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ABSTRACT

When some explanatory variables in a regression are correlated with the disturbance term, in-
strumental variable methods are typically employed to makereliable inferences. Furthermore, to
avoid difficulties associated with weak instruments, identification robust methods are often pro-
posed. However, it is hard to assess whether an instrumentalvariable is valid in practice because
instrument validity is based on the questionable assumption that some of them are exogenous. In
this paper, we focus on structural models and analyze the effects of instrument endogeneity on
two identification-robust procedures, the Anderson-Rubin(1949, AR) and the Kleibergen (2002, K)
tests, with or without weak instruments. Two main setups areconsidered: (1) the level of “instru-
ment” endogeneity is fixed (does not depend on the sample size), and (2) the instruments arelocally
exogenous, i.e. the parameter which controls instrument endogeneity approaches zero as the sample
size increases. In the first setup, we show that both test procedures are in general consistent against
the presence of invalid instruments (hence asymptoticallyinvalid for the hypothesis of interest),
whether the instruments are “strong” or “weak”. We also describe cases where test consistency may
not hold, but the asymptotic distribution is modified in a waythat would lead to size distortions in
large samples. These include, in particular, cases where the 2SLS estimator remains consistent, but
the AR and K tests are asymptotically invalid. In the second setup, we find (non-degenerate) asymp-
totic non-central chi-square distributions in all cases, and describe cases where the non-centrality
parameter is zero and the asymptotic distribution remains the same as in the case of valid instru-
ments (despite the presence of invalid instruments). Overall, our results underscore the importance
of checking for the presence of possibly invalid instruments when applying “identification-robust”
tests.

Key words: simultaneous equations; instrumental variables; locally weak instruments; invalid in-
struments; locally exogenous instruments.

i



Contents

1. Introduction 1

2. Framework 2

3. Test statistics 5

4. Asymptotic theory with invalid and weak instruments 7
4.1. Possibly invalid instruments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2. Locally exogenous instruments. . . . . . . . . . . . . . . . . . . . . . . . . . 8

5. Conclusion 10

A. Appendix: Proofs 11

List of Assumptions, Propositions and Theorems

4.1 Theorem : Asymptotic distribution of the AR statistic. . . . . . . . . . . . . . . . 7
4.2 Theorem : Asymptotic distribution of the K statistic. . . . . . . . . . . . . . . . . 7
4.3 Theorem : Asymptotic distributions with locally exogenous instruments . . . . . . . 9
4.4 Theorem : Asymptotic distributions with weak locally exogenous instruments . . . . 9

Proof of Theorem4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Proof of Theorem4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Proof of Theorem4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Proof of Theorem4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

ii



1. Introduction

The last decade shows growing interest for so-calledweak instrumentsproblems in the econometric
literature, i.e. situations where “instruments” are poorly correlated withendogenous explanatory
variables; see the reviews of Dufour (2003) and Stock, Wright and Yogo (2002). More generally,
these can be viewed as situations where model parameters arenot identified or close not to being
identifiable, as meant in the econometric literature [see Dufour and Hsiao (2008)]. When instru-
ments are weak, the limiting distributions of standard teststatistics – like Student, Wald, likelihood
ratio and Lagrange multiplier criteria in structural models – often depend heavily on nuisance pa-
rameters; seee.g. Phillips (1989), Bekker (1994), Dufour (1997), Staiger andStock (1997) and
Wang and Zivot (1998). In particular, standard Wald-type procedures based on the use of asymp-
totic standard errors are very unreliable in the presence ofweak identification. As a result, several
authors have worked on proposing more reliable statisticalprocedures that would be applicable in
such contexts.

Interestingly, in the early days of simultaneous-equations econometrics, Anderson and Rubin
(1949, AR) proposed a procedure which is completely robust to weak instruments as well as to other
difficulties such as missing instruments [see Dufour (2003), Dufour and Taamouti (2005, 2007)].
But the AR procedure may suffer from power losses when too many instruments are used. So
alternative methods largely try to palliate this difficulty, for example: pseudo-pivotal LM-type and
LR-type statistics [Wang and Zivot (1998), Kleibergen (2002), Moreira (2003)], sample-splitting
methods [Dufour and Jasiak (2001)], approximately optimalinstruments [Dufour and Taamouti
(2003)], systematic search methods for identifying relevant instruments and excluding unimportant
instruments [Hall, Rudebusch and Wilcox (1996), Hall and Peixe (2003), Dufour and Taamouti
(2003), Donald and Newey (2001)].

However, all these procedures – including the AR method – rely on the availability on valid
(exogenous) instruments. This raises the question: what happens to these procedures when some of
the instruments are endogenous? In particular, what happens if an invalid instrument is added to a
set of valid instruments? How robust are these inference procedures to instrument endogeneity? Do
alternative inference procedures behave differently? If yes, what is their relative performance in the
presence of instrument endogeneity?

We view the problem of instrument endogeneity as important because it is hard in practice to
assess whether an instrumental variable is valid,i.e. whether it is uncorrelated with the disturbance
term. Instrument validity or orthogonality tests are builton the availability of a number of undis-
puted valid instruments, at least as great as the number of coefficients to be estimated, whereas the
validity of those initial instruments is not testable.

In the econometric literature, little is known about test procedures when some instruments are
both invalid and weak. Hahn and Hausman (2003) deal with bothinstrument endogeneity and weak-
ness, but they focus on estimation. Ashley (2006) proposed asensitivity analysis of IV estimators
when instruments are imperfect, his results however are only applicable if the covariance between
the structural error term and some instruments is known, which is not necessary the case as it is
showed in this paper. Analyzing the effect of instrument invalidity on the limiting and empirical
distribution of IV estimators, Kivet and Niemczyk (2006) conclude that for the accuracy of asymp-
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totic approximations, instrument weakness is much more detrimental than instrument invalidity and
that the realizations of IV estimators based on strong but possibly invalid instruments seem usu-
ally much closer to the true parameter values than those obtained from valid but weak instruments.
However, this finding of Kiviet and Niemczyk leaves open crucial questions: is it really possible
to make reliable inference with endogenous instruments? Isinstrument endogeneity really more
detrimental than its weakness on inference procedures likea general family of Anderson-Rubin-
type procedures? Swanson and Chao (2005) proposed a weak-instrument unified framework, but
they do not take into account possible invalidity of some instruments. Finally, Small (2007) has
recently studied the properties of tests for identifying restrictions [Sargan (1958), Kadane and An-
derson (1977)], which can be sensitive to the use of “endogenous instruments”, and he proposed a
sensitivity analysis to assess the importance of the issue.These results, however, do not allow for
weak identification.

In this paper, we focus on structural models and analyze the effects of instrument endogeneity
on the Anderson and Rubin (1949) and Kleibergen (2002) tests, in the presence of possibly weak
instruments. After formulating a general asymptotic framework which allows one to study these is-
sues in a convenient way, we consider two main setups: (1) theone where the level of “instrument”
endogeneity is fixed (i.e., it does not depend on the sample size), and (2) the one where the instru-
ments arelocally exogenous, i.e. the parameter which controls instrument endogeneity approaches
zero (at rateT−1/2) as the sample size increases. In the first setup, we show that both test procedures
studied are in general consistent against the presence of invalid instruments (hence asymptotically
invalid for the hypothesis of interest), whether the instruments are “strong” or “weak”. We also
observe there are cases where consistency may not hold, but the asymptotic distribution is modified
in a way that would lead to size distortions in large samples.In the second setup, asymptotic non-
central chi-square distributions are derived, and we give conditions under which the non-centrality
parameter is zero and the asymptotic distribution remains the same as in the case of valid instru-
ments (despite the presence of invalid instruments). Overall, our results underscore the importance
of checking for the presence of possibly invalid instruments when applying “identification-robust”
tests.

The paper is organized as follows. Section 2 formulates the model considered. Section 3 de-
scribes briefly the statistics. Section 4 studies the asymptotic distribution of the statistics (under the
null hypothesis) when some instruments are invalid. We conclude in section 5. Proofs are presented
in the Appendix.

2. Framework

We consider the following standard simultaneous equation framework, which has been the basis of
much work on inference in model with possibly weak instruments [see the reviews of Dufour (2003)
and Stock et al. (2002)]:

y = Y β + Zγ + u , (2.1)

Y = XΠ + ZΓ + V , (2.2)
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wherey is aT × 1 vector of observations on the dependent variable,Y = [Y1, . . . , YT ]′ is aT ×G
matrix of observations on explanatory (possibly) endogenous variables(G ≥ 1), Z is aT ×r matrix
of observations on the included exogenous variables,X = [X1, . . . , XT ]′ is aT × k (k ≥ G) full-
column-rank matrix of observations on (supposedly) “exogenous variables” (instruments) excluded
from the structural equation (2.1),u = [u1, . . . , uT ]′ andV = [V1, . . . , VT ]′ = [v1, . . . , vG] are
respectivelyT × 1 vector andT × G disturbance matrices,β andγ areG × 1 andr × 1 vectors of
unknown coefficients,Π andΓ arek × G andr × G matrices of unknown coefficients. The usual
necessary and sufficient condition for identification of this model isrank(Π) = G .

Since we focus on the parameterβ in our analysis, we can simplify the presentation of the results
without notable loss of generality by settingγ = 0 andΓ = 0, so thatZ drops from the model.
With this simplification, model (2.1)-(2.2) reduces to

y = Y β + u , (2.3)

Y = XΠ + V . (2.4)

We also assume that
ut = V ′

t a + εt , t = 1, . . . , T , (2.5)

Xt = X0t + Wt, t = 1, . . . , T , (2.6)

ut = W ′
tb + et, t = 1, . . . , T , (2.7)

whereX0 = [X01, . . . , X0T ]′ is aT × k matrix of exogenous variables,εt is uncorrelated with
Vt, andet are uncorrelated withWt . Vt andWt have mean zero and covariance matricesΣV and
ΣW , εt andet have mean zero and variancesσ2

ε andσ2
e respectively, whilea andb areG × 1 and

k × 1 vectors of unknown coefficients. (2.5)-(2.7) can be rewritten in matrix form as:

u = V a + ε , (2.8)

X = X0 + W , (2.9)

u = Wb + e , (2.10)

whereX0 is uncorrelated withW, V, ε ande, while W = [W1, . . . , WT ]′ is uncorrelated withe but
may be correlated withu (whenb 6= 0). Soa controls the endogeneity of the variableY, whereas
b represents the possible endogeneity of the instrumentsX. If b = 0, the instrumentsX are valid;
otherwise, they are invalid (endogenous). More precisely,if b 6= 0, i.e., there exists at least one
i such thatbi 6= 0, i = 1, . . . , k, and the corresponding variableXi does not constitute a valid
instrument.

We also make the following generic assumptions on the asymptotic behaviour of model variables
[whereA > 0 for a matrixA means thatA is positive definite (p.d.), and→ refers to limits as
T → ∞]:

1

T

[

V ε
]′ [

V ε
] p→

[

ΣV 0′

0 σ2
ε

]

> 0 , (2.11)
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1

T

[

X0 W
]′ [

X0 W
] p→

[

Σ0 0′

0 ΣW

]

, Σ0 > 0 , (2.12)

1

T
X ′

0

[

V ε e
] p→ 0 , (2.13)

1

T
X ′X

p→ ΣX , (2.14)

1

T

[

W e
]′ [

W e
] p→

[

ΣW 0′

0 σ2
e

]

, (2.15)

1

T
W ′V

p→ ΣWV , (2.16)

1√
T

[

X ′e
(X ′W − ΣW )b

]

L→
[

Se

Sb

]

∼ N [0 , ΣS] , (2.17)

Se ∼ N
[

0, σ2
eΣX

]

, Sb ∼ N
[

0, σ2
eΣb

]

, (2.18)

whereΣV is G×G fixed matrix,Σ0 andΣW arek× k fixed matrices,Se andSb arek× 1 random
vectors. Note thatΣW may be singular, andSb may not be independent ofSe .

From the above assumptions, it is easy to see that:

1

T
X ′

0u
p→ 0 ,

1

T
X ′

0e
p→ 0 , (2.19)

1

T
X ′u

p→ ϕ = ΣW b ,
X ′V

T

p→ ΣWV , (2.20)

1

T

[

u V
]′ [

u V
] p→ Σ =

[

σ2
u δ′

δ ΣV

]

> 0 , (2.21)

1

T

[

u W
]′ [

u W
] p→

[

σ2
u ϕ′

ϕ ΣW

]

, (2.22)

1

T

[

W V
]′ [

ε e
] p→

[

δWε 0
0 δV e

]

, (2.23)

where
δ = ΣV a , σ2

u = a′ΣV a + σ2
ε = σ2

e + b′ΣW b , (2.24)

ΣV a = Σ′
WV b + δV e , ΣW b = ΣWV a + δWε , (2.25)

ΣX = Σ0 + ΣW > 0 , ΣXY = ΣXΠ + ΣWV , (2.26)

ΣY = Π ′ΣXΠ + ΣV + Σ′
WV Π + Π ′ΣWV . (2.27)

Finally, we denote byN (ΣW ) the null set of the linear map onRk characterized by the matrixΣW :

N (ΣW ) = {x ∈ R
k : ΣW x = 0} . (2.28)
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If ΣW is a full-column-rank matrix, thenN (ΣW ) = {0}; otherwise, there is at least onex0 6= 0
such thatΣW x0 = 0.

The setup described above is quite wide and does allow one to study several questions associated
with the possible presence of “invalid” instruments. In particular, an important practical problem
consists in studying the effect on inference of adding an “invalid” instrument to a list of valid
(possibly identifying) instruments. Note that this problem is distinct from studying the effect of
imposing “incorrect” overidentifying restrictions [as done by Small (2007)]. To better see the issues
studied here, it will be useful to consider a simple example.

Example 2.1 Consider a model with one endogenous explanatory variable(G = 1) and two can-
didate instruments(k = 2). ThenY andV areT × 1 vectors,X = [X1, X2] andW = [W1, W2]
areT × 2 matrices,Π = [π1, π2]

′ andb = [b1, b2]
′ are vectors of dimension 2, and

Y = XΠ + V = X1π1 + X2π2 + V , (2.29)

u = Wb + e = W1b1 + W2b2 + e . (2.30)

Let us further assume thatX1 is a valid instrument (withW1 = 0), E[u |X1] = 0, X2 = W2,
π2 = 0 andb1 = 0, wheree is independent ofX1 andX2 (with finite mean zero), so that

Y = XΠ + V = X1π1 + V , (2.31)

u = Wb + e = W2b2 + e . (2.32)

HereW2 is not a “valid” instrument whenb2 6= 0. But the structural equation (2.3) may in principle
be estimated using onlyX1 as an instrument, becauseE[u |X1] = 0; if X1 is not a weak instrument
(π1 6= 0) and satisfies usual regularity conditions, a consistent estimate of β can be obtained.
Among other things, we study below the effect (on some identification-robust tests) of takingX2 as
an instrument whenb2 6= 0, i.e. whenX2 is correlated withu. Note that the conditionE[u |X1] = 0
does not entailE[e |X1, X2] = 0, which is a maintained hypothesis used by Small (2007). So the
problem considered here is distinct from the problem of testing overidentifying restrictions [studied,
for example, by Sargan (1958), Kadane and Anderson (1977) and Small (2007)].

3. Test statistics

We consider in this paper the problem of testing

H0 : β = β0 (3.1)

where some of the “instruments” used are in fact endogenous(b 6= 0). We analyze the behavior
of the Anderson-Rubin and Kleibergen statistics. The Anderson and Rubin (1949) test forH0 in
equation (2.3) involves considering the transformed equation

y − Y β0 = X∆ + ε (3.2)
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where∆ = Π(β − β0) andε = u + V (β − β0). H0 can then be assessed by testingH ′
0 : ∆ = 0.

The AR-statistic forH ′
0 is given by

AR(β0) =
1

k

(y − Y β0)
′PX(y − Y β0)

(y − Y β0)
′MX(y − Y β0)/(T − k)

(3.3)

whereMB = I − PB andPB = B(B′B)−1B′ is the projection matrix on the space spanned by
the columns ofB. If b = 0, the asymptotic distribution of AR(β0) is a χ2(k)/k underH0. If
furthermoreu ∼ N [0 , σ2IT ] andX is independent ofu, thenAR(β0) ∼ F (k, T − k) underH0

irrespective of whether the instruments are strong or weak.However, when some instruments are
invalid, the distribution of the AR statistic may be affected.

Kleibergen (2002) proposed a modification of the AR statistic to take into account the fact that
this statistic may have low power when there are too many instruments in the model. The modified
statistic for testingH0 can be written

K(β0) =
(y − Y β0)

′PỸ (β0)
(y − Y β0)

(y − Y β0)
′MX(y − Y β0)/(T − k)

(3.4)

where

Ỹ (β0) = XΠ̃(β0) , Π̃(β0) = (X ′X)−1X ′
[

Y − (y − Y β0)
SuV (β0)

Suu(β0)

]

, (3.5)

Suu(β0) =
1

T − k
(y − Y β0)

′MX(y − Y β0) , SuV (β0) =
1

T − k
(y − Y β0)

′MXY . (3.6)

Unlike the AR statistic which projectsy − Y β0 on thek columns ofX, the K statistic projects
y − Y β0 on theG columns ofXΠ̃(β0). If the instrumentsX are exogenous,̃Π(β0) is both a
consistent estimator ofΠ and asymptotically independent ofX ′(y − Y β0) underH0, andK(β0)
converges to aχ2(G). However, if some instruments are invalid (b 6= 0), Π̃(β0) may not be
asymptotically independent ofX ′(y − Y β0) and the asymptotic distribution of the K statistic may
not be aχ2(G).1

If the model contains only one instrument and one endogenousvariable(G = k = 1), the AR
and K statistics are equivalent and pivotal even in finite samples wheneverb = 0. Whenk > 1, even
if b = 0, the K statistic is not pivotal in finite samples but is asymptotically pivotal, whereas the AR
statistic is pivotal even in finite samples (whenX is independent ofu). Following Staiger and Stock
(1997), we refer to thelocally weak-instrumentasymptotic setup by considering a limiting sequence
of Π whereΠ is local-to-zero. We also consider a limiting sequence ofb whereb is local-to-zero.
We refer to this later limiting sequence aslocally exogenousinstruments asymptotic.

1We do not study this paper conditional tests such as those proposed by Moreira (2003), because the distributional
theory for such tests is considerably more complex and wouldgo beyond the scope of a short paper like the present one.
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4. Asymptotic theory with invalid and weak instruments

In this section, we study the large-sample properties of thestatistics described above when some
of the instruments used are invalid. Two setups are considered. The first is the possibly invalid
instrument setup,i.e., the endogeneity parameterb is a fixed vector. The second is the locally
exogenous instrument setup,i.e., b is local-to-zero.

4.1. Possibly invalid instruments

We consider first the case where the endogeneity parameterb is a constant vector and we analyze
the asymptotic distributions of the statistics. Our results cover both strong and weak-instrument
asymptotic. Theorem4.1 below summarizes the asymptotic behavior of theAR statistic when
some instruments may be endogenous. For a random variableS whose distribution depends on the

sample sizeT, the notationS
L→ +∞ means thatP [S > x] → 1 asT → ∞, for anyx.

Theorem 4.1 ASYMPTOTIC DISTRIBUTION OF THE AR STATISTIC. Suppose that the as-
sumptions(2.3)-(2.18) hold, with b = b0 and β = β0, whereb0 and β0 are given vectors. If
b0 /∈ N (ΣW ), then

AR(β0)
L→ +∞ . (4.1)

If b0 ∈ N (ΣW ), then

AR(β0)
L→ 1

kσ2
u

(Se + Sb)
′Σ−1

X (Se + Sb) (4.2)

whereSe andSb are defined in(2.17)-(2.18). If b0 = 0, then

AR(β0)
L→ 1

k
χ2(k) . (4.3)

In the above theorem, no restriction is imposed on the rank ofΠ. In particular, the result holds
even ifΠ is not a full-column rank matrix. Whenb0 /∈ N (ΣW ), the AR statistic diverges under
the null hypothesisH0. Whenb0 ∈ N (ΣW ), the limiting distribution of the AR statistic does not
diverge, but the AR test is not valid unlessSb = 0. Of course, whenb0 = 0 – which is the classical
exogenous instrument setup –Sb = 0 and the AR test is asymptotically valid.

Theorem4.2 below summarizes the asymptotic behavior of the K statisticwhen some instru-
ments are possibly invalid.

Theorem 4.2 ASYMPTOTIC DISTRIBUTION OF THEK STATISTIC. Suppose that the assumptions
(2.3)-(2.18) hold, withb = b0 andβ = β0, whereb0 andβ0 are given vectors.
(A) If b0 /∈ N (ΣW ) then

K(β0)
L→ +∞ (4.4)

when at least one of the following two conditions holds:(i) Π = Π0 6= 0 with rank(Σ̃XY ) = G,
or (ii) Π = Π0/

√
T with rank(Σ∗

XY ) = G, where

Σ̃XY = ΣXY − ΣW b0(quV /σ̄2
u) , Σ∗

XY = ΣWV − ΣW b0(quV /σ̄2
u) ,
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quV = δ′ − b′0ΣW Σ−1
X ΣWV , σ̄2

u = σ2
u − b′0ΣW Σ−1

X ΣW b0 .

(B) If b0 ∈ N (ΣW ), then

K(β0)
L→ 1

σ2
u

(Se + Sb)
′Σ−1

X ΣXY (Σ′
XY Σ−1

X ΣXY )−1Σ′
XY Σ−1

X (Se + Sb) (4.5)

whenΠ = Π0 6= 0 andrank(ΣXY ) = G, and

K(β0)
L→ 1

σ2
u

(Se + Sb)
′Σ−1

X ΣWV (Σ′
WV Σ−1

X ΣWV )−1Σ′
WV Σ−1

X (Se + Sb) (4.6)

whenΠ = Π0/
√

T and rank(ΣWV ) = G . (C) If b0 = 0, then

K(β0)
L→ χ2(G) (4.7)

when at least one of the following two conditions holds: (i)Π = Π0 6= 0 with rank(ΣXY ) = G, or
(ii) Π = Π0/

√
T with rank(ΣWV ) = G .

Unlike Theorem4.1 for the AR statistic, Theorem4.2 requires an additional rank assumption.
Whenb0 /∈ N (ΣW ), the null limiting distribution of the K statistic diverges.This means that the K
test often rejectsH0 asymptotically whenb0 /∈ N (ΣW ). Furthermore, whenb0 ∈ N (ΣW ), the K
test is not asymptotically valid unlessSb = 0. As expected, ifb0 = 0 (i.e.,Sb = 0), the K statistic
converges to aχ2(G). It is worthwhile to note that the case where the rank assumption fails [e.g.,
the partial identification ofβ] is not covered in this paper.

Finally, it is interesting to observe that the limiting value of the two-stage least-squares (2SLS)
estimator ofβ,

β̃ =
(

Ŷ
′

Ŷ
)−1

Ŷ
′

y =
[

Y
′

X(X
′

X)−1X
′

Y
]−1

Y
′

X(X
′

X)−1X
′

y , (4.8)

is given by
plim
T→∞

β̃ = β +
[

Σ
′

XY Σ−1
X ΣXY

]−1
Σ

′

XY Σ−1
X ΣW b (4.9)

providedrank(ΣXY ) = G, so thatβ̃ is consistent whenb0 ∈ N (ΣW ) andΣXY has full column
rank (even if some instruments are invalid). Ifb0 ∈ N (ΣW ) but b0 6= 0, the asymptotic level of the
Anderson-Rubin and Kleibergen tests can be affected.

4.2. Locally exogenous instruments

We consider now the case where the endogeneity parameterb is local-to-zero. As in the previous
subsection, we analyze the limiting distributions of the statistics. The results also cover two setups:
locally exogenous instruments[Π = Π0 6= 0, b = b0/

√
T ], and weak locally exogenous instru-

ments[Π = Π0/
√

T , b = b0/
√

T ]. Theorem4.3 and Theorem4.4 below derive the distributions of
the statistics for both setups.
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Theorem 4.3 ASYMPTOTIC DISTRIBUTIONS WITH LOCALLY EXOGENOUS INSTRUMENTS.
Suppose that the assumptions(2.3)-(2.18) hold, with b = b0/

√
T , Π = Π0 6= 0 and β = β0,

whereb0 andβ0 are given vectors, andΠ0 is a given matrix. Ifb0 /∈ N (ΣW ), then

AR(β0)
L→ 1

k
χ2(k , µ1) , (4.10)

K(β0)
L→ χ2(G ,m′m) if rank(ΣXY ) = G , (4.11)

where

µ1 =
1

σ2
e

b′0ΣW Σ−1
X ΣW b0 , m =

1

σe
(Σ′

XY Σ−1
X ΣXY )−1/2Σ′

XY Σ−1
X ΣW b0 , (4.12)

andΣX , ΣXY , andΣW are given in(2.11)-(2.27). If b0 ∈ N (ΣW ), then

AR(β0)
L→ 1

k
χ2(k), (4.13)

K(β0)
L→ χ2(G) if rank(ΣXY ) = G . (4.14)

Theorem 4.4 ASYMPTOTIC DISTRIBUTIONS WITH WEAK LOCALLY EXOGENOUS INSTRU-
MENTS. Suppose that the assumptions(2.3)-(2.18) hold, with b = b0/

√
T , Π = Π0/

√
T and

β = β0, whereb0 and β0 are given vectors, andΠ0 is a given matrix(Π0 = 0 is allowed). If
b0 /∈ N (ΣW ), then

AR(β0)
L→ 1

k
χ2(k , µ1) , (4.15)

K(β0)
L→ χ2(G , m̃′m̃) if rank(ΣWV ) = G , (4.16)

where

m̃ =
1

σe
(Σ′

WV Σ−1
X ΣWV )−1/2Σ′

WV Σ−1
X ΣW b0 , (4.17)

andΣX , ΣWV , ΣW andµ1 are defined in Theorem4.3. If b0 ∈ N (ΣW ), then

AR(β0)
L→ 1

k
χ2(k) , (4.18)

K(β0)
L→ χ2(G) if rank(ΣWV ) = G . (4.19)

We make the following remarks concerning Theorem4.3 and Theorem4.4. First, the endogene-
ity parameterb is local-to-zero, and forb0 ∈ N (ΣW ) the AR and K tests are asymptotically valid.
However, unlike the AR test, note that the validity of the K test is established under an additional
rank assumption (the case where this additional rank assumption fails is not covered in this paper).
So, whenb0 ∈ N (ΣW ), the inference with locally exogenous instruments using the AR and K tests
is feasible (at least in large samples). Second, ifb0 /∈ N (ΣW ), the results in both theorems are
different from those of Theorems4.1 and4.2 because the limiting distributions of both statistics
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do not diverge. Third, even though the AR and K statistics have non-central chi-square limiting
distributions whenb0 /∈ N (ΣW ), they are not pivotal since the non-centrality parameters depend
on nuisance parameters. In addition, the limiting distributions of both statistics cannot be bounded
by any pivotal distribution.

It will be useful to see how the above theorems apply in a simple example.

Example 4.1 Consider again model (2.29)-(2.30), which involves one endogenous explanatory
variable and two instruments. If the matrixΣW is invertible, thenN (ΣW ) = {0}, and Theo-

rem4.1 entails thatAR(β0)
L→ +∞under the null hypothesisβ = β0. Similarly, if Σ̃XY 6= 0, then

rank(Σ̃XY ) = G = 1 and Theorem4.2 entails thatK(β0)
L→ +∞whenβ = β0. If X1 is a valid

instrument (withW1 = 0) andX2 = W2 with W ′
2W2/T

p→ σ2
W2

> 0, we have

ΣW =

[

0 0
0 σ2

W2

]

(4.20)

which is a matrix of rank one, andN (ΣW ) = {(x1, x2)
′ : x2 = 0}. If b2 = 0, thenb0 ∈ N (ΣW )

and Theorem4.1 entails that the asymptotic distribution given by (4.2) holds forAR(β0), while for
K(β0) part B of Theorem4.2 is applicable. Of course, whenb0 = 0, AR(β0) follows the usual
χ2(2)/2 asymptotic distribution, whileK(β0) follows aχ2(1) distribution. For locally exogenous
instruments, theorems4.3 and4.4 can be applied in a similar way.

5. Conclusion

In this paper, we have established conditions under which the AR and K tests are asymptotically
valid even if some instruments used are endogenous. We have also showed that when these con-
ditions fail, the limiting distributions of both statistics may diverge. Furthermore, when these con-
ditions fail, under locally exogenous instruments setup, the limiting distributions of the statistics
depend on nuisance parameters and cannot be bounded by any pivotal distribution. In consequence,
the weak-instrument procedure proposed by Wang and Zivot (1998), the unified weak instruments
framework of Swanson and Chao (2005) and the inference with imperfect instruments suggested by
Ashley (2006) are not applicable. Overall, our results underscore the importance of checking for
the presence of possibly invalid instruments when applying“identification-robust” tests. They also
suggest that sensitivity analyses where different sets of instruments are considered [Ashley (2006),
Small (2007)] can be quite useful for the interpretation of empirical results based on instrumental
variables.
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A. Appendix: Proofs

PROOF OFTHEOREM 4.1 Note first that

(y − Y β0)
′MX(y − Y β0)

T − k
=

u′u

T − k
− T

T − k

(

u′X

T

)(

X ′X

T

)−1 (

X ′u

T

)

(A.1)

where, by the assumptions (2.3)-(2.18),

u′u

T − k

p→ σ2
u > 0 ,

X ′X

T

p→ ΣX > 0 ,
X ′u

T
=

X ′
0u

T
+

W ′W

T
b0 +

W ′e

T

p→ ΣW b0 , (A.2)

(

u′X

T

)(

X ′X

T

)−1 (

X ′u

T

)

p→ b′0ΣW Σ−1
X ΣW b0 , (A.3)

(y − Y β0)
′MX(y − Y β0)

T − k

p→ σ̄2
u = σ2

u − b′0ΣW Σ−1
X ΣW b0 ≥ 0 . (A.4)

(A) Suppose now thatb0 /∈ N (ΣW ). Thenb′0ΣW Σ−1
X ΣW b0 > 0 and the numerator of the AR

statistic diverges:

(y − Y β0)
′PX(y − Y β0) = T

(

u′X

T

)(

X ′X

T

)−1 (

X ′u

T

)

L→ +∞ , (A.5)

hence
AR(β0)

L→ +∞ . (A.6)

(B) If b0 ∈ N (ΣW ), we haveΣW b0 = 0 andσ̄2
u = σ2

u . Further,

X ′u = X ′(e + Wb0) = X ′e + X ′Wb0 , (A.7)

1√
T

X ′u =
1√
T

[X ′u − ΣW b0] =
1√
T

X ′e +
1√
T

(X ′W − ΣW )b0
L→ S = Se + Sb . (A.8)

Then,

(y − Y β0)
′PX(y − Y β0) =

(

u′X√
T

)(

X ′X

T

)−1 (

X ′u√
T

)

L→ S′Σ−1
X S , (A.9)

(y − Y β0)
′MX(y − Y β0)

T − k

p→ σ2
u , (A.10)

hence

AR(β0)
L→ 1

kσ2
u

S′Σ−1
X S . (A.11)

(C) Finally, if b0 = 0, we haveb0 ∈ N (ΣW ), with the extra restrictionsu = e, σ2
u = σ2

e,

S =
1√
T

X ′u =
1√
T

X ′e
L→ N

[

0, σ2
eΣX

]

,
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hence

AR(β0)
L→ 1

kσ2
e

S′
eΣ

−1
X Se ∼

1

k
χ2(k) . (A.12)

PROOF OFTHEOREM 4.2 We note first, as in (A.1)-(A.4), that

Suu(β0) =
(y − Y β0)

′MX(y − Y β0)

T − k

p→ σ̄2
u ,

X ′X

T

p→ ΣX > 0 ,
X ′u

T

p→ ΣW b0 . (A.13)

(A) Suppose thatb0 /∈ N (ΣW ). (i) Let Π = Π0 6= 0 . Then, we have

SuV (β0) =
1

T − k
(y − Y β0)

′MXY
p→ quV = δ′ − b′0ΣW Σ−1

X ΣWV , (A.14)

Π̃(β0) =

(

X ′X

T

)−1 X ′Y

T
−

(

X ′X

T

)−1 X ′u

T

SuV (β0)

Suu(β0)

p→ Σ−1
X Σ̃XY , (A.15)

whereΣ̃XY = ΣXY − ΣW b0(quV /σ̄2
u), and

Ỹ (β0)
′u

T
= Π̃(β0)

′X
′u

T

p→ Σ̃′
XY Σ−1

X ΣW b0 , (A.16)

Ỹ (β0)
′Ỹ (β0)

T

p→ Σ̃′
XY Σ−1

X Σ̃XY . (A.17)

If rank(Σ̃XY ) = G, thenΣ̃′
XY Σ−1

X Σ̃XY > 0 andΣ−1
X Σ̃XY ΣW b0 6= 0 for b0 /∈ N (ΣW ), hence

u′Ỹ (β0)

T

[

Ỹ (β0)
′Ỹ (β0)

T

]−1
Ỹ (β0)

′u

T

p→ b′0ΣW Σ−1
X Σ̃XY (Σ̃′

XY Σ−1
X Σ̃XY )−1Σ̃′

XY Σ−1
X ΣW b0 > 0 .

Consequently, the numerator of the K statistic diverges:

(y − Y β0)
′PỸ (β0)

(y − Y β0) = T
u′Ỹ (β0)

T

[

Ỹ (β0)
′Ỹ (β0)

T

]−1
Ỹ (β0)

′u

T

p→ +∞ (A.18)

and
K(β0)

L→ +∞ . (A.19)

(ii) Let Π = Π0/
√

T . Then

(y − Y β0)
′PỸ (β0)

(y − Y β0) = T
u′Ỹ (β0)

T

[

Ỹ (β0)
′Ỹ (β0)

T

]−1
Ỹ (β0)

′u

T
, (A.20)
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where
Ỹ (β0)

′Ỹ (β0)

T

L→ Σ∗′
XY Σ−1

X Σ∗
XY ,

Ỹ (β0)
′u

T

p→ Σ−1
X Σ∗

XY ΣW b0,

with Σ∗
XY = ΣWV − ΣW b0(quV /σ̄2

u ). If rank(Σ∗
XY ) = G, then the numerator of the K statistic

diverges, andK(β0)
L→ +∞.

(B) If b0 ∈ N (ΣW ), we haveΣW b0 = 0, σ̄2
u = σ2

u and 1√
T

X ′u
L→ S = Se + Sb as in (A.7)-(A.8).

(i) If Π = Π0 6= 0, we have whenb0 ∈ N (ΣW ), the denominator of the K statistic satisfies

1

T
(y − Y β0)

′MX(y − Y β0)
p→ σ2

u , (A.21)

while the denominator can be written

(y − Y β0)
′PỸ (β0)

(y − Y β0) =
u′X√

T
Π̃(β0)

[

Ỹ (β0)
′Ỹ (β0)

T

]−1

Π̃(β0)
′X

′u√
T

(A.22)

where

Π̃(β0)
p→ Σ−1

X ΣXY ,
Ỹ (β0)

′Ỹ (β0)

T

p→ Σ′
XY Σ−1

X ΣXY ,
Ỹ (β0)

′u√
T

p→ Σ−1
X ΣXY S . (A.23)

If rank(ΣXY ) = G, we haveΣ′
XY Σ−1

X ΣXY > 0, hence

K(β0)
L→ 1

σ2
u

S′Σ−1
X ΣXY (Σ′

XY Σ−1
X ΣXY )−1Σ′

XY Σ−1
X S . (A.24)

(ii) If Π = Π0/
√

T , the numerator of the K statistic is

(y − Y β0)
′PỸ (β0)

(y − Y β0) =
u′X√

T
Π̃(β0)

[

Ỹ (β0)
′Ỹ (β0)

T

]−1

Π̃(β0)
′X

′u√
T

, (A.25)

hence

Π̃(β0)
p→ Σ−1

X ΣWV ,
Ỹ (β0)

′Ỹ (β0)

T

p→ Σ′
WV Σ−1

X ΣWV ,
Ỹ (β0)

′u√
T

p→ Σ−1
X ΣWV S . (A.26)

If rank(ΣWV ) = G, then

K(β0)
L→ 1

σ2
u

S′Σ−1
X ΣWV (Σ′

WV Σ−1
X ΣWV )−1Σ′

WV Σ−1
X S . (A.27)

(C) Finally, if b0 = 0, we haveb0 ∈ N (ΣW ), with the extra restrictionsu = e, σ2
u = σ2

e,

S =
1√
T

X ′u
L→ N

[

0, σ2
eΣX

]

,

13



hence, ifΠ = Π0 6= 0,

K(β0)
L→ 1

σ2
e

S′
eΣ

−1
X ΣXY (Σ′

XY Σ−1
X ΣXY )−1Σ′

XY Σ−1
X Se ∼ χ2(G) , (A.28)

and ifΠ = Π0/
√

T (whereΠ0 = 0 is allowed),

K(β0)
L→ 1

σ2
e

S′
eΣ

−1
X ΣWV (Σ′

WV Σ−1
X ΣWV )−1Σ′

WV Σ−1
X Se ∼ χ2(G) . (A.29)

PROOF OFTHEOREM 4.3 Sinceb is now local-to-zero, we have

X ′u√
T

L→ Se + ΣW b0 ,
X ′X

T

p→ ΣX ,
X ′u

T

p→ 0 ,
(y − Y β0)

′MX(y − Y β0)

T − k

p→ σ2
u > 0 . (A.30)

Further, we have

u′u

T − k
=

(e + W b0√
T

)′(e + W b0√
T

)

T − k

=
e′e

T − k
+

b′0W
′e√

T (T − k)
+

e′Wb0√
T (T − k)

+
b′0e

′Wb0

T (T − k)

p→ σ2
e = σ2

u . (A.31)

(A) Let b0 /∈ N (ΣW ). Then,

AR(β0)
L→ 1

kσ2
e

(Se + ΣW b0)
′Σ−1

X (Se + ΣW b0) ∼
1

k
χ2(k , µ1) (A.32)

whereµ1 = 1
σ2

e

b′0ΣW Σ−1
X ΣW b0 6= 0 . Similarly, we haveỸ (β0)

′Ỹ (β0)
T

p→ Σ′
XY Σ−1

X ΣXY and
Ỹ (β0)′u√

T

L→ Σ−1
X ΣXY (Se + ΣW b0). So, if rank(ΣXY ) = G, we have

K(β0)
L→ 1

σ2
e

(Se + ΣW b0)
′Σ−1

X ΣXY (Σ′
XY Σ−1

X ΣXY )−1Σ′
XY Σ−1

X (Se + ΣW b0) ∼ χ2(G ,m′m)

(A.33)
wherem = 1

σe

(Σ′
XY Σ−1

X ΣXY )−1/2Σ′
XY Σ−1

X ΣW b0 6= 0 .

(B) If b0 ∈ N (ΣW ), we haveΣW b0 = 0. Thenµ1 = 0 andm = 0, henceAR(β0)
L→ 1

kχ2(k) and

K(β0)
L→ χ2(G).

PROOF OFTHEOREM 4.4 The proof of Theorem4.3 for the AR statistic covers Theorem4.4.
The proof for the K statistic is similar to the one in Theorem4.3.
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