assumption 3.1 means the distribution ofu given X only depends onX and a (typically un-
known) scale factorσ(X). The scale factor can also be random, so we can haveσ(X) = σ̄(X, υ).
Of course, this holds when everu= σ υ , whereσ is an unknown positive constant andv is indepen-
dent ofX with a completely specified distribution. In this context, the standard Gaussian assump-
tion is obtained by taking:υ ∼ N[0, IT ] . But non-Gaussian distributions are covered, including
heavy-tailed distributions which may lack moments (such as the Cauchy distribution). Similarly,
Assumption 3.2 means the distribution ofe givenX only depends onX and a (typically unknown,
possibly random) scale factorσ1(X), so again a standard Gaussian model is obtained by assuming
that σ1(X) is fixed (givenX) andε ∼ N[0, IT ] . In general, assumptions 3.1 and 3.2 do not entail
each other. However, it is easy to see that both hold when the vectors[ut ,V

′
t ]

′
, t, , . . . , T, are i.i.d.

(givenX) with finite second moments and the decomposition specified by Assumption B holds. This
will be the casea fortiori if the vectors[ut ,V

′
t ]

′
, t, , . . . , T, are i.i.d. multinormal (givenX).

We will study in turn the following problems:

1. test and build confidence sets forβ ;

2. test and build confidence sets forθ = β +a;

3. test and build confidence sets fora;

4. test and build confidence sets for scalar linear transformationsw′a.
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3.1. AR-type tests forβ with possibly non-Gaussian errors

Since this will be a basic building block for inference on endogeneity parameters, we consider first
the problem of testing the hypothesis

Hβ (β 0) : β = β 0 (3.1)

whereβ 0 is any given possible value ofβ . Several methods have been proposed for that purpose.
However, since we wish to use an identification-robust procedure for which a finite-sample theory
can easily be obtained and does not require assumptions on the distribution of Y, we focus on the
Anderson and Rubin (1949, AR) procedure. So we consider the transformed equation:

y−Yβ 0 = X1π0
1 +X2π0

2 +v0 (3.2)

whereπ0
1 = γ +Π1(β −β 0), π0

2 = Π2(β −β 0) andv0 = u+V(β −β 0). Sinceπ0
2 = 0 underHβ (β 0),

it is natural to consider the correspondingF-statistic in order to testHβ (β 0) :

AR(β 0) =
(y−Yβ 0)

′(M1−M)(y−Yβ 0)/k2

(y−Yβ 0)
′M(y−Yβ 0)/(T −k)

(3.3)

whereM1 ≡ M(X1) andM ≡ M(X). Under the usual assumption whereu ∼ N[0, σ2IT ] indepen-
dently ofX, the conditional distribution ofAR(β 0) underHβ (β 0) is F(k2, T −k). In the following
proposition, we characterize by invariance the distribution ofAR(β 0) under the general Assumption
3.1.

Proposition 3.1 NULL DISTRIBUTION OF AR STATISTICS UNDER SCALE STRUCTURAL ERROR

MODEL. Suppose the assumptions(2.1), (2.2) and 3.1 hold. Ifβ = β 0,we have:

AR(β 0) =
υ ′(M1−M)υ/k2

υ ′Mυ/(T −k)
(3.4)

and the conditional distribution of AR(β 0) given X only depends on X and the distribution ofυ .

The proof is given in Appendix. This proposition means that the conditionalnull distribution
of AR(β 0), given X, only depends on the distribution ofυ . The distribution ofV plays no role
here, so no decomposition assumption [such as A or B] is needed. If the distribution of υ |X can be
simulated, one can get exact tests based onAR(β 0) through the Monte Carlo test method [see Dufour
(2006)], even if this conditional distribution is non-Gaussian. Furthermore, the exact test obtained
in this way is robust to weak instruments as well as instrument exclusion even ifthe distribution of
u|X does not have moments (e.g., the Cauchy distribution).3 This may be useful in financial models
with fat-tailed error distributions, such as the Studentt distribution.

3By “robustness to weak instruments”, we mean the fact that the null distribution of the test statistic remains valid
even if rank[Π2] < G, so β may not be identifiable from the available data. By “robustness to excludedinstruments”,
we mean that the test remains valid even ifY depends on additional explanatory variables(X3) which are not taken in
IV-based inference; for further discussion of this issue, see Dufour and Taamouti (2007). Of course, identification failure
(or weak identification) typically affects test power and confidence set precision. For example, if identification fails
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When the normality assumption holds
(

υ ∼ N[0, IT ]
)

and X is exogenous, we have
AR(β 0) ∼ F(k2,T − k), so thatHβ (β 0) can be assessed by using a critical region of the form
{AR(β 0) > f (α)} , where f (α) = Fα(k2,T − k) is the(1−α)-quantile of theF(k2,T − k) distri-
bution. A confidence set with level 1−α for β is then given by

Cβ (α) = {β 0 : AR(β 0) ≤ Fα(k2,T −k)} = {β : Q(β ) ≤ 0} (3.5)

whereQ(β ) = β ′Aβ +b′β +c, A = Y′HY , b = −2Y′Hy, c = y′Hy, H = M1− [1+ f (α)( k2
T−k)]M,

and f (α) = Fα(k2,T −k); see Dufour and Taamouti (2005).

3.2. Inference onθ

Let us now consider the problem of testing the hypothesisHθ (θ 0) : θ = θ 0, whereθ 0 is a given
vector of dimensionG, and Assumption 3.2 holds. This can be done by considering the extended
reduced form in (2.15). By Assumption 3.2,e is independent ofY, X1 andX2, and (2.15) is a linear
regression model. As soon as the matrix[Y, X1, X2] has full-column rank, the parameters of equation
(2.15) can be tested through standardF-tests.

We will now assume that[Y, X1, X2] has full-column rank with probability one. This property
holds as soon asX = [X1, X2] has full column rank andY has a continuous distribution (conditional
onX). TheF-statistic for testingHθ (θ 0) is

Fθ (θ 0) =
(θ̂ −θ 0)

′(Y′MY)(θ̂ −θ 0)/G
y′M(Z)y/(T −G−k)

(3.6)

whereθ̂ = (Y′MY)−1Y′My is the OLS estimate ofθ in (2.15),M = M(X), X = [X1, X2], andZ =
[Y , X1 , X2]. Whenυ ∼ N[0, IT ], we have:Fθ (θ 0)∼F(G, T−k−G) underHθ (θ 0). Under the more
general assumption 3.2, it is easy to see that

Fθ (θ 0) =
ε ′MY(Y′MY)−1Y′Mε/G

ε ′M(Z)ε/(T −G−k)
(3.7)

underHθ (θ 0). On observing that the conditional distribution ofFθ (θ 0), givenY andX, does not
involve any nuisance parameter, the critical value can be obtained by simulation. It is also impor-
tant to note that this distribution does not depend onθ 0, so the same critical value can be applied
irrespective ofθ 0. The main difference with the Gaussian case is that the critical value may depend
onY andX. Irrespective of the case, we shall denote byc(α2) the critical value forFθ (θ 0).

From (3.6), a confidence set with level 1−α for θ can be obtained by invertingFθ (θ 0) :

Cθ (α) =
{

θ 0 : Fθ (θ 0) ≤ f̄ (α)
}

=
{

θ 0 : Q̄(θ 0) ≤ 0
}

(3.8)

whereQ̄(θ) = (θ̂ −θ)′(Y′MY)(θ̂ −θ)− c̄0 = θ ′Āθ + b̄′θ + c̄, c̄0 = f̄ (α)Gs2 , s2 = y′M(Z)y/(T −
completely(rank[Π2] = 0), it is impossible to distinguish between alternative values ofβ , and a valid test ofHβ (β 0)
should have power not larger than its level. Further, confidence sets ofunidentified parameters should be uninformative
(e.g., unbounded) with high probability; see Dufour (1997).

12



G− k) , Ā = Y′MY, b̄ = −2Āθ̂ = −2Y′My, c̄ = θ̂ ′
Āθ̂ − c̄0 = θ̂ ′

(Y′MY)θ̂ − c̄0 = y′H̃y,and H̄ =
P(MY)− f̄ (α)[G/(T−G−k)]M1. Since the matrix̄A is positive definite (with probability one), the
quadric setCθ (α) is an ellipsoid (hence bounded); see Dufour and Taamouti (2005, 2007). This
reflects the fact thatθ is an identifiable parameter. As a result, the corresponding projection-based
confidence sets for scalar transformationsw′θ are also bounded intervals.

In view of the form (2.15) as a linear regression, we can test in the same way linear restrictions
of the formHw′θ (γ0) : w′θ = γ0, wherew is aG×1 vector andγ0 is known constant. We can then
use the correspondingt statistic

tw′θ (γ0) =
w′θ̂ − γ0

s[w′(Y′MY)−1w]1/2
(3.9)

and rejectHw′θ (γ0) when |tw′θ (γ0)| > cw(α), wherecw(α) is the critical value for a test with level
α. In the Gaussian case,tw′θ (γ0) follows a Student distribution withT −G−k degrees of freedom,
so we can takecw(α) = t(α2; T −G−k). Whenε follows a non-Gaussian distribution, we have

tw′θ (γ0) =
(T −G−k)1/2w′(Y′MY)−1Y′Mε
(

ε ′M(Z)ε
)1/2

[w′(Y′MY)−1w]1/2
(3.10)

underHw′θ (γ0), so that the distribution oftw′θ (γ0) can be simulated likeFθ (θ 0) in (3.7).

3.3. Joint inference onβ and regression endogeneity parameters

We can now derive confidence sets for the vectors(β ′, a′)′ and(β ′, θ ′)′. Consider the set:

C(β , θ)(α1, α2)= {(θ ′
0, β ′

0)
′ : β 0∈Cβ (α1) , θ 0∈Cθ (α2)}= {(θ ′

0, β ′
0)

′ : Q(β 0)≤0 , Q̄(θ 0)≤0} .

By the Boole-Bonferroni inequality, we have:

P[β ∈ Cβ (α1)andθ ∈ Cθ (α2)] ≥ 1−P[β /∈ Cβ (α1)]−P[θ /∈ Cθ (α2)] ≥ 1−α1−α2 (3.11)

soC(β , θ)(α1, α2) is a confidence set for(β ′, θ ′)′ with level 1−α, whereα = α1 +α2. In view of
the identityθ = β +a, we can writeQ̄(θ) in (3.8) as a function ofβ anda:

Q̄(θ) = Q̄(β +a) = a′Āa+(b̄+2Āβ )′a+[c̄+ b̄′β +β ′Āβ ] ,

so that we get a confidence set with level 1−α for β anda by taking

C̄(β , a)(α) = {(β ′
0, a′0)

′ : Q(β 0) ≤ 0 andQ̄(β 0 +a0) ≤ 0} (3.12)

Thus, finite-sample inference on the structural (possibly unidentifiable) parameteracan be achieved.
Of course, ifa is not identified, a valid confidence set will cover the set of all possible values (or be
unbounded) with probability 1−α [see Dufour (1997)].
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3.4. Confidence sets for regression endogeneity parameters

We can now build “marginal” confidence sets for the endogeneity coefficient vectora. In view of the
possibility of identification failure, this is most easily done by projection techniques. Letg(β , a) be
any function ofβ anda. Since the event(β , a) ∈ C̄(β , a)(α) entailsg(β , a) ∈ g[C̄(β , a)(α)], where
g[C̄(β , a)(α)] = {g(β , a) : (β , a) ∈ C̄(β , a)(α)}, we have:

P
[

g(β , a) ∈ g[C̄(β , a)(α)
]

≥ P[(β , a) ∈ C̄(β , a)(α)] ≥ 1−α . (3.13)

On takingg(β , a) = a∈ R
G,we see that

Ca(α) = {a : (β , a) ∈ C̄(β , a)(α) for someβ} = {a : Q̄(β +a) ≤ 0 andQ(β ) ≤ 0 for someβ}

is a confidence set with level 1−α for a.
When G = 1, the matricesA, Ā, b, b̄, c and c̄ in (3.8) reduce to scalars, and the different

confidence sets take the following simple forms:

Cβ (α1) =
{

β : Aβ 2 +bβ +c≤ 0
}

, Cθ (α2) = {θ : Āθ 2 + b̄θ + c̄≤ 0} , (3.14)

Ca(α) = {a : Aβ 2 +bβ +c≤ 0, Āa2 +(b̄+2Āβ )a+[c̄+ b̄β + Āβ 2] ≤ 0} . (3.15)

Closed forms for the setsCβ (α1) andCθ (α2) are easily derived by finding the roots of the second-

order polynomial equationsAβ 2+bβ +c= 0 andĀθ 2+ b̄θ + c̄= 0 [as in Dufour and Jasiak (2001)],
while the setCa(α) can be obtained by finding the roots of the equation

Āa2 + b̄(β )a+ c̄(β ) = 0 whereb̄(β ) = b̄+2Āβ andc̄(β ) = c̄+ b̄β + Āβ 2 , for eachβ ∈ Cβ (α1).

We shall now focus on building confidence sets for scalar linear transformationsg(a) = w′a =
w′θ −w′β , wherew is aG×1 vector. Conceptually, the simplest approach consists in applying the
projection method toCa(α), which yields the confidence set:

Cw′a(α) = gw[Ca(α)] = {d : d = w′a for somea∈ Ca(α)}
= {d : d = w′a , Q̄(β +a) ≤ 0 andQ(β ) ≤ 0 for someβ} .

But it will be more efficient to exploit the linear structure of model (2.15), which allows one to build
a confidence interval forw′θ .

Following Dufour and Taamouti (2005, 2007), confidence sets forgw(β ) = w′β andgw(θ) =
gw = w′θ can be derived fromCβ (α1) andCθ (α2) as follows:

Cw′β (α1) ≡ gw[Cβ (α1)] = {x1 : x1 = w′β , Q(β ) ≤ 0} = {x1 : x1 = w′β , β ′Aβ +b′β +c≤ 0}

whereA, b andc are defined as in (3.5). Forw′θ , we can use at−type confidence interval based on
t(γ0):

C̄w′θ (α2) ≡ ḡw[Cθ (α2)] = {γ0 : |tw′θ (γ0)| < cw(α2)} = {γ0 : |w′θ̂ − γ0| < D̄(α2)} (3.16)
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where D̄(α2) = cw(α2) σ̂(w′θ̂), σ̂(w′θ̂) = s[w′(Y′MY)−1w]1/2 with s = [y′M(Z)y]1/2/(T −G−
k)1/2, andcw(α2) is the critical value for a test with levelα2 based ontw′θ (γ0) [in (3.9)]. Setting

C(w′β , w′θ)(α1, α2) = {(x, y)′ : x∈ Cw′β (α1)andy∈ C̄w′θ (α2)} , (3.17)

we see thatC(w′β , w′θ)(α1, α2) is a confidence set for(w′β , w′θ) with level 1−α1−α2:

P[(w′β , w′θ) ∈ C(w′β , w′θ)(α1, α2)] = P[w′β ∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)] ≥ 1−α (3.18)

whereα = α1+α2. For any pointx∈R and any subsetA⊆R, setx−A= {z∈R : z= x−yandy∈
A}. Sincew′a = w′θ −w′β , it is clear that

(w′β , w′θ) ∈ C(w′β , w′θ)(α1, α2) ⇔ w′θ −w′a∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)

⇔ w′a∈ w′θ −Cw′β (α1) andw′θ ∈ C̄w′θ (α2) ,

P[w′a∈ w′θ −Cw′β (α1) andw′θ ∈ C̄w′θ (α2)] = P[w′β ∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)]
≥ 1−α1−α2 .

Now, consider the set

Cw′a(α1, α2) = {z∈ R : z∈ y−Cw′β (α1) for somey∈ C̄w′θ (α2)} . (3.19)

Since the event{w′a∈ w′θ −Cw′β (α1) andw′θ ∈ C̄w′θ (α2)} entailsw′a∈ Cw′a(α1, α2), we have:

P[w′a∈ Cw′a(α1, α2)] ≥ P[w′β ∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)] ≥ 1−α1−α2 (3.20)

andCw′a(α1, α2) is a confidence set with level 1−α1−α2 for w′a.
SinceC̄w′θ (α2) is a bounded interval, the shape ofCw′a(α1, α2) can be deduced easily by using

the results given in Dufour and Taamouti (2005, 2007). We focus on thecase whereA is nonsingular
[an event with probability one as soon as the distribution ofAR(β 0) is continuous] andw 6= 0. Then
the setCw′β (α1) may then rewritten as follows: ifA is positive definite,

Cw′β (α1) =
[

w′β̃ −D(α1), w′β̃ +D(α1)
]

, if d ≥ 0,

= /0, if d < 0,

whereβ̃ = −1
2A−1b, d = 1

4b′A−1b− c andD(α1) =
√

d(w′A−1w); if A has exactly one negative
eigenvalue andd < 0,

Cw′β (α1) =
]

−∞ , w′β̃ −D(α1)
]

∪
[

w′β̃ +D(α1) , +∞
[

, if w′A−1w < 0 ,

= R\{w′β̃} , if w′A−1w = 0 ;
(3.21)

otherwise,Cw′β (α1) = R. Cw′β (α1) = /0 corresponds to a case where the model is not consistent
with the data [so thatCw′a(α1, α2) = /0 as well], whileCw′β (α1) = R andCw′β (α1) = R\{w′β̃}
indicate thatw′β is not identifiable and similarly forw′a [so thatCw′a(α1, α2) = R]. This yields the
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following confidence sets forw′a : if A is positive definite,

Cw′a(α1, α2) =
[

w′(θ̂ − β̃ )−DU(α1, α2) , w′(θ̂ − β̃ )+DU(α1, α2)
]

, if d ≥ 0,

= /0, if d < 0,
(3.22)

whereDU(α1, α2) = D(α1)+ D̄(α2); if A has exactly one negative eigenvalue,w′A−1w < 0 and
d < 0,

Cw′a(α1, α2) =
]

−∞ , w′(θ̂ − β̃ )−DL(α1, α2)
]

∪
[

w′(θ̂ − β̃ )+DL(α1, α2) , +∞
[

(3.23)

whereDL(α1, α2) = D(α1)− D̄(α2); otherwise,Cw′a(α1, α2) = R. These results may be extended
to cases whereA is singular, as done by Dufour and Taamouti (2007).

3.5. Exact Monte Carlo identification-robust tests with non-Gaussian errors

Suppose now that the conditional distribution ofυ (givenX) is continuous, so that the conditional
distribution ofAR(β 0) under the null hypothesisHβ (β 0) is also continuous. We can then proceed
as follows to obtain an exact Monte Carlo test ofHβ (β 0) with level α (0 < α < 1):
(1) chooseα∗ andN so thatα =

(

I [α∗N]+1
)

/(N+1) ;
(2) for givenβ 0, compute the test statisticAR(0)(β 0) based on the observed data;

(3) generateN i.i.d. error vectorsυ( j) = [υ( j)
1 , . . . , υ( j)

T ]′, j = 1, . . . , N , according to the specified
distribution ofυ |X , and compute the corresponding statisticAR( j), j = 1, . . . , N, following (3.4);
note the distribution ofAR(β 0) does not depend on the specific valueβ 0 tested, so there is no need
to make it depend onβ 0;
(4) compute the simulatedp-value function: ˆpN[x] = {1+ ∑N

j=11[AR( j) ≥ x]}/(N + 1), where
1[C] = 1 if conditionC holds, and1[C] = 0 otherwise;
(5) reject the null hypothesisHβ (β 0) at levelα when p̂N[AR(0)(β 0)] ≤ α.

Under the null hypothesisHβ (β 0), P
[

p̂N[AR(0)(β 0)]≤ α
]

= α , so that we have a test with level
α. If the distribution of the test statistic is not continuous, the MC test procedure can easily be
adapted by using “tie-breaking” method described in Dufour (2006).4 Correspondingly, a confi-
dence set with level 1−α for β is given by the set of all valuesβ 0 which are not rejected by the
above MC test. More precisely, the set

Cβ (α) =
{

β 0 : p̂N[AR(0)(β 0)] > α
}

(3.24)

is a confidence set with level 1−α for β . On noting that the distribution ofAR(β 0) does not depend
on β 0, we can use a single simulation for all valuesβ 0: setting f̂N(α∗) = F̂−1

N (1−α∗) , the set

Cβ (α; N) =
{

β 0 : AR(0) < f̂N(α∗)
}

(3.25)

4Without the correction for continuity, the algorithm proposed for statistics withcontinuous distributions yields a
conservative test,i.e. the probability of rejection under the null hypothesis is not larger than the nominal level(α1).
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is equivalent toCβ (α) – with probability one – and so has level 1−α. On replacing> and< by≥
and≤ in (3.24) - (3.25), it is also clear that the sets

{

β 0 : p̂N[AR(0)(β 0)] ≥ α
}

and

C̄β (α; N) = {β 0 : AR(0)(β 0) ≤ f̂N(α∗)} (3.26)

constitute confidence sets forβ with level 1−α (though possibly a little larger than 1−α). The
quadric form given in (3.5) also remains valid withf (α) = f̂N(α∗).

4. Asymptotic theory for inference on endogeneity parameters

In this section, we examine the validity of the procedures developed in Section3 under weaker
distributional assumptions, and we show how inference on covariance endogeneity parameters can
be made. On noting that equations (3.2) and (2.15) constitute standard linear regression models (at
least under the null hypothesisβ = β 0), it is straightforward to find high-level regularity conditions
under which the tests based onAR(β 0) andFθ (θ 0) are asymptotically valid.

ForAR(β 0), we can consider the following general assumption.

Assumption 4.1 When the sample size T converges to infinity, the following convergence results

hold jointly: (a) 1
T X′u

p→ 0; (b) 1
T u′u

p→ σ2
u > 0, 1

T X′X
p→ ΣX with det(X′X) 6= 0; (c) 1√

T
X′u

L→
ψXu, ψXu ∼ N

[

0, σ2
uΣX

]

, where X= [X1, X2] .

The above conditions are easy to interpret: (a) represents the asymptotic orthogonality between
u and the instruments inX, (b) may be viewed as laws of large numbers foru andX, while (c) is a
central limit property. Then, it is a simple exercise to see that

AR(β 0)
L→ χ2(k2)/k2 , whenβ = β 0 . (4.1)

Similarly, for Fθ (θ 0), we can suppose the following.

Assumption 4.2 When the sample size T converges to infinity, the following convergence results

hold jointly: (a) 1
T Z′e

p→ 0; (b) 1
T e′e

p→ σ2
e > 0, 1

T Z′Z
p→ ΣZ with det(Z′Z) 6= 0; (c) 1√

T
Z′e

L→
ψZe, ψZe∼ N

[

0, σ2
eΣZ

]

, where Z= [Y, X1, X2] .

Then
Fθ (θ 0)

L→ χ2(G)/G, whenθ = θ 0 . (4.2)

The asymptotic distributions in (4.1) and (4.2) hold irrespective whether the instrumentsX are weak
or strong. Further, as soon as assumptions 4.1 and 4.2 hold, the confidence procedures described in
Section 3 remain “asymptotically valid” withf (α1) = χ2(α1; k2)/k2 and f̄ (α2) = χ2(α2; G)/G,
whereχ2(α1; k2) andχ2(α2; G) are respectively the 1−α1 and 1−α2 quantiles of the correspond-
ing χ2 distributions. Of course, the Gaussian-based Fisher critical values may also be used (for they
converge to the chi-square critical values asT → ∞).

We can now consider inference for covariance endogeneity parameters σVu. The problem of
building confidence sets forσVu is especially important for assessing partial exogeneity hypotheses.
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Sincea j = 0, j = 1, . . . ,G does not entailσuV j = 0(where 1≤ j ≤ G), confidence sets on the
components ofa cannot directly be used to assess for example, the exogeneity of each regressor
Yj , j = 1, . . . ,G. Confidence sets and tests forσuV can be deduced from those ona through the
relationshipσVu = ΣVa given in (2.9). On replacinga by Σ−1

V σVu in Ca(α), we see that the set

CσVu(α; ΣV) = {σVu ∈ R
G : σVu = ΣVa anda∈ Ca(α)}

= {σVu ∈ R
G : Q̄(β +Σ−1

V σVu) ≤ 0 andQ(β ) ≤ 0 for someβ} (4.3)

is a confidence set with level 1−α for σVu. This set is simply the image ofCa(α) by the linear
transformationg(x) = ΣVx. The difficulty here comes from the fact thatΣV is unknown. LetΣ̂V =
V̂ ′V̂/(T−k) whereV̂ = M(X)Y is the matrix of least-squares residuals from the first-step regression
(2.2). Under standard regularity conditions, we have:

Σ̂V
p→ ΣV (4.4)

where det(ΣV) > 0. If β 0 anda0 are the true values ofβ anda, the relationsθ 0 = β 0 + a0 and
σVu0 = ΣVa0 entail thatFθ (θ 0) can be rewritten as follows:

Fθ (β 0 +Σ−1
V σVu0) =

(θ̂ −β 0−Σ−1
V σVu0)

′(Y′MY)(θ̂ −β 0−Σ−1
V σVu0)/G

y′M(Z)y/(T −G−k)
. (4.5)

ReplacingΣV by Σ̂V , we get the approximate pivotal functionFθ (β 0 + Σ̂−1
V σVu0). If (4.4) holds,

it is easy to see (by continuity) thatFθ (β 0 + Σ̂−1
V σVu0) and Fθ (β 0 + Σ−1

V σVu0) are asymptoti-
cally equivalent with a nondegenerate distribution, whenβ 0 andσVu0 are the true parameter val-
ues. Consequently, the confidence set of typeCσVu(α) based onFθ (β 0 + Σ̂−1

V σVu0) as opposed to
Fθ (β 0 + Σ−1

V σVu0) has level 1−α asymptotically. This set is simply the image ofCa(α) by the
linear transformation ˆg(x) = Σ̂Vx, i.e.

CσVu(α; Σ̂V) = {σVu ∈ R
G : Q̄(β + Σ̂−1

V σVu) ≤ 0 andQ(β ) ≤ 0 for someβ} . (4.6)

Finally, confidence sets for the components ofσVu, and more generally for linear combinations
w′σVu, can be derived from those onw′a as described in Section 3.4. ForΣV given, the relation
σVu = ΣVa entails that a confidence set forw′σVu (with level 1−α) can be obtained by computing
a confidence set (at level 1−α) for w′

1a with w1 = ΣVw. WhenΣV is estimated bŷΣV , takingw1 =
Σ̂Vw yields a confidence set forσVu with level 1−α asymptotically.

5. Empirical applications

We will now apply the methods proposed above to three empirical examples: a model of the relation
between trade and economic growth, previously studied in Frankel and Romer (1999) and Dufour
and Taamouti (2007); and two models of the returns to educations, the well-known study of Bound
et al. (1995), and an alternative model considered by Card (1995) and Kleibergen (2004, Table 2, p.
421).
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5.1. Trade and growth

The trade and growth model studies the relationship between standards of living and openness.
Frankel and Romer (1999) argued that trade share (ratio of imports or exports to GDP) which is the
commonly used indicator of openness may be endogenous. The equation studied is given by:

ln(Incomei) = β 0 +βTradei + γ1ln(Popi)+ γ2ln(Areai)+ui , i = 1, . . . , N (5.1)

where Income is the income per capita, Trade is measured as a ratio of imports and exports to
GDP, Pop is the logarithm of the country population, and Area is the logarithm of the country area.
The instrument suggested is constructed on the basis of geographic characteristics. The first stage
equation is then given by:

Tradei = b0 +b1Zi +c1Popi +c2Areai +Vi , i = 1, . . . , N, (5.2)

whereZi is a constructed instrument. We use the sample of 150 countries and the data are for 1985.
Dufour and Taamouti (2005) showed that the fitted instrument in this sample is not very weak.5

The identification-robust confidence intervals with level 97.5% forβ andθ = β 1 + a, that re-

sult on invertingAR(β 0) andtθ (γ0) are given by:Cβ (α) =
{

β 0 : 0.23β 2
0−4.76β 0 +0.04≤ 0

}

=

[0.01, 20.62] andCθ (α) = [−0.05, 0.47]. The results reported are based on the critical values of
theF-distributions of Section 3. The Monte Carlo method as described in Section 3.5gives similar
results even with 1000 replications. We see thatCβ (α) is a bounded interval, thus confirming that
identification is not weak in this model. The estimates of regression and covariance endogeneity
parameters are given by ˆa = −1.82 andσ̂uV = −0.38, respectively. The confidence intervals6 with
level 95% fora andσVu are given by:

Ca(α) = [−20.67, 0.46] and CσVu(α) = [−4.33, 0.09].

Both confidence intervals are bounded and contain the estimates ofa andσVu from observed data.
Both confidence intervals, though include zero, are left skewed at zero. In particular, the upper
bound forCσVu(α) is very close to zero. So the true covariance and regression endogeneity pa-
rameters can be actually large, thus indicating the importance of omitting variablesbias (fora) and
trade share endogeneity (forσVu). The latter is likely plausible as the discrepancy between the OLS
estimate ofβ (β̂ OLS= 0.28) and the 2SLS estimate (β̂ 2SLS= 2.03) is relatively large.

5.2. Angrist-Krueger model of education and earnings

We now consider the problem of estimating the returns to schooling. The modelstudies a relation-
ship between log weekly earning and the number of years of education andseveral other covariates
(age, squared age, year of birth, ... ). Several authors including Angrist and Krueger (1991) ar-
gued that schooling may be endogenous in this model and proposed to use the birth quarter as an

5TheF-statistic in the first stage (5.2) is about 13, see also Frankel and Romer(1999, Table 2, p.385).
6Note that the confidence interval with level 95% fora andσVu, obtained on invertingAR(β 0) andFθ (θ0) are similar

to those reported here.
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Table 1. Projection-based confidence sets for different parameters inearning equation

AR-type CS’s 97.5% 95%
Cβ 1

(α) {β 1 : −2.382β 2
1 +0.332β 1−0.107≤ 0} {β 1 : −2.229β 2

1 +0.31β 1−0.1≤ 0}
= R = R

Cθ (α) {θ : 3.527θ 2−0.5θ +0.018≤ 0} {θ : 3.527θ 2− .5θ +0.018≤ 0}
= [0.0701, 0.0716] = [.0702, .0715]

Cθ (α) based ontw′θ (γ0) [.0707, .0710] [.0707, .0710]
Projection-based CS’s 95% 90%

Ca(α) R R

CσVu(α) R R

instrument to estimate the returns to schooling consistently. The reason is individuals born in the
first quarter of the year start school at an older age, and can therefore drop out after completing less
schooling than individuals born near the end of the year. Hence, individuals born at the beginning
of the year are likely to earn less than those born during the rest of the year. Bound et al. (1995)
however, showed that the quarter of birth instruments are very weak. InDoko Tchatoka and Dufour
(2011b, 2011a), we show that DWH tests cannot detect the endogeneityof schooling in this model,
since the instruments have poor quality [see Dufour and Taamouti (2007)].

Here, we assess whether schooling is exogenous by using the projectionmethod developed in
this paper. The model is specified by

y = β 0 +β 1E +
k1

∑
i=1

γ iXi +u, (5.3)

E = π0 +
k2

∑
i=1

π iZi +
k1

∑
i=1

φ iXi +V (5.4)

wherey is log-weekly earnings,E is the number of years of education (possibly endogenous),X
contains the exogenous covariates (age, age squared, 10 dummies for birth of year). Z contains
40 dummies obtained by interacting the quarter of birth with the year of birth. In this model,β 1
measures the return to education. The data set consists of the 5% public-use sample of the 1980 US
census for men born between 1930 and 1939. The sample size is 329 509 observations.

Table 1 presents the results. We observe thatCβ (α) is unbounded indicating thatβ is not
identified. However,Cθ (α) is bounded The latter result confirms the fact thatθ is always identified
even if identification is weak (weak instrument). As a result,Ca(α) andCσVu(α) are unbounded in
all cases. That indicates clearly that identification is an issue in this model.

5.3. Card model of education and earnings

We will also apply the methods proposed to the following alternative model studiedby Card (1995)
for the return of education to earnings:
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yi = Y1iβ 1 +Y2iβ 2 +Y3iβ 3 +X′
1iγ +ui , (5.5)

(Y1i , Y2i , Y3i) = X′
1iΠ1 +X′

2iΠ2 +Vi , (5.6)

whereY1i is the length of education of individuali, (Y2i , Y3i) = (experi , exper2i ) contains the ex-
perience (exper) and experience squared of individuali where experi = agei − 6−Y1i ; X1i =
(1, racei , smsai , southi)′ consists of a constant and indicator variables for race, residence in a
metropolitan area, and residence in the south of the United States; andyi is the logarithm of the
wage of individuali. All variables inX1 are assumed exogenous.X2i is the vector of instruments
that containsage, age2 of individual i, and proximity-to-college indicators for educational attain-
ment; these areproximity to 2- and 4-year college.Kleibergen (2004, Table 2, p. 421) shows
that the proximity-to-college indicator instruments are not very strong. Hence, it is important to be
careful when interpreting the 2SLS estimates of this model. We follow the methodology developed
in this paper for building projection-based confidence intervals of the components of the regression
and covariance endogeneity parametersa = (a1,a2,a3)

′ andσVu = (σVu1,σVu2,σVu3)
′.

The data analyzed are from the National Longitudinal Survey of Young Men (from 1966 to
1981). We use the cross-sectional 1976 subsample which contains 3010observations. After ac-
counting for missing data, the final sample has 2061 observations. The variables contained in the
data set are: two variables indicating the proximity to college, the length of education, log wages,
experience, IQ score, age, racial, metropolitan, family, and regional indicators.

To build confidence sets with level 95% fora and σVu, we take α1 = α2 = 0.025. The
identification-robust confidence sets with level 97.5% for β = (β 1, β 2, β 3)

′ andθ = β +a, based
on inverting AR(β 0) and Fθ (θ 0) are given by: Cβ (α) =

{

β 0 : β ′
0Aβ 0−b′β 0 +0.37≤ 0

}

and
Cθ (α) =

{

θ 0 : θ ′
0Āθ 0 + b̄′θ 0 +0.63≤ 0

}

, where

A =





0.7 6.17 87.34
6.14 170.88 3210.82
87.34 3210.82 61730.62



 , Ā =





770.72 −770.70 −13287.73
−770.70 770.72 13287.70
−13287.73 13287.70 270277.74



 , (5.7)

b = (−0.8,−15.62,−285.9)′ andb̄ = (−33.59,33.59, 838.17)′.The matrixA has exactly one neg-
ative eigenvalue, while all eigenvalues ofĀ are positive. Hence,Cβ (α) is an unbounded ellipsoid,
while Cθ (α) is a bounded ellipsoid, thus confirming thatθ is identified whileβ is not. Then, for
any scalar linear transformationsw′θ , a confidence set with level 1−α2 is given by (3.16) witĥθ =
(

0.279, 0.312, −0.003
)

andD̄(α2) = 0.72[w′(Y′MY)−1w]1/2. Forw′β , we can obtain a projection-
based confidence set with level 1− α1 by using (3.21) withβ̃ =

(

− 0.361, 0.218, −0.010
)

,

d = −1.55 < 0 andD(α1) = [−1.55w′A−1w]1/2 whenw′A−1w < 0. For inference ona, we also
use the following estimates:

â =





−0.102
0.102
−0.004



 , σ̂Vu =





−0.492
0.492
7.634



 , Σ̂V =





3.76 −3.75 −64.75
−3.75 3.74 64.76
−64.75 64.76 1317.14



 .

The 2SLS estimate ofβ is β̂ 2SLS= (0.190, 0.019, 0.001)′, and the eigenvalues of̂Π ′
2Π̂2, whereΠ̂2

is the OLS estimate ofΠ2 from (5.6), are:(0.0003, 0.095, 3858.326). The value 0.0003 is quite
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Table 2. Card model of education and earnings
Projection-based confidence intervals for endogeneity parameters (95% level)

Without IQ variable

Regression endogeneity Covariance endogeneity

Ca1 ]−∞,0.47]∪ [1.45,+∞[ CσVu1 ]−∞,0.41]∪ [9.08,+∞[

Ca2 ]−∞,−0.12]∪ [−0.03,+∞[ CσVu3 ]−∞,−9.08]∪ [−0.41,+∞[

Ca3 ]−∞,0.002]∪ [0.03,+∞[ CσVu3 ]−∞,−165.35]∪ [−7.65,+∞[

With IQ variable

Ca1 ]−∞,0.55]∪ [0.73,+∞[ CσVu1 ]−∞,0.24]∪ [3.19,+∞[

Ca2 R CσVu3 ]−∞,−3.19]∪ [−0.24,+∞[

Ca3 ]−∞,0.001]∪ [0.013,+∞[ CσVu3 ]−∞,−52.05]∪ [−4.37,+∞[

close to zero, which suggests instruments are weak.7

Table 2 presents the projection-based confidence intervals with level 95%for individual compo-
nents of endogeneity parameters (a andσVu). In the first part of the table, theIQ variable is omitted
from the model, and it is included in the second part. The results are similar with and without this
variable: the confidence intervals for all components ofa andσVu are unbounded. So, all compo-
nents of both endogeneity parameters are weakly identified. While the estimate of a3 (â3 =−0.004)
seems very close to zero, the corresponding covariance estimateσ̂Vu3 = 7.634 is relatively large,
which confirms the fact thatai = 0 does necessarily not implies thatσVui = 0, as argued in Section
2.1. All confidence intervals, thought unbounded, contain zero, suggesting that there is not enough
information from the data to: (1) support the presence of bias due to omitted variables (regression
endogeneity parametersai , i = 1,2,3, measure the importance of omitted variables), and (2) reject
the partial exogeneity of theschoolingandexperiencevariables (covariance endogeneity parame-
tersσVui, i = 1,2,3, measure the endogeneity of the corresponding variableYi). Meanwhile, though
zero belongs to the 95% confidence intervals of all these parameters, it maybe the case that the
true values of these parameters are actually large, because the the 95% corresponding confidence
intervals are unbounded. So, the use of the standardt-type statistics based on the estimates ofa
and σVu in the extended regression (2.14), whereV is replace byV̂ = MY, to build confidence
intervals for scalar linear transformationsw′a andw′σVu can be misleading when identification is
weak. The Monte Carlo simulations indicate that sucht-type confidence intervals have poor cover-
age probabilities (which may even be equal to zero) when identification is weak, while the coverage
probabilities of the projection method developed in this paper are always above 1−α irrespective
of whether identification is strong or weak, whereα is the nominal level.

7The results reported are based on the critical values of theF-distributions of Section 3. The Monte Carlo method as
described in Section 3.5 gives similar results even with 1000 replications, for both (1) Gaussian errors, and (2) Student-
type errors with three degrees of freedom.
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6. Conclusion

In this paper, we have studied the problem of testing hypotheses and building confidence sets on
endogeneity parameters. Such parameters have both intrinsic and statisticalinterest, because they
represent the effect of “common factors” which induce simultaneity and determine simultaneity bi-
ases (along with other features of the data). We stressed the usefulnessof distinguishing betweenre-
gression endogeneity parameters(a) andcovariance endogeneity parameters(σVu): regression en-
dogeneity parameters measure the effect of “missing variables” in linear structural equations, while
covariance endogeneity parameters directly indicate which variables may betreated as “exogenous”
in statistical inference. Further, regression endogeneity parameters maybe tested relatively easily,
and we proposed finite-sample inference methods for these. Inferenceon covariance endogeneity
parameters involves additional nuisance parameters (e.g., the unknown covariance matrixΣV), so
only asymptotically justified methods were given forσVu.

The identification of endogeneity parameters was also discussed. After formulating necessary
and sufficient conditions for the identification of such parameters, we observed a simple equivalence
between the identification of individual regression endogeneity parameters (ai) and the identifica-
tion of the corresponding structural parameters(β i), while this feature does not hold for covariance
endogeneity parameters. In view of the possibility of identification failure, identification-robust
inference procedures were proposed for endogeneity parameters.For joint hypotheses involving
structural and regression endogeneity parameters, as well as marginalhypotheses on regression en-
dogeneity parameters, finite-sample procedures were proposed. Under Gaussian errors, the tests
and confidence sets are based on standard Fisher critical values. Fora wide class of parametric non-
Gaussian errors (possibly heavy-tailed), exact Monte Carlo procedures can be applied using the
statistics considered. As a special case, this result also holds for usualAR-type tests and confidence
sets on structural coefficients.

We showed that the proposed finite-sample procedures (e.g., those based on a Gaussian as-
sumption on the errors) remain asymptotically valid under weaker distributionalassumptions. Tests
of partial exogeneity hypotheses (for individual potentially endogenous explanatory variables) are
covered as instances of the class of proposed procedures. The asymptotic theory also yields infer-
ence for covariance endogeneity. Even though the asymptotic theory is only approximate in finite
samples, it is robust to identification assumptions. Finally, the proposed procedures were applied to
two empirical examples: the relation between trade and economic growth, and the widely studied
problem of returns to education.
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APPENDIX

A. Proof

PROOF OFPROPOSITION3.1 On multiplying the two sides of (3.2) byM andM1−M, we see
that:

M(y−Yβ 0) = Mu+MV(β −β 0) ,

(M1−M)(y−Yβ 0) = M1X2Π2(β −β 0)+(M1−M)u+(M1−M)V(β −β 0) . (A.1)

When Assumption 3.1 holds andβ = β 0, this entails:

M(y−Yβ 0) = σ(X)Mυ, (M1−M)(y−Yβ 0) = σ(X)(M1−M)υ.

Thus, theAR-statistic in (3.3) can be rewritten as:

AR(β 0) =
σ(X)2υ ′(M1−M)υ/k2

σ(X)2υ ′Mυ/(T −k)
=

υ ′(M1−M)υ/k2

υ ′Mυ/(T −k)
.

Hence, the null conditional distribution ofAR(β 0), givenX, only depends onυ andX. If normality
holds conditional onX, i.e. υ |X ∼ N[0, IT ],we haveυ ′Mυ ∼ χ2(T − k) and υ ′(M1 −M)υ ∼
χ2(k2). SinceM(M1−M) = 0, henceυ ′Mυ andυ ′(M1−M)υ are independent conditional onX.
Consequently,AR(β 0) ∼ F(k2,T −k).
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