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ABSTRACT

We study the problem of estimating the parameters of a linear median regression without any as-
sumption on the shape of the error distribution – including no condition on the existence of moments
– allowing for heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions,
and very general serial dependence (linear and nonlinear). This is done through a reverse inference

approach, based on a distribution-free sign-based testing theory, from which confidence sets and
point estimators are subsequently generated. We propose point estimators, which have a natural as-
sociation with confidence distributions. These estimators are based on maximizing test p-values and
inherit robustness properties from the generating distribution-free tests. Both finite-sample and large-
sample properties of the proposed estimators are established under weak regularity conditions. We
show that they are median unbiased (under symmetry and estimator unicity) and possess equivari-
ance properties. Consistency and asymptotic normality are established without any moment existence
assumption on the errors. A Monte Carlo study of bias and RMSE shows sign-based estimators per-
form better than LAD-type estimators in various heteroskedastic settings. We illustrate the use of
sign-based estimators on an example of β -convergence of output levels across U.S. States.

Key words: sign-based methods; median regression; test inversion; Hodges-Lehmann-type estima-
tors; p-value function; least absolute deviation estimators; quantile regressions; sign test; simulta-
neous inference; Monte Carlo tests; projection methods; non-normality; heteroskedasticity; serial
dependence; GARCH; stochastic volatility.
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1. Introduction

The Laplace-Boscovich median regression is an attractive approach because it can yield estimators
[such as the least absolution deviation (LAD) estimator] and tests which are considerably more robust
to non-normality and outliers than least-squares methods; see Dodge (1997).1 An important reason
why such methods yield more robust inference comes from the fact that hypotheses about moments
are not generally testable in nonparametric setups, while hypotheses about quantiles remain testable
under similar conditions [see Bahadur and Savage (1956), Dufour (2003), Dufour, Jouneau and Tor-
rès (2008)]. In such models, Coudin and Dufour (2009) developed provably valid tests, under weak
conditions, which allow for very general forms of heterogeneity (or heteroskedasticity). Hypothesis
testing is indeed intrisically “simpler” than point estimation, because the null hypothesis typically
sets a number of model coefficients, which in turn can avoid various distributional complications.
By contrast, designing a “consistent” point estimate requires global assumptions which may not be
met at specific points of the parameter space. This type of situation is similar to what happens in
models where identification may fail: in such cases, hypothesis testing problems can be immune to
identification failure, for example because unidentifiable parameters are fixed by the null hypothesis,
so it is better to start with hypothesis testing [see Dufour (1997, 2003)]. Indeed, in the weak identifi-
cation literature, identification-robust tests (such as Anderson-Rubin tests) are derived first and then
“inverted” to build identification-robust confidence sets (though typically not point estimates).

As originally suggested by Hodges and Lehmann (1963) for the problem of estimating a location
parameter, it is also possible to derive point estimates from distribution-free tests (e.g., rank tests) by
finding the parameter value which is “least rejectable”. This method stands in sharp contrast with the
common approach which consists in first finding a point estimator (e.g., some consistent estimator),
derive a distributional theory for the estimator, and then build tests and confidence sets based on
the latter distributional theory. The usual process is in fact “reversed”: we start from hypothesis tests
(based on weak nonparametric distribution assumptions), build confidence sets, and then derive point
estimates. We call this process the reverse inference approach.

In this paper, we propose to use such an approach to derive robust point-estimation methods.
Specifically, we study the problem of estimating the parameters of a linear median regression without
any assumption on the shape of the error distribution – allowing for heterogeneity (or heteroskedas-
ticity) of unknown form, noncontinuous distributions, and very general serial dependence (linear and
nonlinear). This is done through a reverse inference approach, which starts from a distribution-free
testing theory [Coudin and Dufour (2009)], subsequently exploited to derive point estimators. Using
the tests proposed in Coudin and Dufour (2009), the estimation problem is tackled in two comple-
mentary ways.

First, we show how confidence distributions for model parameters [Schweder and Hjort (2002),
Xie and Singh (2013)] can be applied in such a context. Such distributions – which can be inter-
preted as a form of fiducial inference [Fisher (1930), Buehler (1983), Efron (1998), Hannig (2006)]
– provide a frequency-based method for associating probabilities with subsets of the parameter space
(like posterior distributions do in a Bayesian setup) without the introduction of a prior distribution.
In the one-dimensional model, the confidence distribution is defined as a distribution whose quantiles
span all the possible confidence intervals [Schweder and Hjort (2002)]. In this paper, we consider
generalized confidence distributions applicable to multidimensional parameters, and we suggest the
use of a projection technique for confidence inference on individual model parameters. The latter are
exact – in the sense that the parameters considered are covered with known probabilities (or larger) –

1This holds also for quantile regressions [Koenker and Bassett (1978), Koenker (2005)], which can be viewed as
extensions of median regression.
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under the mediangale assumption considered in Coudin and Dufour (2009). Further, if more general
linear dependence is allowed, the proposed method remains asymptotically valid.

Second, we propose point estimates, which bear a natural association with the above confidence
distributions. These Hodges-Lehmann-type estimators are based on maximizing test p-values and
inherit several robustness properties from the distribution-free tests used to generate them. Both
finite-sample and large-sample properties are established under weak regularity conditions. We show
they are median unbiased (under symmetry and estimator unicity) and possess equivariance proper-
ties with respect to linear transformations of model variables. Consistency and asymptotic normality
are established without any moment existence assumption on the errors, allowing noncontinuous
distributions, heterogeneity and general serial dependence of unknown form. These conditions are
weaker or similar to conditions used in the literature on LAD estimators; see Bassett and Koenker
(1978), Bloomfield and Steiger (1983), Powell (1984), Knight (1989, 1998), Phillips (1991), Pollard
(1991), Portnoy (1991), Weiss (1991), Fitzenberger (1997), El Bantli and Hallin (1999), Zhao (2001),
Koenker (2005), and the references therein.

In practice, for any given sample size, the sign transform enables one to construct test statistics
with known nuisance-parameter-free distributions without additional parametric restrictions. Real-
ized p-value functions are then constructed by testing hypotheses of the form H0(β 0) : β = β 0, where
β is the vector of the regression coefficients with Monte Carlo test methods and projection techniques
described in this context in Coudin and Dufour (2009). 2 For each component, a projected p-value
function provides a representation of the evidence for each possible value of this component. Using
the above p-values (as a function of β 0), we then derive estimators by taking a value β 0 which is
“least rejected” by the test procedure. First applied to the Wilcoxon’s signed rank-statistic for esti-
mating a shift or a location, this principle was adapted to regression models by deriving so-called
R-estimators from rank or signed-rank statistics [Jureckova (1971), Jaeckel (1972), Koul (1971)].
We will see that these estimators can alternatively be computed by minimizing quadratic forms of
the constrained signs. The class of sign-based estimators we propose includes as special cases the
sign estimators derived by Boldin, Simonova and Tyurin (1997) from locally most powerful sign
tests in linear regressions with i.i.d. errors and fixed regressors. A major advantage of signs over
ranks consists in dealing transparently with heteroskedastic (or heterogeneous) disturbances. Many
heteroskedastic and possibly dependent schemes are covered and, in presence of linear dependence,
a HAC-type correction for heteroskedasticity and autocorrelation can be included in the criterion
function. The conjunction of sign-based tests, projection-based confidence regions, and sign-based
estimators thus provides a complete system of inference.

We study the performance of the proposed estimators in a Monte Carlo study which allows for
several non-Gaussian and heteroskedastic setups. We find that sign-based estimators are competitive
(in terms of bias and RMSE) when errors are i.i.d., while they are substantially more reliable than
usual methods (LS, LAD) when heterogeneity or serial dependence is present in the error term.
Finally, we illustrate their use in practice on a exercise which revisits β -convergence of output levels
across U.S. States.

The paper is organized as follows. Section 2 recalls the framework and the main results of Coudin
and Dufour (2009) used in the present paper. Section 3 is dedicated to confidence distributions
and p-value functions. In section 4, we define the proposed family of sign-based estimators. The
finite-sample properties of the sign-based estimators are studied in section 5, while their asymptotic
properties are considered in section 6. In section 7, we present the results of our simulation study of

2See also Dwass (1957), Barnard (1963), Dufour (1990, 1997), Dufour and Kiviet (1998), Abdelkhalek and Dufour
(1998), Dufour and Jasiak (2001), Dufour and Taamouti (2005). And for an alternative finite-sample inference exploiting
a quantile version of the same sign pivotality result, which holds if the observations are X-conditionally independent, see
Chernozhukov, Hansen and Jansson (2009).
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bias and RMSE. The empirical application is reported in section 8 and conclusion in section 9. The
proofs and some additional numerical results are available in a separate Technical Appendix.

2. Framework

We use the same framework as Coudin and Dufour (2009) which we briefly summarize below. We
consider a stochastic process {(yt , x′t) : Ω → R

p+1 : t = 1, 2, . . .} defined on a probability space
(Ω , F , P), such that yt and xt satisfy a linear model of the form

yt = x′tβ +ut , t = 1, . . . , n, (2.1)

where y = (y1, . . . , yn)
′ ∈ R

n will denote the dependent variable vector, X = [x1, . . . , xn]
′ ∈ R

n×p

the n× p matrix of explanatory variables, which may be random or fixed, and u = (u1, . . . , un)
′ ∈

R
n the disturbance vector. We will consider assumptions on the signs s(u1), . . ., s(un) of model

errors, where the sign function s : R → {−1, 0, 1} is defined as s(a) = 1[0,+∞)(a)−1(−∞,0](a), with
1A(a) = 1 if a ∈ A, and 1A(a) = 0 if a /∈ A. s(u) = [s(u1), . . . , s(un)]

′ denotes the vector of the signs
of the components.

We will consider as sign-based statistics general quadratic forms involving the vector s(y−Xβ 0)
of the constrained signs (i.e., the signs aligned with respect to Xβ 0):

DS[β 0, Ω̄n(β 0)] = s(y−Xβ 0)
′XΩn

[
s(y−Xβ 0), X

]
X ′s(y−Xβ 0) (2.2)

where Ω̄n(β 0) = Ωn

[
s(y−Xβ 0), X

]
is a p× p positive definite weight matrix which may depend on

the constrained signs.
Coudin and Dufour (2009) derive a finite-sample distribution-free inference system for testing

H0(β 0) : β = β 0 vs. H1(β 0) : β 6= β 0 in model (2.1) using sign-based statistics under a mediangale
assumption. This assumption ensures that sign-based statistics constitute pivotal functions whose
distributions conditional on X can be simulated, and exact Monte-Carlo tests can be constructed
[Dufour (2006)]. It can be stated in the context of adapted sequences S (v, F ) = {vt , Ft : t =
1, 2, . . .} where vt is any measurable function of Wt = (yt , x′t)

′, Ft is a σ -field in Ω , Fs ⊆ Ft for
s < t, σ(W1, . . . , Wt) ⊂ Ft and σ(W1, . . . , Wt) is the σ -algebra spanned by W1, . . . , Wt .

Assumption 2.1 WEAK CONDITIONAL MEDIANGALE. Let Ft = σ(u1, . . . , ut , X), for t ≥ 1. u

in the adapted sequence S (u, F ) is a weak mediangale conditional on X with respect to {Ft : t =
1, 2, . . .} iff P[u1 < 0|X ] = P[u1 > 0|X ] and

P[ut < 0 |u1, . . . , ut−1, X ] = P[ut > 0 |u1, . . . , ut−1, X ], for t > 1. (2.3)

Besides nonnormality (including no condition on the existence of moments), this assumption allows
for heterogeneity (or heteroskedasticity) of unknown form, heavy-tailed distributions, noncontinu-
ous distributions, and general forms of nonlinear serial dependence, including GARCH-type and
stochastic volatility of unknown order. It does not, however, cover “linear serial dependence” such as
an ARMA process on ut . Hence, our asymptotic results will rely on the following standard moment
condition. Note however, that this condition is not required by confidence distributions, which only
depend of the distributional theory of sign tests.

Assumption 2.2 SIGN MOMENT CONDITION. E|xt | < +∞ and E[xt s(ut)] = 0, for t = 1, . . . , n.
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3. Confidence distributions

In the one-parameter model, statisticians have defined the confidence distribution notion which sum-
marizes a family of confidence intervals; see Schweder and Hjort (2002). By definition, the quantiles
of a confidence distribution span all the possible confidence intervals of a real β . The confidence dis-
tribution is a reinterpretation of the Fisher fiducial distributions and provides, in a sense, an analogue
of Bayesian posterior probabilities in a frequentist setup [see also Fisher (1930), Neyman (1941) and
Efron (1998)]. This statistical notion is not commonly used in the econometric literature, for two
reasons. First, it is only defined in the one-parameter case. Second, it requires that the test statistic
be a pivot with known exact distribution. Below we extend this notion (or an equivalent) to multidi-
mensional parameters. The sign transformation enables one to construct statistics which are pivots
with known distribution without imposing parametric restrictions on the sample. Consequently, our
setup does not suffer from the second restriction. In this section, we briefly recall the initial statis-
tical concept and apply it to an example in univariate regression. Then, we address the extension to
multidimensional regressions.

3.1. Confidence distributions in univariate sign-based regressions

Schweder and Hjort (2002) defined the confidence distribution for the real parameter β as a distribu-
tion which depends on the observations (y, x), whose cumulative distribution function evaluated at
the true value of β is uniform irrespective of the true value of β . In a formalized way, this can be
expressed as follows:

Definition 3.1 CONFIDENCE DISTRIBUTION. Any distribution with cumulative CD(β ) and quan-

tile function CD−1(β ), such that

Pβ [β ≤CD−1(α;y, x)] = Pβ [CD(β ;y, x) ≤ α ] = α (3.1)

for all α ∈ (0, 1) and all probability distributions in the statistical model, is called a confidence

distribution for β .

Here (−∞, CD−1(α)] is a one-sided stochastic confidence interval with coverage probability α .3

The realized confidence CD(β 0;y, x) is the p-value of the one-sided hypothesis H∗
0 (β 0) : β ≤ β 0

versus H∗
1 (β 0) : β > β 0 when the observed data are y, x. The realized p-value when testing H0(β 0) :

β = β 0 versus H1(β 0) : β 6= β 0 is 2min{CD(β 0), 1−CD(β 0)}.4 Hence, tests and confidence in-
tervals on β are contained in the confidence distribution. Since the cumulative function CD(β ) is
an invertible function of β and is uniformly distributed, CD(β ) constitutes a pivot conditional on
x. Reciprocally, whenever a pivot increases with β (for example a continuous statistic S(β ) with
cumulative distribution function F which is independent of β and free of any nuisance parameter),
F

(
S(β )

)
is uniformly distributed and satisfies conditions for providing a confidence distribution. Let

S(β ) be such a continuous real statistic increasing with β with a nuisance-parameter-free distribu-
tion. A test of H0 : β ≤ β 0 rejects H0 when Sobs(β 0) is large, with p-value Pβ 0

[S(β 0) > Sobs(β 0)].
Then,

Pβ 0
[S(β 0) > Sobs(β 0)] = 1−Fβ 0

[Sobs(β 0)] = CD(β 0) (3.2)

3For continuous distributions, just note that Pβ [β ≤CD−1(α)] = Pβ {CD(β )≤CD
(
CD−1(α)

)
}= Pβ {CD(β )≤ α]}=

α . Schweder and Hjort (2002) introduce the notion of "degree of confidence" CD(β 0). of the statement β ≤ β 0 which is
equals to the p-value of a test β ≤ β 0 versus the alternative β > β 0.

4Those relations are stated in Lemma 2 of Schweder and Hjort (2002): the confidence of the statement “β ≤ β 0” is the

degree of confidence CD(β 0) for the confidence interval
(
−∞,CD−1

(
CD(β 0)

)]
, and is equal to the p-value of a test of

H∗
0 (β 0) : β ≤ β 0 vs. H∗

1 (β 0) : β > β 0.

4
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Figure 1. Simulated confidence distribution cumulative function based on SST.

where Fβ 0
(.) is the sampling distribution of S(β 0) under β = β 0. Consequently, simulated sampling

distributions and simulated realized p-values for discrete statistics as proposed by Coudin and Dufour
(2009) yield a way to construct simulated confidence distributions.5

The sampling distribution and the confidence distribution are fundamentally different theoretical
notions. The sampling distribution is the probability distribution of S(β ) obtained by repeated sam-
plings, whereas the confidence distribution is an ex-post object which makes confidence statements
on the value of β given y, x, Sobs(β ).
Example. Let us consider a simple example to illustrate those notions. In the model yi = βxi +ui, i =

1, . . . , n, (ui, xi)
iid∼ N[0, I2], the Student sign-based statistic

SST (β 0) =
∑s(yi − xiβ 0)xi

(∑x2
i )

1/2
(3.3)

is a pivotal function and decreases with β . The simulated confidence distribution of β given the
realization y, x is

ĈD(β 0) = 1− F̂β 0
[SST (β 0)] (3.4)

with F̂β 0
a Monte Carlo estimate of the sampling distribution of SST under H0(β 0) : β = β 0. Figure

1 presents a simulated confidence distribution cumulative function for β , given 200 realizations of
(ui, xi) based on SST . The Monte Carlo estimate of F̂β 0

is obtained from 9999 replicates of SST

under H0(β 0).Testing H∗
0 : β ≤ .1 at 10% can be done by reading CD(.1) here .92. The test accepts

H∗
0 . Further, (−∞, .23] constitutes a one-sided confidence interval for β with level .95.

Realized p-value functions for discrete statistics. Another interesting object is the realized p-value
function when testing point hypotheses H0(β 0). The latter is a simple transformation of the CD

cumulative function. The simulated realized p-value is given by

p̂SST (β 0) = 2min{ĈDSST (β 0), 1−ĈDSST (β 0)}. (3.5)

Consider now the statistic SF = SST 2. SF is a pivotal function but not a monotone function of β

5Continuous uniform distribution is obtained using a randomization process on ties in Coudin and Dufour (2009).
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(a) Example 1: well identified case
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(b) Example 2: misspecified case

Figure 2. Simulated p-value functions based on SST and SF

contrary to SST . An entire confidence distribution cannot be recovered from SF because of this lack
of monotonicity. However, the p-value function can be constructed using simulated p-values based
on DS[β 0, Ω̄n(β 0)] as described in Coudin and Dufour (2009). Figures 2 (a) and (b) compare p-value
functions based on SST and SF . Inverting the p-value function allows one to recover half of the
confidence distribution and consequently half of the inference results, i.e. the two-sided confidence
intervals. For example, in Figure 2 (a), [−.17, .24] constitutes a confidence interval with level 90%
for both statistics. The p-value function thus provides a summary on the available inference. In
particular, it gives a confidence degree to be associated with β = β 0. Finally, the p-value function
has an important advantage over the confidence distribution: it is straightforwardly extendable to
multidimensional parameters.

The spread of the p-value function is also related to the model specification and the parameter

identification. When the p-value function is flat, one may expect the parameter to be badly identified
either because there exists a set of observationally equivalent parameters (p-values are high for a
wide set of values), or because there does not exist any value satisfying the model (p-values are
small everywhere). To illustrate this point, let us consider another example (example 2) where the

first n1 observations satisfy yi = β 1xi +ui, i = 1, . . . , n1, (ui, xi)
iid∼ N[0, I2] and the n2 following ones,

yi = β 2xi + ui, i = n1 + 1, . . . , n1 + n2, (ui, xi)
iid∼ N[0, I2], with β 1 = −.5 and β 2 = .5. The model

yi = βxi +ui, i = 1, . . . , n1 +n2, is misspecified. In Figure 2(b), we notice the spread of the p-value
function based on SF is large: the set of observationally equivalent β is not reduced to a point.

3.2. Simultaneous and projection-based p-value functions in multivariate regression

If p ≥ 2, the confidence distribution notion is not defined anymore. However, simulated real-
ized p-values for testing H0(β 0) can easily be constructed from the SF statistic, and more gen-
erally from any sign-based statistic which satisfies equation (2.2). Simulated p-values lead to
a mapping for which we have a 3-dimensional representation for p = 2. Consider the model:

yi = β 1
x1i +β 2

x2i +ui, i = 1, . . . , n, (ui, x1i, x2i)
iid∼ N[0, I3], β = (β 1, β 2) = (0, 0)′, y = (y1, . . . , yn)

′,

6
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Figure 3. Simulated p-value functions based on SF (n = 200, N = 9999).

u = (u1, . . . , un)
′, x1 = (x11, . . . , x1n)

′, x2 = (x21, . . . , x2n)
′ and X = [x1, x2]. Let DS[β , (X ′X)−1] =

s(y−Xβ )′X(X ′X)−1X ′s(y−Xβ ). In Figure 3, we compute the simulated p-value function p̃
DS

N (β 0)

for testing H0(β 0) on a grid of values of β 0, using N replicates of the sign vector. p̃
DS

N (β 0) allows
one to construct simultaneous confidence sets for β = (β 1, β 2) with any level. By construction, the
confidence region C1−α(β ) defined as

C1−α(β ) = {β | p̃DS

N (β 0) ≥ α}, (3.6)

has level 1−α [see Dufour (2006)]. Thus, C1−α(β ) corresponds to the intersection of the horizontal
plan at ordinate α with the envelope of p̃

DS

N (β 0).
For higher dimensions (p > 2), one can consider projection-based realized p-value functions for

each individual component of the parameter, in a way similar way than projection-based confidence
sets [Dufour (1990, 1997), Dufour and Kiviet (1998), Abdelkhalek and Dufour (1998), Dufour and
Jasiak (2001), Dufour and Taamouti (2005)]. For this, we apply the general strategy of projection on
the complete simultaneous p-value function. The projected-based realized p-value function for the

7
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(a) Projection-based pvalues for β 1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

beta2

P
ro

je
c
te

d
 p

−
v
a
lu

e
s

(b) Projection-based pvalues for β 2

Figure 4. Projection-based p-values.

component β 1 is given by:

Proj.p̃β 1

N (β 1
0) = max

β 2
0∈R

p̃
DS

N [(β 1
0, β 2

0)]. (3.7)

Figure 4 presents projection-based confidence intervals for the individual parameters of the previ-
ous two-dimensional example: [−.22, .21] is a 95% (conservative) confidence interval for β 1, while
[−.38, .02] is a 95% (conservative) confidence interval for β 2. The hypothesis β 1 = 0 is accepted at
level 5% with p-value 1.0, and the hypothesis β 2 = 0 is accepted at 5% with p-value .06.
Controlled inference using simulated confidence distributions and realized p-values. Simulated con-
fidence distribution and realized p-values are Monte Carlo-based tools. Hence derived tests control
the nominal size only for α’s such that α(N +1) ∈ N; see Dufour (2006):

P[ p̃DS

N (β 0) ≤ α] = α ∀α such that α(N +1) ∈ N. (3.8)

If α(N +1) /∈ N, only bounds on the significance level are known, but they are very close to α when
N is sufficiently large:

I(α(N +1)−1)

N +1
≤ P[ p̃DS

N (β 0) ≤ α] < α ∀α such that α(N +1) /∈ N. (3.9)

Simulated confidence distributions and realized p-values are not evaluated at a given significance
level α but rather on a range of significance levels (α1, . . . , αA). Hence, one must choose carefully
N the number of replicates in order to control the significance level for all the α i’s, i.e. choose N

sufficiently large to have (N + 1)α i ∈ N, ∀α i ∈ (α1, . . . , αA). In the previous illustrations, N =
9999 which ensures that the significance levels are controlled at .0001.
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4. Sign-based estimators

Sign-based estimators complete the above system of inference. Intuition suggests to consider values
with the highest confidence degree, i.e, with the highest p-value. Estimators obtained by this type of
test inversion constitute multidimensional extensions of the Hodges-Lehmann principle.

4.1. Sign-based estimators as maximizers of a p-value function

Hodges and Lehmann (1963) presented a general principle to derive estimators by test inversion; see
also Johnson, Kotz and Read (1983). Suppose µ ∈ R and S(µ0,W ) is a statistic for testing µ = µ0
against µ > µ0 based on the observations W . Suppose further that S(µ,W ) is nondecreasing in the
scalar µ . Given a known central value of S(µ0,W ), say m(µ0) [for example EW S(µ0,W )], the test
rejects µ = µ0 whenever the observed S is larger than, say, m(µ0). In this case, one is inclined to
prefer higher values of µ . The reverse holds when testing the opposite. If m(µ0) does not depend
on µ0 [m(µ0) = m0], an intuitive estimator of µ (if it exists) is given by µ∗ such that S(µ∗,W )
equals m0 (or is very close to m0). µ∗ may be seen as the value of µ which is most supported by the
observations.

This principle can be directly extended to multidimensional parameter setups through p-value
functions. Let β ∈ R

p. Consider testing H0(β 0) : β = β 0 versus H1(β 0) : β = β 1 with the positive
statistic S(β 0). A test based on S(β 0) rejects H0(β 0) when S(β 0) is larger than a certain critical
value which depends on the test level. The estimator of β is chosen as the value of β least rejected
when the level α of the test increases. This corresponds to the highest p-value. If the associated
p-value for H0(β 0) is p(β 0) = G[DS(β 0)|β 0], where G(x|β 0) is the survival function of DS(β 0), i.e.

G(x|β 0) = P[DS(β 0) > x], the set
M1 = argmax

β∈Rp

p(β ) (4.1)

constitutes a set of Hodges-Lehmann-type estimators. HL-type estimators maximize the p-value
function. There may not be a unique maximizer. In this case, any maximizer is consistent with the
data.

4.2. Sign-based estimators as solutions of a nonlinear generalized least-squares prob-

lem

When the distribution of S(β 0) and the corresponding p-value function do not depend on the tested
value β 0, maximizing the p-value is equivalent to minimizing the statistic S(β 0). This point is stated
in the following proposition. Let us denote F̄(x|β 0) the distribution of S(β 0) when β = β 0 and
assume this distribution is invariant to β (Assumption 4.1).

Assumption 4.1 INVARIANCE OF THE DISTRIBUTION FUNCTION.

F̄(x|β 0) = F̄(x) ∀x ∈ R
+, ∀β 0 ∈ R

p. (4.2)

Let us define:
M1 = argmax

β∈Rp

p(β ), M2 = argmin
β∈Rp

S(β ) . (4.3)

Then, the following proposition holds.

Proposition 4.1 If Assumption 4.1 holds, then M1 = M2 with probability one.
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Maximizing p(β ) is equivalent (in probability) to minimizing S(β ) if Assumption 4.1 holds.
Under the mediangale Assumption 2.1, any sign-based statistic DS does satisfy Assumption 4.1.
Consequently,

β̂ n(Ωn) ∈ argmin
β∈Rp

s(Y −Xβ )′XΩn

(
s(Y −Xβ ), X

)
X ′s(Y −Xβ ) = M2(Y, X , D

Ωn

S ) (4.4)

equals (with probability one) a Hodges-Lehmann-type estimator based on DS(Ωn, β ). Since
DS(Ωn, β ) is non-negative, problem (4.4) always possesses at least one solution. As signs can only
take 3 values, for fixed n, the quadratic function can take a finite number of values, which implies the
existence of the minimum. If the solution is not unique, one may add a choice criterion. For example,
one can choose the smallest solution in terms of a norm or use a randomization. Under conditions of
point identification, any solution of (4.4) is a consistent estimator.

The sign-based estimators studied by Boldin et al. (1997) are solutions of

β̂ n(Ip) ∈ arg min
β∈Rp

s(Y −Xβ )′XX ′s(Y −Xβ ) = argmin
β∈R

SB(β ), (4.5)

and
β̂ n((X

′X)−1) ∈ arg min
β∈ R

p
s(Y −Xβ )′X(X ′X)−1X ′s(Y −Xβ ) = argmin

β∈R

SF(β ). (4.6)

For heteroskedastic independent disturbances, weighted versions of sign-based estimators can be
more efficient, such as the weighted LAD estimator compared to the LAD estimator [see Zhao
(2001)]:

β̂
DX

n ∈ argmin
β∈Rp

s(Y −Xβ )′X̃(X̃ ′X̃)−1X̃ ′D′s(Y −Xβ ) (4.7)

where X̃ = diag(d1, . . . , dn)X and di > 0, i = 1, . . . , n. Weighted sign-based estimators which in-
volve optimal estimating functions in the sense of Godambe (2001) are solutions of

β̂
DX∗

n ∈ argmin
β∈Rp

s(Y −Xβ )′X∗(X∗′X∗)−1X∗′D′s(Y −Xβ ) (4.8)

where X∗ = diag
(

f1(0|X), . . . , fn(0|X)
)
X and ft(0|X), t = 1, . . . , n, are the conditional disturbance

densities evaluated at zero. The inherent problem of such a class of estimators is to provide good
approximations of fi(0|X)’s. Densities of normal distributions can be used.

4.3. Sign-based estimators as GMM estimators

In some interesting special cases, the sign-based estimators proposed in this paper may be interpreted
(at least asymptotically) as GMM estimators which exploit the orthogonality condition between the
signs and the explanatory variables [see Honore and Hu (2004)].6 In settings where only the sign-
moment Assumption 2.2 is satisfied, the GMM interpretation of sign-based estimators still applies
and implies useful extensions.

For autocorrelated disturbances, an estimator based on a HAC sign-based statistic DS(β , Ĵ−1
n )

can be used:

β̂ n(Ĵ
−1
n ) ∈ arg min

β∈Rp
s(Y −Xβ )′X [Ĵn(s(Y −Xβ ), X)]−1X ′s(Y −Xβ ), (4.9)

6Due to the use of the nonlinear p-value transformation (along with the associated finite-sample distributional theory),
the GMM interpretation does not stricto sensu generally hold, except possibly through an asymptotic equivalence.
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where Ĵn(s(Y −Xβ ), X) accounts for the dependence among the signs and the explanatory variables.
β appears twice, first in the constrained signs, second in the weight matrix. In practice, optimizing
(4.9) requires one to invert a new matrix Ĵn for each value of β whereas problem (4.6) only requires
one inversion of X ′X . In practice, this numerical problem may quickly become cumbersome similarly
to continuously updating GMM. We advocate to use a two-step method: first, solve (4.6) and obtain
β̂ n((X

′X)−1); compute then Ĵ−1
n

(
s(Y −X β̂ n((X

′X)−1)), X
)

and finally solve,

β̂
2S

n (Ĵ−1
n ) ∈ arg min

β∈Rp
s(Y −Xβ )′X [Ĵn(s(Y −X β̂ n), X)]−1X ′s(Y −Xβ ). (4.10)

The 2-step estimator is not a Hodges-Lehmann-type estimator anymore. However, it is still consistent
and share some interesting finite-sample properties with classical sign-based estimators.

5. Finite-sample properties of sign-based estimators

In this section, finite-sample properties of sign-based estimators are studied. Sign-based estimators
share invariance properties with the LAD estimator [see Koenker and Bassett (1978)] and are median-
unbiased if the disturbance distribution is symmetric and some additional assumptions on the form
of the solution are satisfied. The topology of the argmin set of the optimization problem (4.4) does
not possess a simple structure. In some cases, it is reduced to a single point like the empirical median
of 2p+1 observations. In other cases, it is a set. More generally, the argmin set is a union of convex
sets but it is not a priori either convex nor connected.7 Despite these complications, the following
proposition holds.

Proposition 5.1 INVARIANCE. Let M(y, X) be the set of the solutions of the minimization problem

(4.4). If β̂ (y, X) ∈ M(y, X), then the following properties hold:

λβ̂ (y, X) ∈ M(λy, X) , ∀λ ∈ R , (5.1)

β̂ (y, X)+ γ ∈ M(y+Xγ, X) , ∀γ ∈ R
p , (5.2)

A−1β̂ (y, X) ∈ M(y, XA) , for any nonsingular k× k matrix A. (5.3)

Further, if β̂ (y, X) is a uniquely determined solution of (4.4), then

β̂ (λy, X) = λβ̂ (y, X) , ∀λ ∈ R , (5.4)

β̂ (y+Xγ, X) = β̂ (y, X)+ γ , ∀γ ∈ R
p , (5.5)

β̂ (y, XA) = A−1β̂ (y, X) , for any nonsingular k× k matrix A. (5.6)

To prove this property, it is sufficient to write down the different optimization problems. (5.1)
and (5.4) state a form of scale invariance: if y is rescaled by a certain factor, β̂ , rescaled by the same
one is solution of the transformed problem. (5.2) and (5.5) represent location invariance, while (5.3)
and (5.6) show the behavior of the estimator changes states a reparameterization of the design matrix.
In all cases, parameter estimates change in the same way as theoretical parameters.

If the disturbance distribution is assumed to be symmetric and the optimization problems to have
a unique solution then sign-estimators are median unbiased.

7To see that it is a union of convex sets just remark that the reciprocal image of n fixed signs is convex.
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Proposition 5.2 MEDIAN UNBIASEDNESS. If u ∼ −u and the sign-based estimator β̂ (y, X) is a

uniquely determined solution of the minimization problem(4.4), then β̂ is median unbiased, i.e.

Med(β̂ − β̄ ) = 0 (5.7)

where β̄ represents the “true value” of β .

6. Asymptotic properties

We demonstrate consistency and asymptotic normality of the proposed sign-based estimators when
the parameter is identified under weak assumptions. For reviews of the asymptotic distributional the-
ory of LAD estimators, the reader may consult Bassett and Koenker (1978), Knight (1989), Phillips
(1991), Pollard (1991), Portnoy (1991), Weiss (1991), Fitzenberger (1997), Knight (1998), El Bantli
and Hallin (1999), and Koenker (2005).

6.1. Identification and consistency

The sign-based estimators (4.4) and (4.10) are consistent under the following set of assumptions. In
the sequel, we denote by β̄ the “true value” of β , and by β 0 any hypothesized value.

Assumption 6.1 MIXING. {Wt = (yt , x′t)}t=1,2, ... is α-mixing of size −r/(r−1) with r > 1.

Assumption 6.2 BOUNDEDNESS. xt = (x1t , . . . , xpt)
′ and E|xht |r+1 < ∆ < ∞, h = 1, . . . , p, t =

1, . . . , n, ∀n ∈ N.

Assumption 6.3 COMPACTNESS. β̄ ∈ Int(Θ), where Θ is a compact subset of R
p.

Assumption 6.4 REGULARITY OF THE DENSITY.

1. There are positive constants fL and p1 such that, for all n ∈ N,

P[ ft(0 |X) > fL] > p1, t = 1, . . . ,n, a.s. (6.1)

2. ft(· |X) is continuous, for all n ∈ N for all t, a.s.

Assumption 6.5 POINT IDENTIFICATION CONDITION. ∀δ > 0,∃τ > 0 such that

liminf
n→∞

1
n

∑
t

P[|x′tδ | > τ | ft(0 |x1, . . . , xn) > fL] > 0. (6.2)

Assumption 6.6 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. Ω̄n(β ) is symmetric positive

definite for all β in Θ .

Assumption 6.7 LOCALLY POSITIVE DEFINITE WEIGHT MATRIX. Ω̄n(β ) is symmetric positive

definite for all β in a neighborhood of β̄ .

Then, we can state a consistency theorem. The assumptions are interpreted just after.
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Theorem 6.1 CONSISTENCY. Under model (2.1) with the assumptions 2.2 and 6.1 - 6.6, any

sign-based estimator of the type

β̂ n ∈ argmin
β 0∈Θ

s(y−Xβ 0)
′XΩn

[
s(y−Xβ 0), X

]
X ′s(y−Xβ 0) (6.3)

or

β̂
2S

n ∈ argmin
β 0∈Θ

s(y−Xβ 0)
′XΩ̂n

[
s(y−X β̂ ), X

]
X ′s(y−Xβ 0), (6.4)

where β̂ stands for any (first step) consistent estimator of β̄ , is consistent for β . The estimator β̂
2S

n is

also consistent if Assumption 6.6 is replaced by Assumption 6.7.

We discuss Assumptions 6.1 - 6.7 and compare them with the ones required for LAD and quantile
estimator consistency. On considering the special case where XΩn

[
s(y−Xβ 0), X

]
X ′ = In the identity

matrix, the estimators in (6.3) - (6.4) coincide with the “quantile regression estimator” (with θ = 1/2)
studied by Fitzenberger (1997, Theorem 2.2). However, allowing for a weighting matrix different the
identity matrix – as we do here – turns out to be important from the viewpoint of efficiency. Stricto

sensu, the sign-based estimators in (6.3) - (6.4) and Fitzenberger (1997, Theorem 2.2) are not LAD
estimators, because the size of residuals (through absolute values) do not appear in the objective
function. This feature is crucial for relaxing assumptions on moments. The disturbances indeed
appear in the objective function only through their sign transforms which possess finite moments
at all orders. Consequently, no additional restriction need be imposed on the disturbance process
(in addition to regularity conditions on the density). Only assumptions on the moments of xt are
used (see Assumption 6.2). There is very little work on LAD estimators properties with infinite
variance errors; see Knight (1989) and Phillips (1991) who derive LAD asymptotic properties for an
autoregressive model with infinite variance errors, which are in the domain of attraction of a stable
law.

Assumption 6.1 on mixing is needed to apply a generic weak law of large numbers; see Andrews
(1987) and White (2001). It was used by Fitzenberger (1997) with stationary linearly dependent
processes. It covers, among other processes, stationary ARMA disturbances with continuously dis-
tributed innovations. Identification is provided by Assumptions 6.4 and 6.5. Assumption 6.5 is
similar to Condition ID in Weiss (1991). Assumption 6.4 is usual in LAD estimator asymptotics.8

It is analogous to Fitzenberger’s (1997) conditions (ii.b) - (ii.c) and Weiss’s (1991) CD condition. It
implies that there is enough variation around zero to identify the median. This restricts the setup for
some “bounded” heteroskedasticity in the disturbance process but not in the usual (variance-based)
way. It is related to diffusivity [2 f (0)]−1, a dispersion measure adapted to median-unbiased estima-
tors. Diffusivity indicates the vertical spread of a density rather than its horizontal spread, and ap-
pears in Cramér-Rao-type efficiency bounds for median-unbiased estimators; see Sung, Stangenhaus
and David (1990) and So (1994). Assumption 6.6 implies that the weight matrix Ωn is everywhere
invertible, while Assumption 6.7 only requires local invertibility.

6.2. Asymptotic normality

Sign-based estimators are asymptotically normal under the following assumptions.

8Assumption 6.4 can be slightly relaxed covering error terms with mass point if the objective function involves ran-
domized signs instead of usual signs.
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Assumption 6.8 UNIFORMLY BOUNDED DENSITIES. ∃ fU < +∞ such that ,∀n ∈ N,∀λ ∈ R,

sup
{t∈(1, ...,n)}

| ft(λ |x1, . . . , xn)| < fU , a.s.

Under the conditions 2.2, 6.1, 6.2 and 6.8, we can define L(β ), the derivative of the limiting
objective function at β :

L(β ) = lim
n→∞

1
n

∑
t

E{xtx
′
t ft [x

′
t(β − β̄ ) |x1, . . . , xn]} = lim

n→∞
Ln(β ) (6.5)

where

Ln(β ) =
1
n

∑
t

E{xtx
′
t ft [x

′
t(β − β̄ ) |x1, . . . , xn]} . (6.6)

The other assumptions are fairly standard conditions to prove asymptotic normality.

Assumption 6.9 MIXING WITH r > 2. The process {Wt = (yt , x′t) : t = 1, 2, . . .} is α-mixing of size

−r/(r−2) with r > 2.

Assumption 6.10 DEFINITE POSITIVENESS OF Ln. The function Ln(β̄ ) is positive definite uni-

formly in n.

Assumption 6.11 DEFINITE POSITIVENESS OF Jn. The matrix Jn = E
[

1
n ∑n

t,s s(ut)xtx
′
ss(us)

]
is

positive definite uniformly in n and converges to a definite positive symmetric matrix J as n → ∞.

Then, we have the following result.

Theorem 6.2 ASYMPTOTIC NORMALITY. Under the assumptions (2.2), 6.1 - 6.6 and 6.9 - 6.11,

we have:

S
−1/2
n

√
n
[
β̂ n − β̄

] d→ N[0, Ip] (6.7)

where β̂ n(Ωn) is any estimator which minimizes DS[β 0, Ω̄n(β 0)] in (2.2),

Sn = [Ln(β̄ )ΩnLn(β̄ )]−1Ln(β̄ )ΩnJnΩnLn(β̄ )[Ln(β̄ )ΩnLn(β̄ )]−1 , (6.8)

Ln(β̄ ) =
1
n

∑
t

E
[
xtx

′
t ft

(
0 |x1, . . . , xn

)]
. (6.9)

When Ω̄n(β 0) = Ĵn(β 0)
−1 and Ĵn(β 0) = 1

n ∑n
t,s s(yt − x′tβ 0)xtx

′
ss(ys − x′sβ 0), we get:

[Ln(β̄ )Ĵ−1
n Ln(β̄ )]−1/2√n

[
β̂ n(Ĵ

−1
n )− β̄

] d→ N
[
0, Ip

]
. (6.10)

This corresponds to the use of optimal instruments and quasi-efficient estimation. β̂ n(Ĵ
−1
n ) has the

same asymptotic covariance matrix as the LAD estimator. Thus, performance differences between
the two estimators correspond to finite-sample features. This result contradicts the generally accepted
idea that sign procedures involve a heavy loss of information. There is no loss induced by the use
of signs instead of absolute values. Note again that we do not require that the disturbance process
variance be finite. We only assume that the second-order moments of X are finite and the mixing
property of {Wt , t = 1, . . .} holds.9

9See Fitzenberger (1997) for the derivation of the LAD asymptotics in a similar setup, and Bassett-Koenker(1978) or
Weiss (1991) for a derivation of the LAD asymptotics under sign independence.
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The form of the asymptotic covariance matrix simplifies under stronger assumptions. When the
signs are mutually independent conditional on X [mediangale Assumption 2.1], both β̂ n((X

′X)−1)

and ˆˆ
n(J

−1
n )β are asymptotically normal with variance

Sn = [Ln(β̄ )]−1
E
[
(1/n)

n

∑
t=1

xtx
′
t

]
[Ln(β̄ )]−1. (6.11)

If u is an i.i.d. process and is independent of X , then ft(0) = f (0), and

Sn =
1

4 f (0)2 [E(xtx
′
t)]

−1. (6.12)

In the general case, ft(0) is a nuisance parameter even if Assumption 6.8 implies it can be bounded.
All the features known about the LAD estimator asymptotic behavior apply also for the SHAC es-

timator; see Boldin et al. (1997). For example, asymptotic relative efficiency of the SHAC (and LAD)
estimator with respect to the OLS estimator is 2/π if the errors are normally distributed N[0, σ2], but
SHAC (such as LAD) estimator can have arbitrarily large ARE with respect to OLS when the distur-
bance generating process is contaminated by outliers.

Finally, we have two ways of making inference with signs: we can use the Monte Carlo (finite-
sample) based method described in Coudin and Dufour (2009) and the classical asymptotic method.
Let us list here the main differences between them. Monte Carlo inference relies on the pivotality
of sign-based test statistics. The tests so obtained are valid (with controlled level) for any sample
size if the mediangale Assumption 2.1 holds. When only the sign moment Assumption 2.2 holds,
the Monte Carlo inference remains asymptotically valid. Asymptotic test levels are controlled. Be-
sides, in simulations, Monte Carlo inference method appears to perform better in small samples than
classical asymptotic methods, even if its use is only asymptotically justified [see Coudin and Dufour
(2009)]. Nevertheless, this method has a drawback: its computational complexity. In contrast, clas-
sical asymptotic methods which yield tests with controlled asymptotic level under the sign moment
Assumption 2.2 may be less time consuming. The choice between both is mainly a question of com-
putational capacity. Classical asymptotic inference greatly relies on the way the asymptotic covari-
ance matrix, which depends on unknown parameters (densities at zero), is treated. If the asymptotic
covariance matrix is estimated thanks to a simulation-based method (such as the bootstrap) then the
time argument does not hold anymore. Both methods would be of the same order of computational
complexity.

7. Simulation study

In this section, we compare the performance of sign-based estimators with the OLS and LAD esti-
mators in terms of asymptotic bias and RMSE.

7.1. Simulation setup

We use estimators derived from the sign-based statistics DS[β , (X ′X)−1] and DS[β , Ĵ−1
n ] when a cor-

rection is needed for linear serial dependence (SHAC estimator). Minimizations are solved by simu-
lated annealing. We consider a set of general DGPs to illustrate different classical problems one may
encounter in practice. We use the following linear regression model:

yt = x′tβ +ut t = 1, . . . , n, (7.1)
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Table 1. Simulated models.

A1: Normal HOM errors (x2 t , x3 t , ut)
′ i.i.d∼ N[0, I3], t = 1, . . . , n

A2: Normal HET errors (x2 t , x3 t , ũt)
′ i.i.d∼ N[0, I3] ,

A3: Dep.-HET x j, t = ρxx j, t−1 +ν j
t , j = 1, 2, ut = min{3, max[0.21, |x2 t |]}×νu

t ,

ρx = .5 (ν2
t , ν3

t , νu
t )

′ i.i.d∼ N[0, I3], t = 2, . . . , n,
ν2

1 and ν3
1 chosen to ensure stationarity.

A4: Unbalanced design matrix x2 t ∼ B(1, 0.3), x3 t
i.i.d.∼ N[0, .012], ut

i.i.d.∼ N[0, 1],
xt , ut independent, t = 1, . . . , n.

B5: Cauchy errors (x2 t , x3 t)
′ ∼ N[0, I2], ut

i.i.d.∼ C ,xt , ut , independent, t = 1, . . . , n.

B6: Stochastic volatility (x2 t , x3 t)
′ i.i.d.∼ N[0, I2], ut = exp(wt/2)ε t with wt = 0.5wt−1 + vt ,

where ε t
i.i.d.∼ N[0, 1], vt

i.i.d.∼ χ2(3), xt , ut , independent, t = 1, . . . , n.

B7: Nonstationary (x2 t , x3 t , ε t)
′ i.i.d.∼ N[0, I3], t = 1, . . . , n,

GARCH(1,1) ut = σ tε t , σ2
t = 0.8u2

t−1 +0.8σ2
t−1.

B8: Exponential error variance (x2 t , x3 t , ε t)
′ i.i.d.∼ N[0, I3], ut = exp(.2t)ε t .

C9: AR(1)-HOM (x2 t , x3 t , νu
t )

′ ∼ N[0, I3], t = 2, . . . , n, ut = ρuut−1 +νu
t ,

ρu = .5 (x2,1, x3,1)
′ ∼ N[0, I2], νu

1 ensures stationarity.

C10: AR(1)-HET x j, t = ρxx j, t−1 +ν j
t , j = 1, 2, ut = min{3, max[0.21, |x2 t |]}× ũt ,

ρu = .5, ũt = ρuũt−1 +νu
t , (ν2

t , ν3
t , νu

t )
′ i.i.d∼ N[0, I3], t = 2, . . . , n

ρx = .5 ν2
1, ν3

1 and νu
1 chosen to ensure stationarity.

C11: AR(1)-HOM (x2 t , x3 t , νu
t )

′ ∼ N[0, I3], t = 2, . . . , n, ut = ρuut−1 +νu
t ,

ρu = .9 (x2,1, x3,1)
′ ∼ N[0, I2], νu

1 ensures stationarity.
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where xt = (1, x2 t , x3 t)
′ and β are 3× 1 vectors. Monte Carlo studies are based on S generated

random samples. Table 1 presents the cases considered.
Cases A1 and A2 present i.i.d. normal observations without and with conditional heteroskedas-

ticity. Case A3 involves weak nonlinear dependence in the error term. Case A4 presents a very un-
balanced scheme in the design matrix (a case when the LAD estimator is known to perform badly).
Cases B5, B6, B7 and B8 illustrate thick-tailed errors, heteroskedasticity and nonlinear dependence.
Cases C9 to C11 illustrate different levels of autocorrelation in the error term with and without het-
eroskedasticity.

7.2. Bias and RMSE

We give biases and RMSE of each component of the parameter of interest in Table 2 and we report a
norm of these three values. n = 50 and S = 1000. These results are unconditional on X .

In classical cases (A1 - A3), sign-based estimators have roughly the same behavior as the LAD
estimator, in terms of bias and RMSE. OLS is optimal in case A1. However, there is no important
efficiency loss or bias increase in using signs instead of LAD. Besides, if the LAD is not accurate in a
particular setup (for example, with highly unbalanced explanatory scheme, case A4), the sign-based
estimators do not suffer from the same drawback. In case A4, the RMSE of the sign-based estimator
is notably smaller than those of the OLS and the LAD estimates.

For setups with strong heteroskedasticity and nonstationary disturbances (B5 - B8), we see that
the sign-based estimators yield better results than both LAD and OLS estimators. Not far from the
(optimal) LAD in case of Cauchy disturbances (B5), the sign-based estimators are the only ones
which are reliable with nonstationary variance (B6 - B8).

When the error term is autocorrelated (C9 - C11), results are mixed. When a moderate linear
dependence is present in the data, sign-based estimators give good results (C9, C10). However, when
linear dependence is stronger (C11), this is no longer true. The SHAC sign-based estimator does not
give better results than the non-corrected one in these examples.

To conclude, sign-based estimators are robust estimators less sensitive than the LAD estimator
to unbalanced schemes in the explanatory variables and to heteroskedasticity. They are particularly
adequate with heteroskedasticity or nonlinear dependence in the error term, even if the error term
fails to be stationary. Finally, if the HAC correction improves the performance of test procedures in
the presence of serial dependence [see Coudin and Dufour (2009)], it does not appear to do so for
point estimation.

8. Empirical illustration

One field suffering from both a small number of observations and possibly very heterogeneous data
is cross-sectional regional data sets. Least squares methods may be misleading because a few out-
lying observations may drastically influence the estimates. Robust methods are greatly needed in
such cases. Sign-based estimators are robust (in a statistical sense) and are naturally associated
with a finite-sample inference. In the following, we examine sign-based estimates of the rate of
β -convergence between output levels across U.S. States between 1880 and 1988 using Barro and
Sala-i-Martin (1991) data.

In the neoclassical growth model, Barro and Sala-i-Martin (1991) estimated the rate of β -
convergence between levels of per capita output across the U.S. States for different time periods
between 1880 and 1988. They used nonlinear least squares to estimate equations of the form

(1/T ) ln(yi, t/yi, t−T ) = a− [ln(yi, t−T )]× [(1− e−βT )/T ]+ x′iδ + ε t,T
i ,
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Table 2. Simulated bias and RMSE.

n = 50 OLS LAD SF SHAC
S = 1000 Bias RMSE Bias RMSE Bias RMSE Bias RMSE

A1: β 0 .003 .142∗ .002 .179 .002 .179 .004 .178
β 1 .003 .149∗ .006 .184 .004 .182 .004 .182
β 2 −.002 .149∗ −.007 .186 −.006 .185 −.007 .183

||β || .004 .254∗ .009 .316 .007 .315 .009 .313

A2: β 0 −.003 .136 .000 .090 −.000 .089∗ −.000 .089∗

β 1 −.0135 .230 −.006 .218∗ −.010 .218∗ −.010 .218∗

β 2 .002 .142 −.001 .095 −.001 .092∗ −.001 .092∗

||β || .014 .303 .007 .254 .010 .253∗ .010 .253∗

A3: β 0 .022 .167 .018 .108 .025 .107∗ .023 .107∗

β 1 −1.00 .228 .005 .215 .003 .214∗ .002 .215
β 2 .001 .150 .005 .105 .007 .104∗ .007 .105

||β || .022 .320 .019 .263 .026 .261∗ .024 .262

A4: β 0 −.001 .174 .007 .2102∗ .010 .2181 .008 .2171
β 1 −.016 .313 −.011 .375∗ −.021 .396 −.021 .394
β 2 −.100 14.6 .077 18.4 .014 7.41 .049 7.40∗

||β || .101 14.6 .078 18.5 .027 7.42 .054 7.41∗

B5: β 0 16.0 505 .001 .251 .004 .248∗ .003 .248∗

β 1 −3.31 119 .015 .264∗ .020 .265 .020 .265
β 2 −2.191 630 .000 .256∗ .003 .258 .001 .258

||β || 26.0 817 .015 .445∗ .021 .445 .020 .445∗

B6: β 0 −.908 29.6 −1.02 27.4 .071 2.28∗ .083 2.28∗

β 1 2.00 37.6 3.21 68.4 .058 2.38∗ .069 2.39
β 2 1.64 59.3 2.59 91.8 −.101 2.30 −.089 2.29∗

||β || 2.73 76.2 4.25 118 .136 4.02∗ .139 4.02∗

B7: β 0 −127 3289 −.010 7.85 −.008 3.16∗ −.028 3.17
β 1 −81.4 237 .130 11.2 −.086 3.80∗ −.086 3.823
β 2 −31.0 1484 −.314 12.0 −.021 3.606 −.009 3.630

||β || 154 4312 .340 18.2 .089 6.12 .091 6.15

B8: β 0 < −1010 > 1010 < −109 > 1010 .312 5.67 .307 5.67
β 1 > 1010 > 1010 > 109 > 1010 .782 5.40 .863 5.46
β 2 < −1010 > 1010 < −109 > 1010 .696 5.52 .696 5.55

||β || > 1010 > 1010 > 1010 > 1010 1.09 9.58∗ 1.15 9.63

C9: β 0 .005 .279 .001 .308∗ .003 .309 .004 .311
β 1 −.002 .163 −.005 .201 −.004 .200 −.005 .199∗

β 2 .001 .165 −.004 .204 .003 .198 .002 .198∗

||β || .006 .363 .007 .420 .006 .418∗ .006 .419

C10: β 0 −.013 .284 −.010 .315 −.015 .314∗ −.014 .314∗

β 1 −.009 .182 −.009 .220 −.011 .218∗ −.011 .219
β 2 .008 .189 .011 .222 .007 .215∗ .007 .215∗

||β || .018 .387 .018 .444 .020 .439∗ .019 .439∗

C11: β 0 .070 1.23 −.026 .308∗ .058 1.26 .053 1.27
β 1 −.000 .268 .005 .214∗ −.005 .351 −.008 .354
β 2 .001 .273 −.004 .210∗ .002 .361 −.001 .361

||β || .070 1.29 .027 .430∗ .059 1.36 .054 1.37

Note – || · || stands for the Euclidean norm. Best results for bias and RMSE are marked with a star (∗).

18



Table 3. Regressions for personal income across U.S. States, 1880-1988: estimates of β

Period Basic equation Equation with regional dummies

SIGN NLLS∗∗∗ SIGN NLLS∗∗∗

1880−1900 .0012 .0101 .0016 .0224
[−.0068, .0123]∗ [.0058, .0532]∗∗ [−.0123, .0211] [.0146, .0302]

1900−1920 .0184 .0218 .0163 .0209
[.0092, .0313] [.0155, .0281] [−.0088, .1063] [.0086, .0332]

1920−1930 −.0147 −.0149 −.0002 −.0122
[−.0301, .0018] [−.0249,−.0049] [−.0463, .0389] [−.0267, .0023]

1930−1940 .0130 .0141 .0152 .0127
[.0043, .0234] [.0082, .0200] [−.0189, .0582] [.0027, .0227]

1940−1950 .0364 .0431 .0174 .0373
[.0291, .0602] [.0372, .0490] [.0083, .0620] [.0314, .0432]

1950−1960 .0195 .0190 .0140 .0202
[.0084, .0352] [.0121, .0259] [−.0044, .0510] [.0100, .0304]

1960−1970 .0289 .0246 .0230 .0131
[.0099, .0377] [.0170, .0322] [−.0112, .0431] [.0047, .0215]

1970−1980 .0181 .0198 .0172 .0119
[.0021, .0346] [−.0315, .0195] [−.0131, .0739] [−.0273, .0173]

1980−1988 −.0081 −.0060 −.0059 −.0050
[−.0552, .0503] (.0130) [−.0472, .1344] (.0114)

* Projection-based 95% CI.
** Asymptotic 95% CI.
*** Estimates from Barro and Sala-i-Martin (1991).

i = 1, . . . , 48, T = 8, 10 or 20, t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988. Their ba-

sic equation does not include any other variables but they also consider a specification with regional
dummies (Eq. with reg. dum.). The basic equation assumes that the 48 States share a common per
capita level of personal income at steady state while the second specification allows for regional dif-
ferences in steady state levels. Their regressions involve 48 observations and are run for each 20-year
or 10-year period between 1880 and 1988. Their results suggest β -convergence at a rate of 2% per
year, but their estimates are not stable across subperiods and vary greatly from -.0149 to .0431 (for
the basic equation). This instability is expected because of the succession of troubles and growth
periods in the last century. However, they may also be due to particular observations behaving like
outliers and influencing the least-squares estimates. A survey of potential data problem suggests the
presence of highly influential observations in all the periods but one; see Table 4 in the online ap-
pendix. Outliers are clearly identified in periods 1900-1920, 1940-1950, 1950-1960, 1970-1980, and
1980-1988.

Sign-based estimates are more stable than the least-squares ones. They vary between
[−.0147, .0364] whereas least-squares estimates vary between [−.0149, .0431]. This suggests that at
least 12% of the least-squares estimates variability between sub-periods is due to the non-robustness
of the least-squares method. In all cases but two, sign-based estimates are lower (in absolute values)
than the NLLS ones. Consequently, we incline to a lower value of the stable rate of convergence.

In graphics 5(a) - 7(f) [see the Technical Appendix to this paper], projection-based p-value func-
tions and optimal concentrated sign-statistics are presented for each basic equation over the period
1880 - 1988. The optimal concentrated sign-based statistic reports the minimal value of DS for a
given β (letting a varying). The projection-based p-value function is the maximal simulated p-value
for a given β over admissible values of a. Those functions enable us to perform tests on β . 95%
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projection based confidence intervals for β presented in Table 3 are obtained by cutting the p-value
function with the p = .05 line. The sign estimate reaches the highest p-value. Remark that contrary
to asymptotic methods, the estimator is not at the middle point of any confidence interval. Besides,
the p-value function gives some hint on the degree of precision. The β parameter seems precisely es-
timated over the period 1930 - 1940 [see graphic 6(b)], whereas over the period 1980 - 1988, the same
parameter is less precisely estimated and the p-value function leads to a wider confidence intervals
[see graphic 7(f)].

9. Conclusion

In this paper, we have introduced inference tools which can be associated with the Monte Carlo
based system presented in Coudin and Dufour (2009): the p-value function (and its individual pro-
jected versions) which gives a visual summary of all the inference available on a particular parameter,
and Hodges-Lehmann-type sign-based estimators. The p-value function associates to each value of
the parameter vector a confidence degree. It extends the confidence distribution concept to multidi-
mensional parameters and relies on a reinterpretation of Fisher’s fiducial distributions.

Parameter values least rejected by tests (given the sample realization and the sample size) consti-
tute Hodges-Lehmann-type sign-based estimators. Those estimators are associated with the highest
p-value. Hence, they are derived without referring to asymptotic conditions through the analogy
principle. However, they turn out to be equivalent (in probability) to usual GMM estimators based
on signs.

We then derived some general properties of sign-based estimators (invariance, median unbiased-
ness) and conditions under which consistency and asymptotic normality hold. In particular, we
showed that sign-based estimators do require less assumptions on moment existence of the distur-
bances than usual LAD asymptotic theory. Simulation studies indicate that the proposed estimators
are accurate in classical setups and more reliable than usual methods (LS, LAD) when heterogene-
ity or nonlinear dependence is present in the error term even in cases which may cause LAD or
OLS consistency failure. Despite the programming complexity of sign-based methods, we recom-
mend combining sign-based estimators to the Monte Carlo sign-based method of inference when an
amount of heteroskedasticity is suspected in the data and when the number of available observations
is small.
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Technical appendix

A. Proofs

Proof of Proposition 4.1. Let DS be a sign-based statistic of the form presented in equation (4.4).
The symbol Ωn is omitted for simplicity. We show that the sets M1 and M2 are equal with probability
one. First, we show that if β̂ ∈ M2, then it belongs to M1. Second, we show that if β̂ does not belong
to M2, neither it belongs to M1.
If β̂ ∈ M2 then,

DS(β̂ ) ≤ DS(β ), ∀β ∈Θ , (A.1)

hence
Pβ [DS(β̂ ) ≤ DS(β )] = 1, ∀β ∈Θ (A.2)

and β̂ maximizes the p-value. Conversely, if β̂ does not belong to M1, there is a non-negligible Borel
set, say A, such that DS(β ) < DS(β̂ ) on A for some β . Then, as F̄(x), the distribution function of DS

is an increasing function and A is non negligible, and since F̄ is independent of β (Assumption 4.1),

F̄
(
DS(β )

)
< F̄

(
DS(β̂ )

)
. (A.3)

Finally, equation (A.3) can be written in terms of p-values

p(β ) > p(β̂ ), (A.4)

which implies that β̂ does not belong to M2.

Proof of Proposition 5.2. Consider β̂ (y, X , u) the solution of problem (4.4), which is assumed to be
unique, let β̄ be the true value of the parameter β , and suppose that u ∼−u. Equation (5.4) implies
that

β̂ (u, X , u) = −β̂ (−u, X , u) (A.5)

where both problems are assumed to have a single solution. Hence, conditional on X , we have

u ∼−u ⇒ β̂ (u, X , u) ∼−β̂ (−u, X , u) ⇒ Med
(
β̂ (u, X , u)

)
= 0. (A.6)

Moreover, equation (5.5) implies:

β̂ (y, X , u) = β̂ (y−X β̄ , X , u)+ β̄ = β̂ (u, X , u)+ β̄ . (A.7)

Finally, (A.6) and (A.7) entail Med[β̂ (y, X , u)− β̄ ] = 0.

Proof of Theorem 6.1. We consider the stochastic process W = {Wt = (yt , x′t) : Ω → R
p+1}t=1,2, ...
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defined on the probability space (Ω ,F ,P). Set

qt(Wt , β ) =
[
qt1(Wt , β ), . . . , qt p(Wt , β )

]′

=
[
s(yt − x′tβ )xt1, . . . , s(yt − x′tβ )xt p

]′
, t = 1, . . . , n. (A.8)

The proof of consistency follows four classical steps. First, 1
n ∑t qt(Wt , β )−E[qt(Wt , β )] is shown to

converge in probability to zero for all β ∈Θ (pointwise convergence). Second, this convergence is
extended to a weak uniform convergence. Third, we adapt to our setup the consistency theorem of
extremum estimators of Newey and McFadden (1994). Fourth, consistency is entailed by the opti-

mum uniqueness that results from the identification conditions.
Pointwise convergence. The mixing property 6.1 on W is exported to {qtk(Wt , β ), k =
1, . . . , p}t=1,2, .... Hence, ∀β ∈ Θ , ∀k = 1, . . . , p, {qtk(Wt , β )} is an α−mixing process of size
r/(1− r). Moreover, Assumption 6.2 implies E|qtk(Wt , β )|r+δ < ∞ for some δ > 0, for all t ∈ N,
k = 1, . . . , p. Hence, we can apply Corollary 3.48 of White (2001) to {qtk(Wt , β )}t=1,2, ..., and get:

1
n

n

∑
t=1

qtk(Wt , β )−E[qtk(Wt , β )]
p→ 0 , k = 1, . . . , p, ∀β ∈Θ . (A.9)

Uniform Convergence. We check conditions A1, A6, B1, B2 of Andrews (1987)’s generic weak
law of large numbers (GWLLN). A1 and B1 are our conditions 6.3 and 6.1. Then, Andrews defines

qH
ik(Wi, β , ρ) = sup

β̂∈B(β ,ρ)

qik(Wi, β̂ ), (A.10)

qLik(Wi, β , ρ) = inf
β̂∈B(β ,ρ)

qik(Wi, β̂ ), (A.11)

where B(β , ρ) is the open ball around β of radius ρ . His condition B2 requires that qH
tk(Wt , β , ρ),

qLtk(Wt , β , ρ) and qtk(Wt) be random variables. qH
tk( · , β , ρ), qLtk( · , β , ρ) are measurable functions

from (Ω ,P,F ) to (R,B), ∀t, β ∈ Θ , ρ , where B is the Borel σ -algebra on R and finally, that
sup

t

Eqtk(Wt)
ξ < ∞ with ξ > r. Those points are derived from the mixing Assumption 6.1 and As-

sumption 6.2 which ensures measurability and provides bounded arguments.
The last condition to check (A6) requires the following: let µ be a σ -finite measure which domi-
nates each one of the marginal distributions of Wt , t = 1, 2, . . . , and pt(w) the density of Wt w.r.t.
µ . qtk(Wt , β )pt(Wt) is continuous in β at β = β ∗ uniformly in t (a.e. w.r.t. µ), for each β ∗ ∈ Θ ,
qtk(Wt , β ) is measurable w.r.t. the Borel measure for each t and β ∈Θ , and

∫
sup

t≥0, β∈Θ

|qtk(W, β )|pt(w)dµ(w) < ∞ . (A.12)

Since ut is continuously distributed uniformly in t [Assumption 6.4(2)], we have Pt [ut = xtβ ] =
0, ∀β , uniformly in t. Then, qtk is continuous in β everywhere except on a Pt-negligible set. Finally,
since qtk is L1-bounded and uniformly integrable, condition A6 holds. The generic law of large
numbers (GWLLN) then implies:

(a) 1
n ∑n

i=0 E[qt(Wt , β )] is continuous on Θ uniformly over n ≥ 1,

(b) supβ∈Θ

∣∣ 1
n ∑n

t=0 qt(Wt , β )−Eqt(Wt , β )
∣∣ → 0 as n → ∞ in probability under P.

(A.13)

The Consistency Theorem is an extension of Theorem 2.1 of Newey and McFadden (1994) on
extremum estimators. The steps of the proof are the same but the limit problem differs slightly. For
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simplicity, the true value is taken to be 0. First, the generic law of large numbers implies that

lim
n→∞

1
n

∑
t

E[s(ut − x′tβ )xtk] is continuous on Θ , k = 1, . . . , p. (A.14)

Define

Qk
n(β ) =

1
n

∣∣
n

∑
t=1

xkts(ut − x′tβ )
∣∣, k = 1, . . . , p, (A.15)

QEk
n (β ) =

1
n

∣∣
n

∑
t=1

E[xkts(ut − x′tβ )]
∣∣, k = 1, . . . , p, (A.16)

and consider {β n}n≥1 a sequence of minimizers of the objective function of the non-weighted sign-
based estimator:

1
n2

p

∑
k=1

[
∑

t

xkts(ut − x′tβ )
]2

= ∑
k

[Qk
n(β )]2. (A.17)

Then, for all ε > 0, δ > 0 and n ≥ N0, we have:

P
[
∑
k

[Qk
n(β n)]

2 < ∑
k

[Qk
n(0)]2 + ε/3

]
≥ 1−δ . (A.18)

Uniform weak convergence of Qk
n to QEk

n at β n implies:

[QEk
n (β n)]

2 < [Qk
n(β n)]

2 +(ε/3p), k = 1, . . . , p, with probability approaching one as n → ∞,
(A.19)

hence,

∑
k

[QEk
n (β n)]

2 < ∑
k

[Qk
n(β n)]

2 + ε/3, with probability approaching one as n → ∞. (A.20)

Using the same argument at β = 0, we have

∑
k

[Qk
n(0)]2 < ∑

k

[QEk
n (0)]2 + ε/3, with probability approaching one as n → ∞. (A.21)

By (A.20), (A.18) and (A.21), this in turn implies:

∑
k

[QEk
n (β n)]

2 < ∑
k

[QEk
n (0)]2 + ε, with probability approaching one as n → ∞. (A.22)

This holds for any ε , with probability approaching one. Let N be any open subset of Θ containing 0.
Since Θ ∩Nc is compact and limn ∑k[Q

∗k
n (β )]2 is continuous [see (A.14],

∃β ∗ ∈Θ ∩ Nc such that sup
β∈Θ∩Nc

lim
n

∑
k

[QEk
n (β )]2 = lim

n
∑
k

[QEk
n (β ∗)]2. (A.23)

Provided 0 is the unique minimizer, we have:

lim
n

∑
k

[QEk
n (β ∗)]2 > lim

n
∑
k

[QEk
n (0)]2, with probability one . (A.24)
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Hence, setting

ε =
1
2

{
lim

n
∑
k

[QEk
n (β ∗)]2

}
, (A.25)

it follows that, with probability close to one,

lim
n

∑
k

[QEk
n (β n)]

2 <
1
2

[
lim

n
∑
k

[QEk
n (β ∗)]2 + lim

n
∑
k

[QEk
n (0)]2

]
< sup

β∈Θ∩Nc

lim
n

∑
k

[QEk
n (β )]2. (A.26)

Hence, β n ∈ N. As this holds for any open subset N of Θ , we conclude that β n converges to 0.
For identification, the uniqueness of the minimizer of the sign-objective function is insured by the
set of identification conditions 2.2, 6.4, 6.5, and 6.6. These conditions and consequently the proof,
are close to those of Weiss (1991) and Fitzenberger (1997) for the LAD and quantile estimators. We
wish to show that the limit problem does not admit another solution. When Ω̄n(β ) defines a norm
for each β (Assumption 6.6), this assertion is equivalent to

lim
n→∞

E
[1

n
∑

t

s(ut − x′tδ )xt

]
= 0 ⇒ δ = 0, δ ∈ R

p, (A.27)

and

lim
n→∞

∣∣E
[1

n
∑

t

s(ut − x′tδ )x′tδ
]∣∣ = 0 ⇒ δ = 0, δ ∈ R

p. (A.28)

Let

A(δ ) = E[
1
n
∑

t

s(ut − x′tδ )xt |x1, . . . , xn] . (A.29)

Then,

E[A(δ )] = E
[1

n
∑

t

s(ut − x′tδ )xt

]
= E{E

[1
n

∑
t

s(ut − x′tδ )xt |x1, . . . , xn

]
}. (A.30)

Note that

E[s(ut − x′tδ )|x1, . . . , xn] = 2

[
1
2
−

∫ x′t δ

−∞
ft(u|x1, . . . , xn)du

]
= −2

∫ x′t δ

0
ft(u|x1, . . . , xn)du] (A.31)

A(δ ) can be developed for τ > 0 as follows

A(δ ) =
2
n

∑x′tδ
{

I{|x′t δ |>τ}
[
I{x′t δ>0}

∫ x′t δ

0
− ft(u|x1, . . . , xn)du+ I{x′t δ≤0}

∫ 0

x′t δ
ft(u|x1, . . . , xn)du

]

+I{|x′t δ |≤τ}
[
I{x′t δ>0}

∫ x′t δ

0
− ft(u|x1, . . . , xn)du+ I{x′t δ≤0}

∫ 0

x′t δ
ft(u|x1, . . . , xn)du

]}
, (A.32)

hence

E[A(δ )] = E

{2
n

∑x′tδ
[
I{|x′t δ |>τ}

(
I{x′t δ>0}

∫ x′t δ

0
− ft(u|x1, . . . , xn)du+ I{x′t δ≤0}

∫ 0

x′t δ
ft(u|x1, . . . , xn)du

)

+ I{|x′t δ |≤τ}
(

I{x′t δ>0}

∫ x′t δ

0
− ft(u|x1, . . . , xn)du+ I{x′t δ≤0}

∫ 0

x′t δ
ft(u|x1, . . . , xn)du

)]}
. (A.33)

Remark that each term in this sum is negative. Hence, s(E[A(δ )]) ≤ 0 and |E[A(δ )]| = −E[A(δ )],
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and

|E(A)| = E
[2

n
∑x′tδ I{|x′t δ |>τ}

(
I{x′iδ>0}

∫ x′t δ

0
ft(u|x1, . . . , xn)du− I{x′t δ≤0}

∫ 0

x′t δ
ft(u|x1, . . . , xn)du

)]

+E
[2

n
∑x′tδ I{|x′t δ |≤τ}

(
I{x′t δ>0}

∫ x′t δ

0
ft(u|x1, . . . , xn)du− I{x′t δ≤0}

∫ 0

x′t δ
ft(u|x1, . . . , xn)du

)]

≥ E
[2

n
∑ I{|x′t δ |>τ}

(
x′tδ I{x′t δ>0}

∫ x′t δ

0
ft(u|x1, . . . , xn)du

−x′tδ I{x′t δ≤0}

∫ 0

x′t δ
ft(u|x1, . . . , xn)du

)]
(A.34)

≥ E
{2

n
∑ I{|x′t δ |>τ}

[
x′tδ I{x′t δ>0}

∫ x′t δ

0
ft(u|x1, . . . , xn)du

−x′tδ I{x′t δ≤0}

∫ 0

x′t δ
ft(u|x1, . . . , xn)du

]
[ ft(0|x1, . . . , xn) > fL]p1

}
(A.35)

≥ p1E
{2

n
∑ I{|x′t δ |>τ}τ fLd| ft(0|x1, . . . , xn) > fL

}
(A.36)

≥ τ p1 fLd
2
n

∑P[|x′tδ | > τ| ft(0|x1, . . . , xn) > fL)]. (A.37)

To obtain inequation (A.34), we just note that each term is positive. For the inequation (A.35) we
use Assumption 6.4. For inequation (A.36) we minorate |x′iδ | by τ and each integrals by fLd1 where
d1 = min(τ, d/2). Condition 6.5 enables us to conclude, by taking the limit, that

lim
n→∞

|E[A(δ )]| ≥ 2τ p1 fLd × liminf
n→∞

P[|x′iδ | > τ| fi(0|x1, . . . , xn) > fL] > 0, ∀δ > 0,

hence, we conclude on the uniqueness of the minimum, which was the last step to ensure consistency
of the sign-based estimators.

Proof of Theorem 6.2. We prove Theorem 6.2 on asymptotic normality. We consider the sign-
based estimator β̂ (Ωn) where Ωn stands for any p× p positive definite matrix. We apply Theorem
7.2 of Newey and McFadden (1994), which allows to deal with noncontinuous and nondifferen-
tiable objective functions for finite n. Thus, we stand out from usual proofs of asymptotic normality
for the LAD or the quantile estimators, for which the objective function is at least continuous. In
our case, only the limit objective function is continuous (see the consistency proof). The proof is
separated in two parts. First, we show that L(β ), as defined in equation (6.5), is the derivative of
limn→∞

1
n ∑t E

[
s
(
ut − x′t(β − β̄ )

)
xt

]
. Then, we check the conditions for applying Theorem 7.2 of

Newey and McFadden (1994).
The consistency proof (generic law of large numbers) implies that

1
n

n

∑
t=0

E
[
s
(
ut − x′t(β − β̄ )

)
xt

]
(A.38)

is continuous on Θ uniformly over n. Moreover Assumption 6.2 specifies that X is L2+δ bounded.
As the ft(λ |x1, . . . , xn) are bounded by fU uniformly over n and λ (Assumption 6.8), dominated
convergence allows us to write:

∂

∂β
E
[
xts

(
ut − x′t(β − β̄ )

)]
= E

[
xtx

′
t ft

(
x′t(β − β̄ )|x1, . . . , xn

)]
(A.39)
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These conditions imply:

Ln(β ) =
1
n

n

∑
t=1

E
[
xtx

′
t ft

(
x′t(β − β̄ )|x1, . . . , xn

)]
→

n→∞
Ln(β ) (A.40)

uniformly in β . Uniform convergence implies that limn
1
n ∑n

t=0 E
[
s
(
ut −x′t(β − β̄ )

)
xt

]
is differentiable

with derivative L(β ).
We now apply Theorem 7.2 of Newey and McFadden (1994) which presents asymptotic normality
of a minimum distance consistent estimator with nonsmooth objective function and weight matrix
Ωn

p→ Ω symmetric positive definite. Thus, under conditions for consistency (2.2, 6.1-6.6), we check
that the following conditions hold:

(i) zero is attained at the limit by β̄ ;

(ii) the limiting objective function is differentiable at β̄ with derivative L(β̄ ) such that L(β̄ )ΩL(β̄ )′

is nonsingular;

(iii) β̄ is an interior point of Θ ;

(iv)
√

nQn(β̄ ) → N[0, J] ;

(v) for any δ n → 0, sup||β−β̄ ||
√

n||Qn(β )−Qn(β̄ )−EQ(β )||/(1+
√

n||β − β̄ ||) p→ 0 .

Condition (i) is fulfilled by the moment Assumption 2.2. Condition (ii) is fulfilled by the first part
of our proof and Assumption 6.10. Then, Condition (iii) is implied by 6.3. Using the mixing As-
sumption 6.9 of {ut , Xt}t=1,2, ... and conditions 2.2, 6.2, 6.7 and 6.11, we apply a White-Domowitz
central limit theorem [see White (2001), Theorem 5.20]. This fulfills condition (iv) of Theorem 7.2
in Newey and McFadden (1994):

√
nJ

−1/2
n Qn(β̄ ) → N[0, Ip] (A.41)

where Jn = var
[

1√
n ∑n

1 s(ui)xi

]
. Finally, condition (v) can be viewed as a stochastic equicontinuity

condition and is easily derived from the uniform convergence [see McFadden remarks on condition
(v)]. Hence, β̂ (Ωn) is asymptotically normal

√
nS

−1/2
n

[
β̂ (Ωn)− β̄

]
→ N[0, Ip]. (A.42)

The asymptotic covariance matrix S is given by the limit of

Sn = [Ln(β̄ )Ωn(β̄ )Ln(β̄ )]−1Ln(β̄ )Ωn(β̄ )JnΩn(β̄ )Ln(β̄ )[Ln(β̄ )Ωn(β̄ )Ln(β̄ )]−1. (A.43)

When choosing Ωn = Ĵ−1
n a consistent estimator of J−1

n , Sn can be simplified:

√
nS

−1/2
n

[
β̂ (Ĵ−1

n )− β̄
]
→ N[0, Ip] (A.44)

with
Sn = [Ln(β̄ )Ĵ−1

n Ln(β̄ )]−1. (A.45)

When the mediangale Assumption (2.1) holds, we find usual results on sign-based estimators. β̂ (Ip)
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Table 4. Summary of regression diagnostics.

Period Heteroskedasticity* Nonnormality** Influential Possible outliers**
observations**

Basic eq. Eq. Reg. Dum.

1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT) yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

* White and Breusch-Pagan tests for heteroskedasticity are performed. If at least one test rejects at 5% ho-
moskedasticity, a “yes” is reported in the table, else a “-” is reported, when tests are both nonconclusive.
** Scatter plots, kernel density, leverage analysis, Studentized or standardized residuals larger than 3, DFbeta
and Cooks distance have been performed and lead to suspicions for nonnormality, outlier or high influential
observation presence.

and β̂ ((X ′X)−1) are asymptotically normal with asymptotic covariance matrix

lim
n→∞

Sn = lim
n→∞

n2

4
{∑

t

E
[
xtx

′
t ft(0|X)

]
}−1

E(xtx
′
t){∑

i

E
[
xtx

′
t ft(0|X)

]
}−1. (A.46)

B. Convergence data: concentrated statistics and p-values

This appendix contains regression diagnostics, graphics of concentrated sign-based statistics and
projected p-values for the β parameter in the Barro and Sala-i-Martin application.
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Figure 5. Concentrated statistics and projected p-values (1880-1930)
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(a) Basic equation: 1880-1900: concentrated DS
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(b) Basic equation: 1880-1900: projected p-value
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(c) Basic equation: 1900-20: concentrated DS
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(d) Basic equation: 1900-20: projected p-value
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(e) Basic equation: 1920-30: concentrated DS
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(f) Basic equation: 1920-30: projected p-value
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Figure 6. Concentrated statistics and projected p-values (1930-1960)
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(a) Basic equation: 1930-40: concentrated DS
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(b) Basic equation: 1930-40: projected p-value
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(c) Basic equation: 1940-50: concentrated DS
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(d) Basic equation: 1940-50: projected p-value
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(e) Basic equation: 1950-60: concentrated DS
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(f) Basic equation: 1950-60: projected p-value
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Figure 7. Concentrated statistics and projected p-values (1960-1988)
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(a) Basic equation: 1960-70: concentrated DS
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(b) Basic equation: 1960-70: projected p-value
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(c) Basic equation: 1970-80: concentrated DS
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(d) Basic equation: 1970-80: projected p-value
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(e) Basic equation: 1980-88: concentrated DS
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(f) Basic equation: 1980-88: projected p-value
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