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PITFALLS OF RESCALING REGRESSION MODELS
WITH BOX-COX TRANSFORMATIONS

Marcel G. Dagenais and Jean-Marie Dufour*

Abstract—To facilitate ML estimation for Box-Cox models,
several authors have suggested dividing the dependent vari-
able by its sample geometric mean. This paper points out
previously unmentioned drawbacks of this “rescalling.” First,
the “rescaled” model is not actually equivalent to the untrans-
formed one, so that the procedure involves more than a unit
change. Second, there is no clear interpretation of the param-
eters after such rescaling. We suggest an interpretation but
find that the usual formulas for standard errors and confi-
dence intervals are not asymptotically valid. Only tests for
zero coeflicients are valid. Thirdly, we discuss the appropriate
way of measuring elasticities in such models.

I. Introduction

In a paper published some time ago, Spitzer (1984)
demonstrated the lack of invariance of asymptotic ¢-
ratios for the linear coefficients of regression models
with the Box-Cox transformation on the dependent
variable. Further, he discussed the merits of using a
scaled version of the model, in which the observations
on the dependent variable are divided by their geomet-
ric mean. This “rescaling” technique was in fact origi-
nally suggested by Box and Cox (1964) and has since
been recommended or used in numerous textbooks
[see, for example, Abraham and Ledolter (1983, pp.
56-60), Atkinson (1987, sections 6.2 and 6.4), Box,
Hunter and Hunter (1978, p. 239), Cook and Weisberg
(1982, p. 62), Davidson and MacKinnon (1993, pp.
486-488), Draper and Smith (1981, section 5.3), Judge
et al. (1985, section 20.5) and Maddala (1977, section
13-11)] and articles [e.g., Blackley, Follain and
Ondrich (1984), Collins (1991), John and Draper (1980),
Lindsey (1972), Logothetis (1990), Rasmussen and
Zuehlke (1990), Seaks and Vine (1990), Spitzer (1982),
Zarembka (1974))].

This approach, however, raises a number of impor-
tant questions that deserve further discussion. Even
though some authors have issued warnings on the
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importance of taking into account the uncertainty of
the Box-Cox transformation parameter (which is typi-
cally estimated) when making inferences in such mod-
els,! none of the above-cited authors has apparently
pointed out the fact that “rescaling” of the observa-
tions by their geometric mean involves a very similar
problem even if the uncertainty of the estimation of the
transformation exponent is taken into account (using,
for example, the corrections suggested by Spitzer (1982,
1984)). In particular, applications of Box-Cox models,
with the dependent variable scaled by its geometric
mean, have appeared in the literature, where the impli-
cations of such random “scaling” on statistical infer-
ence have been totally ignored; see, for example,
Blackley, Follain and Ondrich (1990), Collins (1991),
Logothetis (1990), and Rassmussen and Zuehlke (1984).

In this paper, we discuss some of the intricate impli-
cations of rescaling by the geometric mean for statisti-
cal inference in Box-Cox models. After describing the
model in section II, we show in section III that rescal-
ing the dependent variable with its sample geometric
mean (without taking into account the random nature
of the scaling factor) leads one to use the wrong
likelihood function: the estimated model is not the
same as in the original specification, and dividing the
dependent variable by the sample geometric mean
modifies the model in a basic way and thus involves
much more than a mere unit change. Then, in sections
IV and V, under an (additional) convergence assump-
tion, we interpret the sample geometric mean as an
estimator of a supplementary parameter and use this
extended parametrization to interpret hypothesis tests
in the “rescaled” model. In particular, regression co-
efficient standard errors obtained from the rescaled
model are not generally valid, so that these standard
errors cannot be used to build confidence sets (for
either the original or the rescaled model). These stan-
dard errors are, however, valid for testing whether
individual regression coefficients (other than the inter-

! See Bickel and Doksum (1981), Davidson and MacKinnon
(1993, p. 487), Judge et al. (1985, p. 842), Maddala (1977, p.
316) and Spitzer (1982, 1984). Here, we shall take for granted
this point of view. For further discussion, see Box and Cox
(1982), and Hinkley and Runger (1984, with comments).
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cept) are zero. In section VI, we discuss the evaluation
of elasticities in Box-Cox models. We conclude in sec-
tion VII.

II The Scaled Model

The simple model considered by Spitzer (1984) to
illustrate his approach is the following:

YO =XB +e (1)

where Y™ is a T X 1 vector with typical element
YWt =1,...,T:
) ,.., Tt

yM = (v} - 1)/)\, ifA #0,
=In(y,), ifA =0, 2

where y, is a positive random variable, X is a T X K
matrix of (fixed or strictly exogenous) explanatory vari-
ables with a unit vector as its first column, 8 isa K X 1
vector of parameters (with B; the constant term), € is a
T X 1 vector of disturbances which is assumed to fol-
low an (approximately) N(0, 0.2I;) distribution. Given
that y, must be positive, a necessary condition to
assume that e is approximately normal, when A > 0, is
that for each possible observation in the admissible
range of X, (the t™ row of X), we have (1/A +
X,B)/o. > 1, for all ¢ (see Draper and Cox (1969)).
For A < 0, the condition becomes (1/A + X,B)/0, <
-1.

Box and Cox (1964) and Spitzer (1984) have noted
that a scaling trick which simplifies the computations
for estimating the parameters of the model consists in

defining
W,=y1/g9 t=1,...,T

where

T 1/T
8= n Y
t=1

is the sample geometric mean of the y,’s. From (1), we
have

©

WM =Xy +v 4)
where W = (w(l’\)’ ceey w%f\))” v = E/g)‘, and

y1= (B, +1/2)/8* = 1/A,

Vo= Bi/gh k=2, K. ©)

Then, writing the log-likelihood function of the trans-
formed model as if the elements of v were indepen-
dent N(0, 0,2), where 02 = 02/g?* and g is taken as
fixed, the values of A and y that maximize this function
are readily found, since the logarithm of the Jacobian
vanishes. Further, the maximum likelihood estimates of
the elements of B are easily obtained from equa-
tion (5).
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It must be noted, however, that the above procedure
is only a trick to facilitate computations. Clearly, the
sample geometric mean g is a random variable and,
since € ~ N(0, 02I;), it is easy to see that v = e/g*
does not follow a normal distribution. Hence, equation
(6), appearing in Spitzer (1984),

L(v,}; X,W) = —(T/2)In(2) (6)

with 2 =v'v/T, is not the concentrated log-likeli-
hood of W, where W is a T X 1 vector with typical
element w,.> Since IT7_; w, = 1, the true density of
the elements of W is necessarily degenerate. In addi-
tion, the elements of y are random coefficients since
they are all functions of the stochastic variable g. It
will be of interest here to derive the correct likelihood
function.

III The Likelihood Function

The likelihood associated with the model where the
dependent variable has been scaled by its sample geo-
metric mean can be expressed in terms of the joint
density of, say, wy,w,,...,wr_; and g. This likelihood
could be denoted by (B, A, o; wy,...,wp_q, g), thus
indicating that the fixed parameters are A, o, and the
elements of B (not vy, A and o,) and that the stochastic
variables considered in the scaled model are wy,...,
wr_y, and g. The joint density of w,...,w;_; may
then be obtained by integrating out g. As for the joint
density of wy,...,wr, it is identical to that of
Wiy ...y Wp_y, since [T7_; w, = 1 with probability 1.

Specifically, the log-likelihood function associated
with the y,’s can be written as

L(B’UE7)‘;y1’~“’yr)
= —(T/2)ln(27) — T In(o,)

—(Y® - XB) (Y™ - XB) /(202)
+ In(J;) 7

where J; is the Jacobian of the change of variables
from Y to Y:

T
In(J;) = (A = 1) X In(y,) = T(A = DIn(g).
t=1
(®

Then the log-likelihood associated with the model ex-

pressed in terms of the scaled variables wy,...,wy_,
and the sample geometric mean g is
L(B,o ,AsWy,y.ocsWr_1,8)
=L(ﬁ70-s’)‘;YI""7yT)+ln(‘]2) (9)

2For a similar remark about a somewhat different data
transformation in the Box-Cox model, see Doksum (1984) and
Bickel (1984). Note that a constant term is missing in equation
(6), but this has no consequence on our discussion.
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where J, is the Jacobian associated with the change of
variables from (Yy,...,Y) to (wy,...,wr_q, 8):

T-1
In(J,) =In(T) + (T — DIn(g) — Y In(w,).
t=1
(10)
We can therefore write

L(B,o, Aswy, .o .,Wr_1,8)
= —(T/2)ln(27) — T In(o.)
~(Y® ~ XBY (Y™ - XB) /(202)

+1In(T) + (TA — Din(g) — Tilln(wr),

t=1
(11)

where the y,’s contained in Y may be expressed in
terms of wy,...,wr_; and g as

T-1

Yr=28 n w
=1

(12)

Finally, the probability density of (w,,...,wr_;) can

be obtained from I(B,0,A;wy,...,wr_q, &) by inte-
grating out g:

I(B,o,A;wy,..

Y, = 8w,, t=1,...,T—-1,

LWr_q)
T-1 I

_ T(27r)_T/2<7€'T]—I Wt_lf [g(n—n
t=1 0

xexp{—(Y® - XB) (Y® - XB)/(202)}] dg. (13)

Clearly, this likelihod function is quite different from
the usual Box-Cox likelihood function (where g would
be taken as nonrandom). As mentioned above, on the
hypersurface defined by IT7_,w, = 1, we have:

I(B,o, Aswy,oooowp) =1(B, o, Aswy, ., wr_g).

(14)

IV. A Large-sample Interpretation of
Geometric Mean Rescaling

It appears that an alternative way of interpreting the
Box-Cox-Spitzer approach of rescaling by the sample
geometric mean might avoid the above complications.
It would consist in considering that the original model
has been scaled not by the stochastic geometric mean g
but by a constant term that takes on the specific value
E = plim g, where plim refers to the probability limit
as T — .2 One would then obtain:

=Xl =1, 1)

3 Clearly, we assume here that plim(g) exists. Whether 2
coincides with the actual geometric mean of the population or
not is not relevant for our purpose.
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where z, = y/E, ¢, = B/E* for k=2,...,K,
o, =B, +1/0)/E* —(1/)) and ¢, = €,/E™.

If E were known, a consistent estimator of ¢ could
be obtained by maximizing the likelihood function as-
sociated with the z,’s. Given the properties of ML
estimators, the ML estimates of the ,’s would satisfy
the following equations:

gy = (B + 1/8) /B - (1/4),

bo=B./ENk=2,...,K. (16)

Note that the ML estimate of A would be the same for
the original model and the model scaled by E. Now,
the 9 estimators proposed by Spitzer (1984) could be
seen as alternative computable consistent estimates of
the ¢, ’s, since

plim 3, = plim[(ﬁ?l + 1/):)/g3-(1/i)] =y,
(17)
plim 7, = plim(B,/g*) = v,
k=2,...,K. (18)

This interpretation of , as a computable estimator of
B./E* avoids the difficulties encountered in section II
and preserves the meaning of the tests discussed by
Spitzer, since each null hypothesis B, = 0 is equivalent
to ¢, =0, for 2 <k < K.* However, adopting this
alternative viewpoint also has its drawbacks, as pointed
out in the next section.

V. The Asymptotic Covariance Matrix Estimator

If one adopts the interpretation discussed in the
previous section, the expression shown in equation (12)
of Spitzer’s (1984) paper may be considered as an
estimator of tpe asymptotic covariance matrix of the
elements of . However, given that g is a random
variable, is this estimator appropriate as an estimator
of the asymptotic covariance of y?

There is no evidence that the elements of VT (7 — ¢)
will, in general, have the same asymptotic variances as
the corresponding elements of VT (¢ — ). This would
be the case (Theil (1971, p. 370)) if we had

plim[VT (5 ~ w) = VT (4 — )] = 0. (19)
This does not appear to be the case, in general, except

4 A somewhat different interpretation suggested by Berndt,
Showalter and Wooldridge (1993) would be to assume that the
data is generated not by the original equation (1) as is usually
done, but directly by equation (15) and that the observed Y’s
are then obtained by multiplying the z, by an extra parameter
v, which corresponds to the population geometric mean. The
likelihood function used by Spitzer would clearly not be
applicable to this extended model either, since it does not
incorporate the extra parameter v.
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when B, =0 for 2 < k < K. Indeed, for 2 < k <K,
we have

ﬁ(f’k - ‘l’k) - ‘/T(‘i;k - ‘/’k)
= \/T('f’k - J’\k)
= \/T(-ﬁ—l; - &) =l§kﬁ[—17 -
4 4

=A A
.

nllha

(20)

Since B,VT(1/g* — 1/8") converges in distribu-
tion, as T — o, to a nondegenerate random variable,
VT ($, — ¢) will not in general have the same asymp-
totic distribution as yT (i, — ¢,). This would be the
case, however, under the null hypothesis H,: B, =
¥, =0, since the probability limit of BT /8" —
1/E") then vanishes.

Thus, the ¢-test proposed by Spitzer for Hy: y, = 0,
as well as the corresponding test for the original model,
are both asymptotically valid. In fact, it can be shown
that under Hy, as T — « and ¢,, Yk 0, the value of
the asymptotic t-statistic for \/kf (¢, — ¢,) does not
change with the scaling factor; the proof of this result
is available in Dagenais and Dufour (1993). However,
it must be noted that asymptotically valid confidence
intervals could not be established for vy,, using the
variance estimator employed by Spitzer (1984) in the
denominator of the right-hand side of his equation
@5).

Even if the proposed t-test is asymptotically valid for
testing vy, = ¢, = 0, it does remain, however, as
demonstrated by Spitzer, that in finite samples the
value of the ¢-statistic can be altered arbitrarily by
changing the scaling factor and that invariant tests
should therefore be preferred (for some proposals, see
Dagenais and Dufour (1991)).

VI. Elasticities

It is often of interest to evaluate elasticities from an
econometric model. To be meaningful, such quantities
must correspond to a well-defined population parame-
ter (i.e., a nonstochastic characteristic of the model). In
nonlinear models of the form

f(yis X, €,) =0, (21)

where X, is fixed and e, is a random disturbance, it is
natural to define the elasticity of y, with respect to
Xy, given X,, as:

t=1,...,T,

Xkt
E(ylX,)

_E(ylX)

0xy,

(22)

k

When evaluated at the sample geometric mean of the
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elements of X (say X), this yields:

P IE(ylX) X

k EGIX) (23)

axk X=X

Spitzer (1984) suggests computing elasticities in a
Box-Cox regression as

[5y(A) X

oF =

. 24
axk g)\ st ( )

or, for the scaled model,

aw®
Fk = X = 'yk):,‘k.
X=X

9xy
However, it appears more meaningful, for most appli-
cations, to define the elasticity in terms of proportional
changes of the variable of interest (namely, y, in the
case at hand) rather than in terms of proportional
changes of a power function of this variable (such as
y™). A more important drawback of defining the elas-
ticity as in equations (24) or (25) is that this is a
random variable which conveys little information un-
less a confidence interval is also supplied.’ Clearly, the
true elasticity defined by equation (23) is a fixed num-
ber, given X. It will, in general, only depend on the
unknown coefficients of the model. But to evaluate the
elasticity, the unknown coefficients must be replaced
by estimates.®

(25)

VII. Conclusion

We have tried, in this paper, to clarify a number of
questions raised by Spitzer’s (1984) paper. In particu-
lar, we have pointed out that the coefficients of Spitzer’s
scaled model are random coefficients and we have
derived explicitly the likelihood function of the scaled
model. We have also suggested a reinterpretation of
Spitzer’s approach, in which the coefficients of the
scaled model would correspond to fixed parameters.
We have then established that the variance estimators
suggested by Spitzer for the parameter estimates of the
scaled model are inconsistent, except under the null
hypothesis of a zero coefficient. We have also pointed
out that elasticities should be defined in terms of
expected values.

Because of the pitfalls involved in the interpretation
of the scaled model, we conclude that there is defi-

5 Furthermore, if the elasticity is defined as in equation (25),
testing hypotheses such as Hy: I, = 1, where T} =y, X,
would involve a contradiction, since y, is stochastic. A more
meaningful null hypothesis would be ¢, x, = 1.

For examples of the estimation of such elasticities
in regression models with Box-Cox transformations, see Dage-
nais, Gaudry and Liem (1987).
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nitely no advantage from a statistical viewpoint, in
using this type of approach. Nor do we believe that
scaling each variable by its sample geometric mean
would produce scale invariant ¢-statistics in regression
models with Box-Cox transformations. Clearly, if all
practitioners agree, when using regression models with
Box-Cox transformations, to adopt a uniform scaling
factor (such as the geometric or the arithmetic mean),
the results of all experimenters using the same sample
will be exactly similar, including the z-ratios of the
linear coefficients. However, this uniformity of results,
which would arise from the adoption of a similar
scaling factor, does not render the statistics invariant
to changes in measurement units.” Note that, as pointed
out by a referee, researchers may be only interested in
testing the linear model (A = 1) against the loglinear
model (A = 0), rather than in performing a full nonlin-
ear estimation of the model with continuous possible
values of A. Within such a framework, scaling by the
geometric mean is not an issue since the asymptotic
t-tests for A are scale invariant. Such a procedure,
however, would be affected by the biases associated
with pretest estimators (Judge et al. (1985)).
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