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ABSTRACT

When some explanatory variables in a regression are ctadelaith the disturbance term, in-
strumental variable methods are typically employed to nrakable inferences. Furthermore, to
avoid difficulties associated with weak instruments, iffierttion robust methods are often pro-
posed. However, it is hard to assess whether an instrumeariable is valid in practice because
instrument validity is based on the questionable assumkiat some of them are exogenous. In
this paper, we focus on structural models and analyze theetefof instrument endogeneity on
two identification-robust procedures, the Anderson-Ri(b#19, AR) and the Kleibergen (2002, K)
tests, with or without weak instruments. Two main setupscaresidered: (1) the level of “instru-
ment” endogeneity is fixed (does not depend on the samplg aize (2) the instruments alecally
exogenoud.e. the parameter which controls instrument endogeneity ages zero as the sample
size increases. In the first setup, we show that both teseduves are in general consistent against
the presence of invalid instruments (hence asymptotidalglid for the hypothesis of interest),
whether the instruments are “strong” or “weak”. We also dbsccases where test consistency may
not hold, but the asymptotic distribution is modified in a whgt would lead to size distortions in
large samples. These include, in particular, cases wher2ShS estimator remains consistent, but
the AR and K tests are asymptotically invalid. In the secarids we find (non-degenerate) asymp-
totic non-central chi-square distributions in all case®] describe cases where the non-centrality
parameter is zero and the asymptotic distribution remdiassame as in the case of valid instru-
ments (despite the presence of invalid instruments). diyera results underscore the importance
of checking for the presence of possibly invalid instrumsemhen applying “identification-robust”
tests.

Key words: simultaneous equations; instrumental variables; lgoa#tak instruments; invalid in-
struments; locally exogenous instruments.
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1. Introduction

The last decade shows growing interest for so-calledk instrumentproblems in the econometric
literature,i.e. situations where “instruments” are poorly correlated vétidogenous explanatory
variables; see the reviews of Dufour (2003) and Stock, Wrigtd Yogo (2002). More generally,
these can be viewed as situations where model parametenstaicgentified or close not to being
identifiable as meant in the econometric literature [see Dufour anddH&@08)]. When instru-
ments are weak, the limiting distributions of standard $éstistics — like Student, Wald, likelihood
ratio and Lagrange multiplier criteria in structural malel often depend heavily on nuisance pa-
rameters; see.g. Phillips (1989), Bekker (1994), Dufour (1997), Staiger &tdck (1997) and
Wang and Zivot (1998). In particular, standard Wald-typecedures based on the use of asymp-
totic standard errors are very unreliable in the preseneeecak identification. As a result, several
authors have worked on proposing more reliable statistizatedures that would be applicable in
such contexts.

Interestingly, in the early days of simultaneous-equatienonometrics, Anderson and Rubin
(1949, AR) proposed a procedure which is completely rolmstetak instruments as well as to other
difficulties such as missing instruments [see Dufour (20@R)four and Taamouti (2005, 2007)].
But the AR procedure may suffer from power losses when tooyniastruments are used. So
alternative methods largely try to palliate this difficulfgr example: pseudo-pivotal LM-type and
LR-type statistics [Wang and Zivot (1998), Kleibergen (200Moreira (2003)], sample-splitting
methods [Dufour and Jasiak (2001)], approximately optimatruments [Dufour and Taamouti
(2003)], systematic search methods for identifying reduastruments and excluding unimportant
instruments [Hall, Rudebusch and Wilcox (1996), Hall anix®€2003), Dufour and Taamouti
(2003), Donald and Newey (2001)].

However, all these procedures — including the AR method y-@al the availability on valid
(exogenous) instruments. This raises the question: wipgtems to these procedures when some of
the instruments are endogenous? In particular, what hagpan invalid instrument is added to a
set of valid instruments? How robust are these inferenceggires to instrument endogeneity? Do
alternative inference procedures behave differently’24f yvhat is their relative performance in the
presence of instrument endogeneity?

We view the problem of instrument endogeneity as importaaabse it is hard in practice to
assess whether an instrumental variable is valdwhether it is uncorrelated with the disturbance
term. Instrument validity or orthogonality tests are boilt the availability of a number of undis-
puted valid instruments, at least as great as the numberrfficients to be estimated, whereas the
validity of those initial instruments is not testable.

In the econometric literature, little is known about testiqadures when some instruments are
both invalid and weak. Hahn and Hausman (2003) deal withinsthument endogeneity and weak-
ness, but they focus on estimation. Ashley (2006) proposshaitivity analysis of IV estimators
when instruments are imperfect, his results however ang applicable if the covariance between
the structural error term and some instruments is knownchvts not necessary the case as it is
showed in this paper. Analyzing the effect of instrumentlidity on the limiting and empirical
distribution of IV estimators, Kivet and Niemczyk (2006)notude that for the accuracy of asymp-



totic approximations, instrument weakness is much monéngettal than instrument invalidity and
that the realizations of IV estimators based on strong basipty invalid instruments seem usu-
ally much closer to the true parameter values than thosénelotfrom valid but weak instruments.
However, this finding of Kiviet and Niemczyk leaves open caliquestions: is it really possible
to make reliable inference with endogenous instrumentsihstsument endogeneity really more
detrimental than its weakness on inference proceduresaligeneral family of Anderson-Rubin-
type procedures? Swanson and Chao (2005) proposed a watakyient unified framework, but
they do not take into account possible invalidity of somdrimaents. Finally, Small (2007) has
recently studied the properties of tests for identifyingtrietions [Sargan (1958), Kadane and An-
derson (1977)], which can be sensitive to the use of “endmgeimstruments”, and he proposed a
sensitivity analysis to assess the importance of the isEhese results, however, do not allow for
weak identification.

In this paper, we focus on structural models and analyzeftbete of instrument endogeneity
on the Anderson and Rubin (1949) and Kleibergen (2002),testhe presence of possibly weak
instruments. After formulating a general asymptotic framek which allows one to study these is-
sues in a convenient way, we consider two main setups: (Qrteavhere the level of “instrument”
endogeneity is fixedi.g., it does not depend on the sample size), and (2) the one wineiastru-
ments ardocally exogenoud.e. the parameter which controls instrument endogeneity aujes
zero (at rat@—1/2) as the sample size increases. In the first setup, we showatietiest procedures
studied are in general consistent against the presenceadidimnstruments (hence asymptotically
invalid for the hypothesis of interest), whether the instemts are “strong” or “weak”. We also
observe there are cases where consistency may not holthebasymptotic distribution is modified
in a way that would lead to size distortions in large sampleghe second setup, asymptotic non-
central chi-square distributions are derived, and we giveditions under which the non-centrality
parameter is zero and the asymptotic distribution remdiassame as in the case of valid instru-
ments (despite the presence of invalid instruments). dlyera results underscore the importance
of checking for the presence of possibly invalid instrumsemhen applying “identification-robust”
tests.

The paper is organized as follows. Section 2 formulates tbdeinconsidered. Section 3 de-
scribes briefly the statistics. Section 4 studies the asytieistribution of the statistics (under the
null hypothesis) when some instruments are invalid. We lcmlecin section 5. Proofs are presented
in the Appendix.

2. Framework

We consider the following standard simultaneous equatimméwork, which has been the basis of
much work on inference in model with possibly weak instrutagsee the reviews of Dufour (2003)
and Stock et al. (2002)]:

y=YB+Zy+u, (2.1)

Y=XI+2ZI+V, (2.2)



wherey is aT x 1 vector of observations on the dependent variables Y1, ..., YT]’ isal x G
matrix of observations on explanatory (possibly) endogenariablesG > 1), Z is aT" x r matrix

of observations on the included exogenous variabtes; (X1, ..., X7]'isaT x k (k > G) full-
column-rank matrix of observations on (supposedly) “exmges variables” (instruments) excluded
from the structural equation (2.1),= [u1, ..., ur) andV = [Vi, ..., Vq| = [v1, ... , v are

respectivelyl” x 1 vector andl’ x G disturbance matriceg andy areG x 1 andr x 1 vectors of
unknown coefficients]/T andI” arek x G andr x G matrices of unknown coefficients. The usual
necessary and sufficient condition for identification o$timodel isrank(17) = G'.

Since we focus on the parametgin our analysis, we can simplify the presentation of theltssu
without notable loss of generality by setting= 0 andI" = 0, so thatZ drops from the model.
With this simplification, model (2.1)-(2.2) reduces to

y=Y0+u, (2.3)
Y=XIT+V. (2.4)
We also assume that
u=V/at+e,t=1,...,T, (2.5)
Xe=Xe+Wy, t=1,...,T, (2.6)
u=Whb+e, t=1,...,T, (2.7)
where Xy = [Xo1, ..., Xor| is aT x k matrix of exogenous variables; is uncorrelated with

Vi, ande; are uncorrelated with; . V; andW; have mean zero and covariance matriggsand
Yw,e; ande; have mean zero and varianegsando? respectively, whilex andb areG x 1 and
k x 1 vectors of unknown coefficients. (2.5)-(2.7) can be reemitin matrix form as:

u=Va+e, (2.8)

X=Xo+W, (2.9)

u=Wb+e, (2.10)

whereX| is uncorrelated withV, V, e ande, while W = [y, ... , Wr] is uncorrelated witla but

may be correlated witlh (whenb # 0). Soa controls the endogeneity of the variafewhereas
b represents the possible endogeneity of the instrumg&nté b = 0, the instrumentsX are valid,;
otherwise, they are invalid (endogenous). More precistly, =~ 0, i.e. there exists at least one
i such thath; # 0,7 = 1, ..., k, and the corresponding variab¥; does not constitute a valid
instrument.

We also make the following generic assumptions on the asytimfiitehaviour of model variables
[where A > 0 for a matrix A means thatd is positive definite (p.d.), and- refers to limits as
T — ol

1
T

/
ZOV 32 ] >0, (2.11)
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(2.15)

(2.16)

(2.17)

(2.18)

whereXy, is G x G fixed matrix, Xy and Xy, arek x k fixed matrices S, and.S, arek x 1 random

vectors. Note that’yy may be singular, anfl, may not be independent 6t .
From the above assumptions, it is easy to see that:

1 1
TX(’)u 2o, TX(’)e 2o,
1 X'V
=X'u = p = Zwb, T 5 Swy,

where
§=2%va, ol =dXya+o?=0>+VZywh,

Yva = Xyyb+ove, Zwb=Zwva+ owe,
YVx=2+2Xw >0, Xxy=2XxII+ 2wy,
Yy =II'YxIT + Xy + Xy I + ' Sy

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
(2.25)
(2.26)
(2.27)

Finally, we denote byV () the null set of the linear map d&* characterized by the matrixy; :

N(Zw)={z e R : Tz =0}.

(2.28)



If Xy is a full-column-rank matrix, theW (Xy,) = {0}; otherwise, there is at least ong # 0
such that¥yy zg = 0.

The setup described above is quite wide and does allow omeadp several questions associated
with the possible presence of “invalid” instruments. Intalar, an important practical problem
consists in studying the effect on inference of adding ardlid” instrument to a list of valid
(possibly identifying) instruments. Note that this prohlés distinct from studying the effect of
imposing “incorrect” overidentifying restrictions [asm®by Small (2007)]. To better see the issues
studied here, it will be useful to consider a simple example.

Example 2.1 Consider a model with one endogenous explanatory varigble- 1) and two can-
didate instrument$k = 2). ThenY andV areT x 1 vectors, X = [X;, Xo] andW = [Wy, Ws]
areT x 2 matrices,IT = 71, mo] andb = [by, bo]" are vectors of dimension 2, and

Y = XN+ V=Xm+Xomy+V, (2.29)
u = Wb+e=Wib +Wsby +e. (2.30)

Let us further assume thaf; is a valid instrument (witi?; = 0), E[u| X;] = 0, Xy = Wy,
w9 = 0 andb; = 0, wheree is independent ok; and X5, (with finite mean zero), so that

Y = XI+V=Xm+V, (2.31)
u = Wb+e=Wiby+e. (2.32)

HereW; is not a “valid” instrument whehsy # 0. But the structural equation (2.3) may in principle
be estimated using onl¥; as an instrument, becauBg: | X;| = 0; if X is not a weak instrument
(m1 # 0) and satisfies usual regularity conditions, a consisteninast of 5 can be obtained.
Among other things, we study below the effect (on some ifieation-robust tests) of taking, as

an instrument wheb, # 0, i.e. whenXj is correlated with.. Note that the conditio®[u | X;] = 0
does not entaiE[e | X1, X2] = 0, which is a maintained hypothesis used by Small (2007). So the
problem considered here is distinct from the problem ofrigsiveridentifying restrictions [studied,
for example, by Sargan (1958), Kadane and Anderson (19¢7parall (2007)].

3. Test statistics
We consider in this paper the problem of testing
Hy:p=p, (3.1)

where some of the “instruments” used are in fact endogebys 0). We analyze the behavior
of the Anderson-Rubin and Kleibergen statistics. The Asolerand Rubin (1949) test fd{, in
equation (2.3) involves considering the transformed eguoat

y—YBy=XA+e (3.2)



whereA = I1(§ — (,) ande = u + V(5 — ;). Hy can then be assessed by testifig: A = 0.
The AR-statistic forH, is given by

1 (y=YB) Px(y—Yp)
k(y—YBy)Mx(y —YB)/(T k)

whereMp = I — Pg and Pg = B(B'B)~!' B’ is the projection matrix on the space spanned by
the columns ofB. If b = 0, the asymptotic distribution of ARS,) is a x?(k)/k under Hy. If
furthermoreu ~ N[0, 0%Ir] and X is independent ofi, then AR(3,) ~ F(k,T — k) underHy
irrespective of whether the instruments are strong or wéltkwever, when some instruments are
invalid, the distribution of the AR statistic may be affette

Kleibergen (2002) proposed a modification of the AR statisiitake into account the fact that
this statistic may have low power when there are too manyunstnts in the model. The modified
statistic for testingdy can be written

AR(Bo) = (3.3)

(y — Yﬂo)lpf/(ﬁo)(y —YBy)

KBo) = G =V Boyainly - YB0) /T — ) (3.4)

where e
Y(By) = XII(By), H(By) = (X'X) ' X" |V — (y — Yﬂo)% , (3.5)
SualBo) = (4 — Y Bo) Mx (4 — Y ) » Suv(Bo) = m——(y — Yo/ MxY . (3.6)

T—k T—-k

Unlike the AR statistic which projectg — Y 3, on thek columns of X, the K statistic projects
y — Y3, on theG columns of X II(3,). If the instrumentsX are exogenouslI(j,) is both a
consistent estimator dff and asymptotically independent &f (y — Y 3,) underHy, and K ()
converges to a?(G). However, if some instruments are invalitl ¢ 0), I1(5,) may not be
asymptotically independent df’(y — Y 3,) and the asymptotic distribution of the K statistic may
not be ay?(G).!

If the model contains only one instrument and one endogewaiigble (G = k = 1), the AR
and K statistics are equivalent and pivotal even in finiteamwheneveb = 0. Whenk > 1, even
if b = 0, the K statistic is not pivotal in finite samples but is asyotigtlly pivotal, whereas the AR
statistic is pivotal even in finite samples (wh&nis independent of). Following Staiger and Stock
(1997), we refer to thiocally weak-instrumendasymptotic setup by considering a limiting sequence
of 1T wherell is local-to-zero. We also consider a limiting sequenceé whereb is local-to-zero.
We refer to this later limiting sequence lasally exogenouistruments asymptotic.

We do not study this paper conditional tests such as thogmged by Moreira (2003), because the distributional
theory for such tests is considerably more complex and wgaldeyond the scope of a short paper like the present one.



4. Asymptotic theory with invalid and weak instruments

In this section, we study the large-sample properties ofthgstics described above when some
of the instruments used are invalid. Two setups are coresideThe first is the possibly invalid
instrument setupi.e., the endogeneity parameteris a fixed vector. The second is the locally
exogenous instrument setug., b is local-to-zero.

4.1. Possibly invalid instruments

We consider first the case where the endogeneity paramétex constant vector and we analyze
the asymptotic distributions of the statistics. Our resalbver both strong and weak-instrument
asymptotic. Theorem.1 below summarizes the asymptotic behavior of th& statistic when

some instruments may be endogenous. For a random vafablese distribution depends on the

sample sizd'’, the notationS L oo means thaP[S > z] — 1 asT — oo, for anyz.

Theorem 41 ASYMPTOTIC DISTRIBUTION OF THEAR STATISTIC.  Suppose that the as-
sumptions(2.3)-(2.18) hold, withb = by and 8 = 3,, whereb, and 3, are given vectors. If
b() ¢ N(Zw), then

AR(By) & +o0. (4.1)
If by € N(Xw ), then
AR(B,) & k%%(se +55) 51 (Se + ) 4.2)
whereS, and S, are defined in2.17)-(2.18). If by = 0, then
AR(By) B (k). (4.3

In the above theorem, no restriction is imposed on the rarK.ofin particular, the result holds
even if IT is not a full-column rank matrix. Wheby, ¢ N (X} ), the AR statistic diverges under
the null hypothesig?y. Whenby, € N (X ), the limiting distribution of the AR statistic does not
diverge, but the AR test is not valid unleSg = 0. Of course, wheth, = 0 — which is the classical
exogenous instrument setudy = 0 and the AR test is asymptotically valid.

Theorem4.2 below summarizes the asymptotic behavior of the K statigtien some instru-
ments are possibly invalid.

Theorem 4.2 ASYMPTOTIC DISTRIBUTION OF THEK STATISTIC. Suppose that the assumptions
(2.3)-(2.18) hold, withb = by and 5 = 3,,, whereby and 3, are given vectors.
(A) If bo ¢ N(Ew) then

K (Bg) = +00 (4.4)

when at least one of the following two conditions hol@g: IT = 1T, # 0 with rank( Zxy) = G,
or (ii) IT = ITo/~/T with rank( £%,.) = G, where

xy = Zxy — Zwbolquv/32), Dky = Zwv — Zwbo(qu/52),



v = 0 =W EwE Zwy, 62=02 —bEwIy Swho.

(B) If by € N(Zyw ), then

K(Bo) & =5 (Se + 95) S5 Zxv (Zey 5 Exv) ™ Doy 51 (Se + Sb) (4.5)

2
Ou

whenIl = IIy # 0 andrank( XY'xy) = G, and
1 _ _ _ —
K (By) = —5(Se + S0)' 2" Swv (Ziy 2" Swv) ' Dy Iy (Se + 5) (46)

whenlIT = IT,/v/T andrank Zyv) = G. (C) If by = 0, then
K(By) % X*(G) @7

when at least one of the following two conditions holdsI{i}= 11y # 0 withrank X'xy ) = G, or
(i) IT = ITy/\/T with rank( Zyv) = G

Unlike Theoremd.1 for the AR statistic, Theorem.2 requires an additional rank assumption.
Whenby ¢ N (Xw ), the null limiting distribution of the K statistic diverge$his means that the K
test often rejectdd, asymptotically wherby ¢ N (Xy). Furthermore, whehy, € N (X ), the K
test is not asymptotically valid unlesg = 0. As expected, iby = 0 (i.e., S, = 0), the K statistic
converges to 2(G). It is worthwhile to note that the case where the rank assiomiiils [e.g,
the partial identification of] is not covered in this paper.

Finally, it is interesting to observe that the limiting valof the two-stage least-squares (2SLS)
estimator ofs,

B=0V)Wy=YxxX'x)"'xv] Y x(X' X)Xy, (4.8)
is given by
plim = 3+ Sy 2 Exy] Dy E5 Zwb (4.9)
— 00

providedrank(Xxy) = G, so thatj is consistent wheh, € N (Xy ) and Zxy has full column
rank (even if some instruments are invalid)bdfe N (2 ) butby # 0, the asymptotic level of the
Anderson-Rubin and Kleibergen tests can be affected.

4.2. Locally exogenousinstruments

We consider now the case where the endogeneity parametdocal-to-zero. As in the previous
subsection, we analyze the limiting distributions of tredistics. The results also cover two setups:
locally exogenous instrumentsl = II, # 0, b = by/+/T], and weak locally exogenous instru-
ments[IT = ITo//T, b = by//T]. Theoremd.3 and Theoremd.4 below derive the distributions of
the statistics for both setups.



Theorem 4.3 ASYMPTOTIC DISTRIBUTIONS WITH LOCALLY EXOGENOUS INSTRUMENS.
Suppose that the assumptiof®s3)-(2.18) hold, withb = by/v/T, IT = ITy # 0 and 3 = f,,
whereb, and 3, are given vectors, andl is a given matrix. 1by ¢ NV (X ), then

1
AR(Bo) = (K, ), (4.10)
K(Bo) & X3(G,m'm) if rank Zxy) = G, (4.11)
where
1 ~ 1 _ _ ~
= —5boPw Iy Twbo, m o= —(Jy Ty Ixy) V25t 2 Dby (4.12)

and Yy, Yy, and Xy are given in(2.11)-(2.27). If by € N (Xw), then

AR(By) 5 X2 (k), (4.13)

1
k

K(By) £ X3(@) if rankXxy) = G. (4.14)
Theorem 4.4 ASYMPTOTIC DISTRIBUTIONS WITH WEAK LOCALLY EXOGENOUS INSTRI-
MENTS. Suppose that the assumptiof®s3)-(2.18) hold, withb = by /T, IT = ITy//T and

B = By Whereby, and 3, are given vectors, andl, is a given matrix(/l, = 0 is allowed. If
bo &€ N (Zw), then

L 1
AR(ﬁo) - EXQ(kmul)v (4.15)
K(By) 2 \2(G,m'm) if rank Zywy) = G, (4.16)
where
N S —“1/2yv g1
m=—(ZwyZx Zwv)" " Iwy Xy Zwho, (4.17)

and X'y, Ywv, Yw andpu, are defined in Theored3. If by € V(X ), then
L1 2
AR(By) = x> (). (4.18)

K(By) = X2(G) if rankZyv) = G. (4.19)

We make the following remarks concerning TheoBand Theorend.4. First, the endogene-
ity parametem is local-to-zero, and foby € N (X ) the AR and K tests are asymptotically valid.
However, unlike the AR test, note that the validity of the Kttes established under an additional
rank assumption (the case where this additional rank agsumipils is not covered in this paper).
So, wherby € N (L), the inference with locally exogenous instruments usiegAR and K tests
is feasible (at least in large samples). Secondy i AV (Xy ), the results in both theorems are
different from those of Theorem&1 and4.2 because the limiting distributions of both statistics



do not diverge. Third, even though the AR and K statisticsehaon-central chi-square limiting
distributions wherby ¢ N(Xy), they are not pivotal since the non-centrality parametepedd
on nuisance parameters. In addition, the limiting distidns of both statistics cannot be bounded
by any pivotal distribution.

It will be useful to see how the above theorems apply in a sneghmple.

Example 4.1 Consider again model (2.29)-(2.30), which involves oneogedous explanatory
variable and two instruments. If the matriy is invertible, then\(Xy,) = {0}, and Theo-

rem4.1 entails thatA R(3,) L, + 50 under the null hypothesis = 3,. Similarly, if Zxy # 0, then
rank(Xyy) = G = 1 and Theoren#.2 entails that/< (3,) L toowhens = Bo- If X7 is a valid
instrument (withi/, = 0) and X, = W, with WsW/T % o, > 0, we have

0 0
Swo= [ 0 o, ] (4.20)

which is a matrix of rank one, anlf' (X ) = {(x1,z2)" : 2 = 0}. If by = 0, thenby € N (Zy)
and Theoren.1 entails that the asymptotic distribution given by (4.2)dsolor AR(3,), while for
K(B,) part B of Theoren¥.2 is applicable. Of course, wheg = 0, AR(S3,) follows the usual
x%(2)/2 asymptotic distribution, whilds< (3,) follows ax?(1) distribution. For locally exogenous
instruments, theoren®3 and4.4 can be applied in a similar way.

5. Conclusion

In this paper, we have established conditions under whiehAlR and K tests are asymptotically
valid even if some instruments used are endogenous. We lawvasleowed that when these con-
ditions fail, the limiting distributions of both statistianay diverge. Furthermore, when these con-
ditions fail, under locally exogenous instruments seth, limiting distributions of the statistics
depend on nuisance parameters and cannot be bounded byeaiay gistribution. In consequence,
the weak-instrument procedure proposed by Wang and Zi@&8) the unified weak instruments
framework of Swanson and Chao (2005) and the inference mpeifect instruments suggested by
Ashley (2006) are not applicable. Overall, our results usctere the importance of checking for
the presence of possibly invalid instruments when appljidentification-robust” tests. They also
suggest that sensitivity analyses where different setsstfiments are considered [Ashley (2006),
Small (2007)] can be quite useful for the interpretation mipé@ical results based on instrumental
variables.
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A. Appendix: Proofs

PROOF OFTHEOREM4.1 Note first that

(y =YBo)Mx(y—YBy) _ wu T (WX [(XX\ (X
T—k _T—k:_T—k:<T><T> <T>

(A.1)

where, by the assumptions (2.3)-(2.18),

wu  p o X'X

Xu  Xlu WW W'e
T 0u>0, L ¥y >o0, = ; + b0+ — L Ywbe, (A2
WX\ (X'X\ 7' X'u _
< - > = ) < - >£>b62W2X12Wb0, (A.3)
—YB) M -Y
y 50)T _Xk(y Bo) 2, 52 _ 2 _ by S S Zwbo > 0. (A.4)
(A) Suppose now thaty ¢ N(Xw ). Then b(]EWZ;(lEWbO > 0 and the numerator of the AR

statistic diverges:

/ / —1 /u
(y—Yﬂo)/PX(y—Yﬂo) :T<u:,;X> (XTX> <)€F ) £>+oo7 (A.5)
hence
AR(By) 5 400, (A.6)

(B) If bp € N'(Zw ), we haveXy by = 0 anda? = o2 . Further,

X'u=X'(e+Why) = X'e + X'Why, (A7)
1 / 1 / 1 / 1 / L
ﬁXU: ﬁ[XU_EWbO] = ﬁXe‘i‘ ﬁ(XW—EW)bO =85 = Se+Sb' (A8)
Then, .
'X X' X\ /X'u\
—YB,) Pxly — Y3y = 2 >( > ( ) §'y1s, A9
(y BO) X(y 60) (ﬁ T ﬁ - X ( )
J— , —
T—k
hence )
AR(By) 2 Ws/x;(ls. (A.11)

(C) Finally, if by = 0, we haveby € N'(Zy ), with the extra restrictions = e, 02 = o2

e’

1

S=—Xu=—XeL N[0,022x],

3~
3
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hence

L 1 _ 1
AR(fy) = 15 Sc0x " Se ~ £ (k). (A12)

PROOF OFTHEOREM4.2 We note first, as in (A.1)-(A.4), that

(y — Yﬁo)/MX(ZU —Y3) LA

, X'X o X'u
T—k w

= XYx >0,

Suu(Bo) = L Ywbo.  (A.13)

(A) Suppose thaty ¢ N (Xw). (i) Let II = IIy # 0. Then, we have

1
Suv(Bo) = 7 (W = YBo) MxY & quy =8’ — b Sw Iy Swy,  (A14)
_ XX\ T'XY ([ XX\ X'uSw(By) » 3
(8, = - u oy A.15
(50)<T> T <T> T Sufy) X B9
whereXyy = Yxy — Zwbo(quy/52), and
}7 ’u ~ X/u d —
1y - -
Y(ﬂo)TY(ﬂo) 2 S Sy (A.17)

If rank(Xxy) = G, thenX% X' Xxy > 0 and 2! Dxy Db # 0 for by ¢ N (Zw), hence

Y (80)'Y (Bo)
T

U/i/(ﬂo)
T

Y (8y)
T

/
L I I Exy (Py T Exy ) Sy Z Zwbo > 0.

Consequently, the numerator of the K statistic diverges:

-1 ~

(y— Yﬁo)/Pff(,gO)(y =YBy) = TU,Y:,E%) Y(BO);Y(%) Y(ﬂj?),u 2 oo (A.18)
and
K(By) & +o0. (A.19)
(ii) Let IT = ITy//T . Then
~ ~ ~ -1 ~
(=Y Bo) Py (g, (v = Y o) = T Yiﬁﬁ o) | Y8 O)TY(ﬂ o) Y(i‘}) =y (A.20)

12



where ~ ~
Y(B0)'Y (Bo)
T
with X%y = Ywy — Dwho(quy/52). If rank(X%, ) = G, then the numerator of the K statistic
diverges, and< (3,) L oo
(B) If by € N(Zw ), we haveXy by = 0, 52 = o2 and %X’u L s =5.+8,asin(A.7)-(A.8).
(¢) If IT = Iy # 0, we have whemy € N (X ), the denominator of the K statistic satisfies

i/ /
L o3ty 25 By, T 2 57 Sk

==Y 5o Mx(y — Y ) 2 02, (a.21)

while the denominator can be written

(1= Y 5o) Py oy 0 = ¥ o) = “ (50 V()Y (Bo) A% (a22)
where
I(By) & S5 Exy, w 2 ey S5 Exy ?(50?)/“ 2 2 SxyS. (A23)
If rank(Xxy) = G, we haveX’y, X' Zxy > 0, hence
K(B,) & %S’Z;}EXY(ngyz);lzxy)*lngyz)—(ls. (A.24)
(ii) If IT = ITy/+/T, the numerator of the K statistic is
(y =Y Bo) Py g,y = YBy) = ?i;;—{ﬁ(ﬂo) w _ ﬁ(%)’iﬁ%‘ . (A29)
hence
m(B) & S5 Zwv 7?(50)?(50) 2 S S Swy ?(50?)/“ 2 S SwyS. (A.26)
If rank(Xywy) = G, then
K(50) % 25855 Sy (Siyy 5 Zwv)™ Sy 5518 (A27)

(C) Finally, if by = 0, we haveby € NV'(Zy ), with the extra restrictions = e, 02 = o2

e’

S—_Lxuty [0, 022x] ,

3
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hence, ifll = Ty # 0,
K(By) 2 %S;Z)}lz’xy(Z}(YZ;(—lZXy)‘lEE(YE;(}SE ~2(G), (A.28)
and if IT = II,/\/T (wherell, = 0 is allowed),
K(By) 2 %ng;(lzwv(E’VWE;(TWV)*E;WE;S@ ~2(G). (A.29)
2

O

PROOF OFTHEOREM4.3 Sinceb is now local-to-zero, we have

X'u (y=YBo)Mx(y—YBy) »

X'X D¢
LS.+ Swbo, 2oy, 28 Py, — 2625 0. (A.30)
Further, we have
wu (et WY (e+ Wik)
T—-k T—k
/ / / / /!
_ e'e n boW'e n e'Whyg n boe Wbg 302203. (A.31)

T-k VI(T-k VI(T-k T@T-k ¢
(A) Let by ¢ N(ZW ) Then,

1

AR(Bo) = 7

_ 1
5 (Se + Zwbo)' LM (Se + Zwbo) ~ EXZ(]f ) (A.32)

4

wherey, = UigngWE;(lEWbo # 0 . Similarly, we havew L oY Exy and

o _

% = 2 Exy (S + Zwho). So, ifrank(Xxy) = G, we have

(Se + Zwbo) ¢ Exy (Zxy T Exy) 7 D%y 5t (Se + Zwbo) ~ X2(G,m'm)
(A33)

K(8) &

2
O¢

wherem = (2 X' Dxy ) "V2 85 X Swbo £ 0 .

(B) If by € N(Xw ), we haveXyy by = 0. Thenu; = 0 andm = 0, henceAR(f,) L 2x*(k) and
L

K(By) = x*(G). 0

PROOF OFTHEOREM 4.4  The proof of Theorend.3 for the AR statistic covers Theoreh4.
The proof for the K statistic is similar to the one in Theoréi3 O
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