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INVARIANCE, NONLINEAR MODELS, AND ASYMPTOTIC TESTS

By MARCEL G. DAGENAIS AND JEAN-MARIE DUFOUR!

The invariance properties of some well known asymptotic tests are studied. Three
types of invariance are considered: invariance to the representation of the null hypothesis,
invariance to one-to-one transformations of the parameter space (reparameterizations),
and invariance to one-to-one transformations of the model variables such as changes in
measurement units. Tests that are not invariant include the Wald test and generalized
versions of it, a widely used variant of the Lagrange multiplier test, Neyman’s C(a) test,
and a generalized version of the latter. For all these tests, we show that simply changing
measurement units can lead to vastly different answers even when equivalent null
hypotheses are tested. This problem is illustrated by considering regression models with
Box-Cox transformations on the variables. We observe, in particular, that various consis-
tent estimators of the information matrix lead to test procedures with different invariance
properties. General sufficient conditions are then established, under which the general-
ized C(a) test becomes invariant to reformulations of the null hypothesis and/or to
one-to-one transformations of the parameter space as well as to transformations of the
variables. In many practical cases where Wald-type tests lack invariance, we find that
special formulations of the generalized C(a) test are invariant and hardly more costly to
compute than Wald tests. This computational simplicity stands in contrast with other
invariant tests such as the likelihood ratio test. We conclude that noninvariant asymptotic
tests should be avoided or used with great care. Further, in many situations, the suggested
implementation of the generalized C(«) test often yields an attractive substitute to the
Wald test (which is not invariant) and to other invariant tests (which are more costly to
perform).

KeywoRrps: Asymptotic tests, formulation of restrictions, invariance, measurement
units, Neyman’s C(a) test, nonlinear models.

1. INTRODUCTION

IT Is A WIDELY RECOGNIZED PRINCIPLE that the inferences drawn from a
statistical analysis should not depend on arbitrary incidentals like the selection
of measurement units or the labelling of i.i.d. observations; see Hotelling (1936),
Pitman (1939), Ferguson (1967, Chap. 4), and Lehmann (1983, Chap. 3; 1986,
Chap. 6). More generally, when the unrestricted parameter space is transformed
in a one-to-one manner or when the representation of a null hypothesis is
changed, it is natural to require that the result of testing equivalent null
hypotheses be the same. For example, in the context of the classical linear
model, standard ¢ and F tests enjoy such properties for linear transformations
of the parameter space. On the other hand, in nonlinear models, several
asymptotic tests are usually available; see Engle (1983) and Gouriéroux and
Monfort (1989). The invariance properties of these tests may differ markedly.
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The first purpose of this paper is to study some basic asymptotic tests from
the point of view of invariance. Three types of invariance are studied: invariance
to equivalent representations of the null hypothesis, invariance to reparameteri-
zations, and invariance to one-to-one transformations of model variables. An
important special issue examined is invariance to changes of measurement units
in nonlinear models. Four main test criteria are considered: Wald, likelihood
ratio, Rao’s efficient score (or Lagrange multiplier), and Neyman’s C(a). While
it is easy to see that the likelihood ratio (LR) criterion enjoys strong invariance
properties, some important invariance (or noninvariance) characteristics of
the other tests are not well known. Among other things, we observe that the
invariance of the Lagrange multiplier (LM) test depends on the way the
information matrix is estimated. For example, the Hessian matrix of the log-like-
lihood function does not lead to an invariant test. Further, the other test criteria
considered are not generally invariant, even for simple measurement unit
changes.

If one wants to conduct an invariant test, this suggests that only the LR or an
appropriate variant of the LM test should be employed. However, an important
disadvantage of these two methods is the requirement to reestimate the model
under each restriction tested. This stands in contrast with the Wald method
which requires estimating only the unrestricted model.? Given this difficulty, the
second purpose of this paper is to look for possible substitutes to the Wald
method, that are invariant as well as less costly to implement than LR or LM
tests. We suggest that a class of Neyman’s (1959) C(«) tests and the generaliza-
tion proposed by Smith (1983, 1987) can be useful in meeting this objective. In
general, C(a) and generalized C(a) tests are not invariant. However, if one
restricts the class of constrained estimators appropriately, the procedure be-
comes invariant. We give general sufficient conditions under which the general-
ized C(a) test is invariant. Depending on the model and null hypothesis
considered, generalized C(a) tests can be much cheaper to apply than LR or
LM tests.

The paper is organized as follows. In Section 2, we state the assumptions
made and describe the test criteria studied. In Section 3, we study the invari-
ance properties of the test criteria and describe general sufficient conditions
under which generalized C(a) tests are invariant to hypothesis reformulations
and reparameterizations. In Section 4, we apply the results of Section 3 to
rescaling in models with Box-Cox transformations and to reformulations of
restrictions.

2. FRAMEWORK AND TEST CRITERIA

We consider a general statistical model with log-likelihood function of the
form

(21)  L(6:2) = logl p(51X,0)] = ¥ logla(vlx,, 0)] = ¥ 1,(6:2)

t=1 t=1

2In specification tests, the opposite happens: the null hypothesis is fixed while a large number of
alternative hypotheses may be considered. In such situations, LM tests are more convenient.
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where Z=[y,X], y=[y, vy, v.ls X=[x;,x5,...,x,1, y, is an mXx1
random vector (“dependent variables™), x, is a k X 1 vector of fixed (or strictly
exogenous) variables (t=1,...,n), 6=(6,,...,6,) is a p X1 vector of fixed
parameters in the space 2 CRP?, n is the number of observations, y € U,,
XeU, and ZeT=U,XU; U, and U, are the sets of n Xm and n Xk
matrices where y and X can take their values. p(y|X, ©) is the density function
of y given X, g(y,lx,,0) the density of y, given x,, and [,=1(0;2)=
loglg(y,|x,, 0)].> We suppose that the probability distributions corresponding to
different values of © are distinct (identification). Also let

(22) D(6;Z)=0L(6;Z) /0
=[L(6;Z),...,L(6;Z)] = iD,(e;Z),

a1,
90900"’°

23)  H(6;Z L oL li
(2.3) (6;2) = w3000 n =

where D,(0; Z) =4l,/36. The information matrix corresponding to the log-like-
lihood function L(O; Z) is

(24)  1(0) =1(0; X) = ~Eo[ H(6;Z)]

_Eg |t ZD(G Z)D/(6;Z)
=1
where the expected value Eg(-) is taken with respect to the density function
r(y|X,0).

We suppose that usual regularity conditions are satisfied; for various sets of
conditions, see Bartoo and Puri (1967), Burguete, Gallant, and Souza (1982),
Gallant (1987), Gallant and Holly (1980), and Lehmann (1983, Chap. 6). Thus a
consistent maximum likelihood (ML) estimator O exists and both D(6, Z) and
6 follow normal distributions asymptotically: n~'/2D(6; Z) - NI0, o)),
n'/%(6 — ©) - N[0, [(0)~ '], where I(6) =lim,, _, . I(6). Three alternative con-
sistent estimators of 7(6) are usually considered:

(25) 1[(6),=-H(6;2Z),
i(6),= ! iD,(é;Z)D,(é;Z)’, 1(6);=1(6).
n,_

Provided O is a consistent estimator of O, each of these estimators converges to
I(©). Even though basic test criteria, like Wald’s and Rao’s criteria, were
originally defined in terms of 1(6)3, the two other estimators are often easier to
compute. In many situations, using / (6)3 is not practical because the analytical
evaluation of the expected value I(0) = —Eo[H(O; Z)] is too difficult. In the

3We could also allow x, to include lagged dependent variables. However, to simplify the
exposition, we will assume that x, is strictly exogenous.
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sequel, the symbol f(é), with no subscript, will refer to any of the three
estimators in (2.5).

Consider now the problem of testing Hj: ¢(0) = 0, where ¥(0) is a p, X 1
continuously differentiable vector function of © (1 <p, <p), and suppose that
the p, X p matrix dy /96’ has full row rank (at least in a neighborhood of the
true parameter vector ©). Several criteria may be used for this purpose. In this
paper, we will concentrate on the following ones: the likelihood ratio test, the
Wald test (Wald, 1943) and generalizations of it, Rao’s (1948) score test (or the
Lagrange multiplier test (Aitchison and Silvey (1958), Silvey (1959)), Neyman’s
(1959) C(a) test and a generalization of the latter. The statistics of the LR,
Wald, Rao, and C(a) tests for H,: $(0) = 0 are respectively

(26) LR(y)=2[L(6;Z)-L(6%2)],

W(w) =nu(6) [ P(6)1(6) ' P(6)] w(6),
(27)  S(¥)= %D(éO;Z)’f(é%”D(éO;Z),
(28)  PC(6%y)= %D(éO;Z)'f(éo)_lP(éo)'

x|p(6%)i(6%) 'P(6%Y|  P(69)i(6°) 'D(6"; 2),

where P(0)=0dy /30, ©° and O are the restricted and unrestricted ML
estimators of ©, and 6° is a root-n consistent estimator of © (at least under
H,) that satisfies ¢(6°) =0. We suppose that P(6), P(OO) and P(6°) have
full row rank, and similarly for (8), [(6°), and [(6°). Under H,, the
asymptotic distribution of each of these test statistics is x*(p,).

Various generalizations of the Wald test are obtained by replacing the ML
estimator O by another asymptotically normal estimator © of ©, and [(6)~! by
a consistent estimator of the asymptotic covariance matrix of O; see Stroud
(1971). Neyman’s (1959) C(a) criterion was originally suggested to test hypothe-
ses of the form 6, = 67 where 6 = (0/,0,) and 6, is a p, X 1 subvector of 6.
It can be viewed as a generallzatlon of Rao’s score test obtained by replacing
the restricted ML estimator 6° by 6° = (6, 6),), where 6, is a locally root-n
consistent estimator of O, (for definition of the latter notion, see Neyman
(1959, p. 217) and Biihler and Puri (1966, p. 73)). It was generalized by Smith
(1983, 1987) to deal with nonlinear restrictions such as (6©)=0. The PC
statistic has the important property of allowing one to use any root-n consistent
estimator that satisfies the null hypothesis, not only the restricted ML estimator.
It also enjoys optimal local power properties (see Smith (1983, 1987)). For the
case in which ¢(6) =06, — 6}, it is easy to check that PC(6°; ) reduces to
Neyman’s C(e) statistic. Further, when 69 is the restricted ML estimator of O,

PC(O% ¢) = S(y).
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3. INVARIANCE OF TEST CRITERIA

In this section, we start studying the invariance of the statistics defined above.
For this purpose, we shall distinguish between three types of transformations:
(1) reformulation of the null hypothesis, (2) reparameterization of the model
space, (3) transformation of the model variables. Correspondingly, three types
of invariance can be defined. The two first ones will be discussed in this section,
while the third one, which involves the two others, will be considered in the last
section.

The first type of invariance relates to the choice of the function ¢ used to
represent the null hypothesis. Let ¥ be a family of p, X1 continuously
differentiable functions ¢: R? — R”! such that

(3.1) ¢(6)=0 iff $(0)=0, forall ¢,ye€¥ and 6€Q,

where “iff” stands for “if and only if.”” All formulations (6) = 0, where ¢ € ¥,
describe the same hypothesis about ©. We say that a test is invariant with
respect to the formulations in ¥ when the result of testing (6©) = 0 is the same
for all ¢ € V.

To define the second type of invariance, we consider a one-to-one transfor-
mation g from 2 onto 0, CR?: 6, =g(0). In such a case, it is usually
necessary to reformulate the null hypothesis. For example, for a given function
¥(0) and transformation g on {2, one could consider the equivalent formula-
tion

(32)  ¥*(0.)=y[z7'(6.)].

The two hypotheses H,: ¢(0) =0 and H{: 4*(60,) =0 are equivalent repre-
sentations of the same hypothesis in the two parameterizations 6 and 6,. We
say that a test is invariant to the reparameterization 6, = g(0) for the equiva-
lent representations (¢, ¢*) when the results of testing H, and H (on the
basis of the original and reparameterized models) are the same. Of course, one
could also use here a different equivalent formulation (60 ,) =0, such that
U (0,)=0iff $(6) =0, for all 6. But this can be viewed as a reformulation of
the null hypothesis (transformation of the first type) in the context of the new
parameterization 6, (since ,(60,) =0 iff $*(6,)=0). Unless stated other-
wise, ¢*(6,) = 0 will henceforth refer to the representation given by (3.2), and
¥, (6,) =0 will refer to any (continuously differentiable) equivalent represen-
tation of (6) =0 in terms of O .

Let us now examine how LR, Wald, LM, and C(a) tests behave under the
two types of transformations just defined.

Concerning invariance to the way the null hypothesis is expressed, several
authors have already discussed and illustrated the noninvariance of Wald tests
to the formulation of the null hypothesis; see Cox and Hinkley (1974, p. 302),
Burguete, Galiant, and Souza (1982, p. 185), Gregory and Veall (1985),
Lafontaine and White (1986), Breusch and Schmidt (1988), and Phillips and
Park (1988). By contrast, LR and LM tests are invariant to hypothesis reformu-
lation. For LR tests, this is straightforward to check because the restricted



1606 MARCEL G. DAGENAIS AND JEAN-MARIE DUFOUR

maximum of the likelihood function does not depend on the formulation of the
null hypothesis. The LM and C(«) tests are also invariant to the formulation of
the null hypothesis. This follows from the following theorem on C(«) tests.*

THEOREM 1: Let ¥ be a family of p, X 1 continuously differentiable functions
of © such that 3y/00" has full row rank when $(0)=0 (1 <p,<p), and
¥(0) = 0 if and only if $(0)=0,Yy, § € V. Further, let © be an estimate of 6
such that $(6)=0, and suppose that () is nonsingular, where [(O)=
1(6),,i=1,2 or 3. Then

PC(6;4)=PC(6;4), Vy,yeV.

Proor: By assumption, the set 2, = {0: ¢(0) = 0} is the same for all ¢ € ¥.
Let ¢ and ¢ be any two elements of ¥, and O = (6',0,) where 6, is p; X 1.
Since dy /00" has full row rank for O €(2,, we can assume, without loss of
generality, that |9y /9607|# 0 for © € 2,,. By the implicit function theorem (see
Rudin (1976, chap. 9)), there is a differentiable function 4 such that 6, = 4(6,)
for © € . Then, for 6 € 2, we also have |3y /30| # 0 and

00, oh (a¢)‘la¢_ (aJ)_lalZ

90, 90, 20, | 0, 00, 30,

Further P(0) =dy /36’ = P|(0)G(O) and P(0) =y /00" = P(O)G(O), where
P(O) = 3y/36}, P(O)=3ay /00, and G(O) =I[I,,(0y/360))~ (3¢ /96,)].
Hence

. 1. . -t
PC(6;y)=—DT'G {{PGI 'G'P;| P,GI'D
n
1 I
) Jtedlc altcd e ally
n
S SRR Bt RS .
= ;D’I‘IG'Q’I[QIGI‘IG'Q’I] Q,GI"'D=PC(0;¢)
where D = D(6; 2), [=1(6);, (i=1, 2 or 3), G=G(6), P,=P(6), and
Q,=P(6). Q.E.D.

As pointed out above, the LM test is a special case of Neyman’s C(a) test, so
that the theorem also applies to the LM test.

Consider now a reparameterization 6, = g(0) of model (2.1) and let L, =
L ,(6,; Z) be the log-likelihood function of the reparameterized model. Again,
it is easy to check that the LR criterion is invariant to this type of transforma-
tion. For the other test criteria, we need to examine the behavior of the first and
second derivatives of the log-likelihood function. We assume here that the
log-likelihood function and the transformation O, =g(6©) are twice differen-

4 Detailed proofs of the results given in this section are available in Dagenais and Dufour (1986).
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tiable. Since L ,(6O,;Z)=L(6; Z) for all © and Z, we have

Ly

(3 75

oL

H.(0,;Z)=J(0,)H(0;Z)J(6,) + = i L (6;Z)M(O4),
n o

(3.4) I*(Q*):_EO[H*(Q*;Z)]
= _J(Q*YEG[H(Q;Z)]J(G*) =J(6*),I(6)J(6*)’

where J(6,) =0d6/00,, H,(0,;Z)=n""9°L, /00, 30, L(O;Z)=
dL/36,, M (0,)=09%0,/0,00, k=1,...,p, and Ey[dL/360]=0. From
(3.3) and (3.4), one sees easily how the three estimators f(é)i, i=1,2,3, defined
in (2.5), change when the transformation O, = g(0) is applied:

(35)  1.(64),=7(6,)1(6),J(6,)- 1 ki L(6;Z)M,(6,),
=1

[,(64),=1(6.)1(6).4(6,) (i=2,3),
where 6 = g"(é ). When 0L /36 # 0 (e.g, if it is evaluated at a restricted ML
estimator), we see that the second derivatives M,(0,,) of the transformation
6= §‘1(9 ) can play a role in the determination of [.(6, );- By contrast,
when 6 is the unrestricted ML estimator 6, we have L k(G Z)=0,k=1,...,p,
so that I, 0, ); =J(O, )’1(6) J(6,), i=1,2,3, where 6 =z(0) is the unre-
stricted ML estimator of 6,, based on the reparameterlzed model. Thus,
provided J(6,) is nonsingular, the Wald statistic for testing Hy,: ¢,(0,)=0
is

(3:6)  Wo() =ma(0.)[B1,(6.) '] wa(6.)

= (6.)[i(6) '] u.(6.)
where P, =P, (0,), P=P(6), P(6) =0y /30, $(0) = ¢, [g(O)), and
(3.7) P (04) =0y, /00, =F(6)J(6*)-

For the special case where the restrictions are formulated as in (3 2), i.e.
Yy =y*, we have W, (¢, )=W(y), irrespective of the estimator 1(6) used
(i=1,2, 3) because then ¥, (0,)=y[g (6,)]=¢(6) and P(O) = P(6) for
all ©. In general, however, nothing guarantees that W, (¢,) = W(¥). It is also
clear that similar problems will affect various generalizations of the Wald test.

The LM statistic for testing H,, is given by the appropriate counterpart to
(2.7), where

(3-8) Dy(04;Z) =0L, /90 =J(6*)/D(6§Z)-
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By (3.5), we have
(3.9)  S«(¥x)

— - p(6%2) 1(6%)[ 1(6%) F(6°),1(6%)] 1(64) D(6%: 2)

n
1 N P A A - A
= —D(6'%2)1(6"); ' D(6":2) =5(¥)

for i =2 and 3, where 6% = g(0°) is the restricted ML estimator of 6, based
on L,(6,;Z) and where we assume that J(69) and [,(62),, i=1,2,3, are
nonsingular. Thus this test is invariant when I(6) is estimated by [(6°), or
1(6%),. On the other hand, for i = 1, we have

1 N oA A an -1 o
(3.10) S, (s) =—D(6%2)[[(6°),+M(6°)] D(6%2)

where M(6°) = —(1/n)LP_,L,(0°% Z)[J(O) 1M, (63)J(62)"". Thus,
when the Hessian matrix of the log-likelihood function is used to estimate I(0),
the LM statistic becomes sensitive to the curvature characteristics (second
derivatives) of the transformation . A sufficient condition for S, () = S() is
M (6%)=0, k=1,...,p (e.g, linear transformations). However, this condition
is not always satisfied.

The generalized C(a) criterion differs from the LM criterion because it
allows one to use any restricted root-n consistent estimator of 6. In order to
investigate the invariance of the generalized C(a) criterion, we must specify
how the estimator © is modified when the model is reparameterized. One such
condition is é* = g(6) implying that the restricted estimator is transformed in
the same manner as the parameter space (2. An estimator é* that possesses
the latter property is said to be equivariant with respect to the reparameteriza-
tion 6, =g(0) (see Lehmann (1983, chap. 3)). Note that restricted maximum
likelihood estimation always selects an equivariant estimator whenever the
parameter space is transformed.

As with the LM test, the generalized C(«a) is invariant to reparameterizations
for i =2 or 3 so long as we use an equivariant estimator. Let PC,(6,;y*) be
the generalized C(a) statistic for testing ¥*(60,) =0 (see (3.2)), based on the
reparameterized log-likelihood L*(O*;Z ), and suppose that J(6,) is nonsin-
gular. It follows from (3.5)-(3.8) that if 6, =g(6),

(3.11)  PC,(64;9*)
1 _ _ o o -t_ [ .., -1 171
=;D’J*(J;IJ*) J’*P’[PJ*(J’*IJ*) J'*P’]
<P, (7,17,) T,
| B R -
— _BP PP BB = PC(659),
n

where D=D(6;2), J, =J(é*); f=P(Q~)z and [= f(é)i, i=2 or 3. There-
fore, when I(6) is estimated by I1(0), or 1(0),, the C(a) test is invariant to the
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reparameterization 0, =g(0) for the equivalent representations (i, *), and
the following theorem holds.

THEOREM 2: Let O, =g(0), where g: 2 - Q, CRP? is a one-to-one transfor-
mation such that g as well as g~ are differentiable, let y(0) be a continuously
differentiable vector function of O such that 3y /00" has full row rank when
$(0) =0, and let $*(0,) =y[g~'(6,)]. Let also 6 and 6, be two estimates of
© and O, respectively, such that y(6) =0, ¥*(0,) =0 and |J(6 )| # 0, where
J(0,)=00/30',. If 6, =5(0) and (6)=1(0),, i =2 or 3, with [(O) nonsin-
gular, then

PC,(6,;4*)=PC(6;¢),

where PC and PC are the generalized C(a) statistics based on the log-likelihood
functions L[O; Z] and L [0 ,; Z1=LIg~(6,); Z] respectively.

Finally, again when I(©) is estimated by f(é)2 or f(é)3, it follows from
Theorems 1 and 2 that

PC*(é*;l/’*) =PC*(6~*;'/’*)=PC(6~;¢)’

for any representation ¢, (6 ) = 0 equivalent to ¢(6) = 0, provided |J(6 )| # 0
and 9y, /90", has full row rank when ¢,(6,)=0. In other words, the C(a)
test is invariant to the reparameterization 6, = g(0) for all equivalent repre-
sentations (¢, ¢ ).

4. ILLUSTRATIONS AND APPLICATIONS

In this section, we illustrate numerically the noninvariance problems dis-
cussed in Section 3 and show, with specific examples, how the theoretical results
of Section 3 can be used to obtain simple invariant tests. An important case
considered here is the one where the measurement units of the variables in a
model are changed (i.e. when these variables are multiplied by fixed constants).
It is easy to see that the results of Section 3 continue to hold when reparameter-
izations and hypothesis reformulations occur in conjunction with one-to-one
differentiable transformations of model variables (involving no unknown param-
eter), such as measurement unit changes.’

5 The only difference in this case is that the log-likelihood function takes the form L,(0,;Z,)
= loglk(Z )]+ L(O; Z) with Z, =g(Z)=[y,, X,], where g is a one-to-one transformation of 7"
onto itself such that y, =g,(y) and X, =g,(X) have dimensions identical to those of y and X,
and «(Z,) is the Jacobian of the transformation of y, to y. For further discussion of this case, see
Dagenais and Dufour (1986). When model variables are not transformed, we have Z, = Z, so that
k(Z,)=1.
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A. IHlustrations of Invariance Problems

Let us examine the following nonlinear regression model with Box-Cox
transformations on the explanatory variables:

(4.1) Y=y +BxP+BrxP +u, (t=1,...,n),

where x, >0, x{V=(x} —1)/A when A #0, and x{» =log(x,,) when A =0.
The explanatory variables x;, are fixed and the disturbances u,, t =1,...,n, are
ii.d. normal with mean zero and variance 02> 0; y, B, B,, A, and o? are
unknown coeflicients. We consider the problem of testing whether x, can be
excluded from the model (H,: B,=0). Note that the Box-Cox transforma-
tions of x;, and x,, in (4.1) use the same value of A; provided B, # 0, this
typically ensures the identification of A under H,,. In this model, the choice
of the measurement units for y, x,, and x, is a matter of convenience and
does not alter the form of the model provided the latter contains an intercept
(Schlesselman (1971)). Indeed, if the explanatory variables are rescaled, the
model may be reexpressed as:

(4.2) V, =Y + B X0 + B xS +u, (t=1,...,n),

where x,,«=kx,;, i=1,2, and

2
(43) /\* =A7 Y % =7—k(A)k_A Zﬁi: Bi* =ﬁik_)\ (l= 152)
i=1

Given the arbitrary nature of the unit choice, it is natural to require that the
result of testing H, be invariant to changes of measurement units. Further,
given that B« =0 iff B; =0 (i = 1,2), Hy«: B,» = 0 is the natural representation
of Hy: B,=0 in the model with rescaled variables. It is readily seen that
changing the units of measurement leads spontaneously to a reparameterization
of the model and to a reformulation of the null hypothesis of the form
¥, (0,) =0, but not of the form ¢*(60,) =0 as defined in (3.2).

For the nonlinear model (4.1) with a sample of 50 observations, we studied
how the Wald, Rao, and Neyman test statistics described in Section 2 behave
when x, and x, are multiplied by the same scaling factor k£ > 0.° Table 1 (lines
1-4) reports the values of these test statistics and also the value of the
likelihood ratio test for different values of the scaling factor k. To get Neyman’s
C(a) statistic, we used the unrestricted estimator for all of the parameters

® The basic data used for y, X1, and x, are available from the authors; see also Dagenais and
Dufour (1986). These data are artificial: x; and x, were generated so that x{~ and x{~ D followed
uniform distributions on (—2.5,0) and (—3.5, —0.5) respectively with a correlation of 0.7 (indepen-
dent draws between observations); y was generated by setting y = 10, 8; =B, =1, A = —1, and by
letting the u,’s be independent N(0, o) with o =0.85. The noninvariance of the Wald test to
rescaling of the dependent variable in regression model with Box-Cox transformation on the
dependent variable was pointed out by Spitzer (1984). For further discussion of this case, see
Dagenais and Dufour (1986).
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TABLE I
TEesT STATISTICS FOR B, = 0 IN MODEL (4.1)

Information

matrix, Scaling factor
Test criterion estimator k=1 k=3 k=10
1. Likelihood ratio *_ 23.6308 23.6308 23.6308
2. Wald I, 441109  29.02218 2.81834
i, 278514  26.86896 2.43995
I 3.95607  29.55576 2.71635
3. Rao (LM) i —-242076 14620943  —1.28805
*f, 2597854  25.97854 25.97854
*f 19.05830  19.05830 19.05830
4. Neyman’s C(a) I 60.82865  61.34041  5091.23103
i, 0.00164 5.84459 0.00877
*f 3033716 30.33716 30.33716
5. PC with Oy, *f 2578550  25.78550 2578550
6. PC with O, *f, 1231671 1231671 12.31671
7. PC with O3, *f, 5.04102 5.04102 5.04102

* Indicates an invariant test.

except B,. To guarantee that the restrictions be satisfied, the estimator of B,
was constfained to be zéro. Graphs illustrating how Rao’s statistic changes with
k when I, is used and how Neyman’s C(a) statistic changes when I, is used
appear in Figures 1A and 1B. The results confirm the theoretical analysis of
Section 3.7 The problem with the C(a) statistic as performed here is that the
estimator 7, of the constant term is not related to ¥ in the same way that vy, is
related to y in (4.3): the equivariance condition O, =g(6) is not satisfied. In
other words, the equivariant of ¥ in the transformed parameter space, under
H,, is 7 —Ak(")k"‘BAl, whereas the estimator used in constructing Figure 1 is
$ = k™k=A(B, + B,). Note also that in the case of Rao’s statistic, /(6°), is not
necessarily positive definite because 6° yields a constrained maximum of the
likelihood function.

B. Applications of the Modified C(a) Test

Under the transformations considered in Table I, model (4.1) keeps the same
form but takes different parameter values, as shown in equations (4.2) and (4.3).
From Theorem 2, the PC statistic is invariant provided constrained estimators
corresponding to different measurement units are related by the equivariance
condition O, =g(0). Further, given the ML estimator for the unconstrained

7 The only puzzle is the behavior of the C(a) test with I;, which did not appear to be sensitive to
the value of k. This may be due to the particular form of the model. However, we did not find an
explanation of this phenomenon.
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FIGURE 1A.—Rao’s test statistics for B, = 0 in Model (4.1)—test using f; (Hessian matrix).

model, we would like to have constrained estimators that are relatively easy to
compute. This can be done in several ways.

Let B=(B,B,), ©=(c%y,B,1), and let L(6;Z) be the log-likelihood
function of the model. The unconstrained ML estimators © and 6, for the
original and rescaled data are related by the same equations as © and O,
particular, A= A, . Given the latter observation, it is easy to find a constrained
equivariant estimator of O that is simple to compute. Consider the estimator

(1) = (¢? ,y,B /\)' obtained by fixing A = A and estimating the linear regres-
sion (4.1) with A = A and B, = 0. The restricted estimator O 1y = (62, 54, By, AY
based on the rescaled model (4.2) is related to 6(1) by equations (4.3) and the
equivariance condition is satisfied. Further, 6(1) is root-n consistent under H:
B, = 0 (see Durbin (1970) or Gong and Samaniego (1981)). One can get an even
simpler appropriate restrlcted estimator 6(2) by fixing A = /\ B, = ,Bl, and
reestimating y and o2 by least squares. A third estimator O3, can be obtained
by reestimating only the intercept y. In all cases, the intercept needs to be
adjusted because the coefficient fixed by the null hypothesis (83,) is involved in
the transformation for y (see (4.3)). In Table I (lines 5-7), we report the values
of the invariant PC statistic based on the three restricted estimators 6(1), 6(2),
and 6(3) We can observe that the statistic is invariant to changes in measure-
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Ficure 1B.—Neyman’s test statistics for 8, =0 in Model (4.1)—test using [, (outer product
matrix).

ment units. It is interesting to note that the value of the invariant PC statistic
based on é(l) is very similar to the LM and LR statistics. On the other hand, the
PC statistics based on O, and O, differ more from the latter. Clearly, the
C(a) procedure is sensitive to the choice of the estimator O. Studying which
one is preferable according to size and power is an interesting question to be
investigated.

From Theorem 1, we also know that the generalized C(a) statistic PC(O; ¢)
is invariant to the formulation of the restriction %(0) =0, provided the re-
stricted estimator O is itself invariant to the formulation of the restriction. To
show how these results can be applied, consider again model (4.1). Clearly, the
three “hypotheses” B, —1=0, 85— 1=0, and B5 — 1 =0 are equivalent. Simi-
larly, the two hypotheses B, = 0 and exp(288,) — 1 = 0 are equivalent. For these
two examples, we report in Table 11 the results of the invariant PC tests. We
computed two different restricted estimators 6;, and é(z). In both cases, we set
B, at the value given by the null hypothesis (pz =1or B,=0). To get 6(1), Ais
set at its unrestricted ML estimate (A =A) and all the other coefficients
(y, B, 0°?) are reestimated as if A were known; to get é(z), both A and B, are set
at their unrestricted ML estimates (A =A, B, =p,) and only y and o2 are
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TABLE II
INVARIANCE TO FORMULATION OF RESTRICTIONS IN MODEL (4.1)

A Restricted A

Null hypothesis Wald tests (1) estimator PC tests (1)
B,—1=0 0.40015 O 276157
O 5.16401
B3I-1=0 0.17901 O 276157
O 5.16401
B3—-1=0 0.09178 O, 276157
60 5.16401
B,=0 2.78514 O 25.78550
O 12.31671
c2-1=0 0.24747 O, 25.78550
6 12.31671

reestimated. Results show that contrary to the Wald test, the PC tests are not
influenced by the formulation of the restrictions.

C.R.D.E., Université de Montréal, C.P. 6128, succursale A, Montréal, Québec,
H3C 3J]7 Canada

Manuscript received April, 1987; final revision received April, 1991.
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