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EXACT NONPARAMETRIC TESTS OF ORTHOGONALITY
AND RANDOM WALK IN THE PRESENCE
OF A DRIFT PARAMETER*

By BRYAN CAMPBELL AND JEAN-MARIE DUFOUR!

Concordia University, Canada
Université de Montréal, Canada

In this paper, finite-sample nonparametric tests of conditional independence
and random walk are extended to allow for an unknown drift parameter. The
tests proposed are based on simultaneous inference methods and remain exact
in the presence of general forms of feedback, nonnormality and heteroskedas-
ticity. Further, in two simulation studies we confirm that the nonparametric
procedures are reliable, and find that they display power comparable or
superior to that of conventional tests.

1. INTRODUCTION

In certain modelling situations where the explanatory variables are not strictly
exogenous, it is necessary to rely on asymptotic theory to justify inference based on
standard regression procedures. The question of the reliability of these procedures
in small samples naturally arises. A noteworthy example where there is feedback
from disturbances that are contemporaneously uncorrelated with the regressors but
which affect their future values has been studied by Mankiw and Shapiro (1986),
Banerjee and Dolado (1987, 1988), Galbraith, Dolado and Banerjee (1987), and
Banerjee, Dolado and Galbraith (1990). Here standard regression-based procedures
reject much too often even in large samples. Another important example involving
feedback is the random walk model.

Our work is inspired by results from classical finite-sample nonparametric statis-
tics that show that the only tests about a median or a mean which are valid under
sufficiently general distributional assumptions, allowing nonnormal, possibly het-
eroskedastic, independent observations, are based on sign statistics (see Lehmann
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152 CAMPBELL AND DUFOUR

and Stein 1949, or Pratt and Gibbons 1981 for a more accessible discussion).
Following these characterizations, we introduced in Campbell and Dufour (1991,
1995) sign and signed rank tests which were shown to be exact for a wide class of
models, also allowing the presence of general forms of feedback as well as nonnor-
mality and heteroskedasticity. Simulation results indicated that their power is
comparable or superior (often by a wide margin) to that of the usual ¢-tests, using
either asymptotic or size-corrected critical values for the Mankiw-Shapiro model
and the Dickey-Fuller critical values for the random walk model. The methods were
applied to the evaluation of Federal budget projections in Campbell and Ghysels
(1995). These distribution-free tests, on the other hand, are only applicable when
the median of the dependent variable is zero under the null hypothesis.

In this paper, we extend this nonparametric approach to cover a much wider class
of applications of orthogonality tests where there is an unknown intercept or drift
parameter. Often, as for example in the case of the expectations theory of the term
structure of interest rates, an implicit forecast error can be associated with a model
which, under the further assumption of efficiency or rationality, is hypothesized to
be orthogonal to past information once a centering parameter is accounted for. In
the term structure example, this parameter is interpreted .as a liquidity premium; see
Shiller et al. (1983), Fama (1984), Mankiw and Summers (1984), Mankiw and Miron
(1986), Kugler (1990), Taylor (1992), Engsted (1993), and the surveys of Melino
(1988) and Shiller (1990). Similarly, it is often of interest to allow for the presence of
a drift in a random walk model. Standard regression procedures in such situations
simply include an intercept term in the equation to be estimated. By contrast, more
involved analysis is required to obtain distribution-free methods when the null
hypothesis allows for an unknown intercept or drift as nuisance parameter. The
purpose of this paper is to extend earlier results to cover such cases. Our approach
is based on extending to a nonparametric context the simultaneous inference
approach used in Dufour (1990) for a parametric regression model with Gaussian
AR(1) disturbances. Here this work is accomplished by combining an exact nonpara-
metric confidence set for the drift parameter, which can be obtained by “inverting”
sign or signed rank tests, with “conditional” nonparametric tests linked to each point
in the confidence set. The approach then yields finite-sample generalized bounds
tests. For a review of earlier work on distribution-free methods in time series, the
reader may consult Dufour, Lepage and Zeidan (1982) and the excellent recent
survey by Hallin and Puri (1991).

Section 2 of the paper describes the general stochastic framework, which includes
the special case of type of feedback found in the Mankiw-Shapiro and random walk
models, and also allows for an intercept (or drift) parameter. In the first step, we
assume provisionally that this nuisance parameter is known. In this context, we
introduce the appropriate nonparametric statistics and derive their finite-sample
distributions under the null hypothesis of conditional independence given the past.
Then, in Section 3, we drop the assumption that the intercept parameter is known.
For this case, we propose a three-stage testing procedure and prove a general result
giving probability bounds for the procedure under the null hypothesis. In Section 4,
we use Monte Carlo methods to compare a number of variants of the bounds
procedures and investigate the power of the proposed nonparametric tests for
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simple linear regressions of the Mankiw-Shapiro (1986) type and for random walk
models, both with intercept term and for various distributional assumptions (normal
and nonnormal disturbances, with or without heteroskedasticity). The results con-
firm that the bounds nonparametric tests have the correct level while conventional
asymptotic tests can easily reject much too frequently, and show that the power of
the nonparametric procedures are at least comparable (and dominate often by a
wide margin in the presence of outliers) to that of size-corrected conventional tests.
In Section 5, we apply our methods to test the expectations theory of the term
structure of interest rates using Canadian data on three and six-month rates. The
nonparametric results are also contrasted with those found by the standard regres-
sion-based approach. We find that the usual results which reject efficiency of the
implicit forecast may be spurious. Section 6 concludes.

2. FRAMEWORK

As in Campbell and Dufour (1995), we work within the framework of a general
model involving the random variables Y,...,Y,, X;,..., X, _;, and the correspond-
ing information vectors defined by I,=(X,, X,,...,X,,Y;,...,Y,), where t=
0,...,n — 1, with the convention that I, = (X). Our goal is to introduce tests of the
independence of Y, from I,_,, which are exact under very weak assumptions
concerning the distribution of Y, and the relationship between Y, and X,. For one
group of tests, we simply assume that Y, has median b,; for the other, we make the
stronger assumption that the distribution of Y, is symmetric about b,. No additional
assumption other than the independence of Y, with respect to the past (represented
in what follows by I,_;) governs the relationship between Y, and X,. More formally,
we assume that Y;,...,Y, and X,,...,X,_; have continuous distributions such
that:

(1) Y, is independent of I,_,, foreach t=1,...,n;
2 PlY,>b,]=P[Y,<by],fort=1,...,n.

These assumptions leave open the possibility of feedback from Y, to current and
future values of the X-variable, without specifying the form of feedback or any other
property of the X-process; in addition, the variables Y, need not be normal nor
identically distributed. In what follows we shall also consider the stronger assump-
tion:

3) Yi,...,Y, have continuous distributions symmetric about b,,.

Clearly, the latter assumption implies (2), but the converse is not true.

What distinguishes these assumptions from those in our previous work is the
presence of the parameter b, the median of the variables Y,, ¢ = 1,..., n. To obtain
methods applicable when b, is unknown, we need first to consider the case where
this nuisance parameter is known. In so far as b, is known, the techniques of
Campbell and Dufour (1995) can readily be modified to yield exact nonparametric
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tests as follows. The basic building blocks of these statistics are the simple products
Z((b)=({,-b)X,_,, t=1,...,n, where b will be taken to be b, when the median
is known as in this section, or an estimate when it is unknown as in the next section
of the paper. Let u(z) =1, if 2> 0, and u(z) =0 for z <0. We first introduce an
analogue of the t-statistic given by the sign statistic

4) 5,(6) = L ul(Y,~b)g,-1],

t=1

where g,=g,(1,), t=0,...,n—1, is a sequence of measurable functions of the
information vector I,. The functions g,(-) allow one to consider various (possibly
nonlinear) transformations of the data, provided g, depends only on past and
current values of X, and Y, (v <t). The role of such transformations is important in
applications, as will be seen in Section 5; in practice, simple forms of g,() such as
the computation of restricted medians may be preferred. This point is elaborated in
Campbell and Dufour (1995).

Under the further assumption that each Y, has a continuous symmetric distribu-
tion, that is, under (3), it is natural to use ranks as well. We will consider here
aligned signed rank statistics with general form:

n

(%) SR,(b) = E“[(Yt—b)g,_I]Rf(b)

where R;(b) in SR,(b) is the rank of |Y, —bl, ie. R (b)=1X}_,u(lY,—bl - |Y; -
bl) the rank of |Y, — b| when |Y; —bl,...,|Y, —b| are put in ascending order.

Consider first the case where the median b, of the variables Y,, t=1,...,n, is
known. The finite-sample distributions of S,(b,) and SR,(b,) under general condi-
tions is given by the following proposition. By contrast with the usual definitions of
Wilcoxon-type statistics, where the absolute ranks would be based on the products
(Y, — b)g,-, it should be noted that in the definition of the statistics SR, (b) the
absolute ranks are defined with respect to |Y; —byl,..., Y, —b,l, which are mutu-
ally independent according to (1).

ProposITION 1. Let Y=(Y,,...,Y,) and X=(X,,...,X,_{) be two nXx1
random vectors which satisfy Assumptions (1) and (2). Suppose further that
PlY,—by=01=0 fort=1,...,n,andletg, =g (1), t=0,...,n — 1, be a sequence of
measurable functions of I, such that P[g,=0]=0 fort=0,...,n—1.

() Then the sign statistic S (b,) defined by (4) follows a Bi(n,0.5) distribution, that
is, P[Sg(bo) =x]= (’;)(1/2)” forx=0,1,...,n, where (';) =n!/[xW(n -x)].

(b) If Assumption (3) also holds, then the signed rank statistic SR (b,) defined by (5)
is distributed like W, = X}'_tB,, where B, ..., B, are independent Bernoulli variables
such that P[B,=0]=P[B,=1]1=1/2,t=1,...,n. '

These distributional results hold under very general conditions. It is important to
keep in mind that sign statistics are the only statistics which can produce valid tests
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for hypothesis about a median under sufficiently general distributional assumptions;

more precisely, any test with level a when Y;,...,Y, are independent with distribu-
tions symmetric about a common median b, must have level @ conditional on the
vector of absolute values |Y — byl = (1Y; = bgl,..., 1Y, — byl), that is, must be a sign

test (see Lehmann and Stein 1949, Pratt and Gibbons 1981, pp. 233-234, or Dufour
and Hallin 1991). In this framework the nature of the distribution of each Y, is left
open; there are no assumptions concerning the existence of moments; heteroskedas-
ticity of unknown form is permitted; the nature of the feedback mechanism between
Y, and current and future values of X,,; (s >0) is not specified. As long as Y, has
median b, and is independent of the past, the sign statistic S,(b,) follows a
binomial distribution Bi(n,0.5). The Wilcoxon variate W, has been extensively
tabled (see, for example, Wilcoxon, Katti and Wilcox 1970), and the normal
approximation with E(W,) =n(n +1)/4 and Var(W,) = n(n + 1)2n + 1) /24 works
well even for small values of n (for further discussion, see Lehmann 1975). The
powers of the tests S,(b,) and SR,(b,), with g, =X, and b, = 0, relative to standard
regression-based tests have been investigated by simulation in Campbell and Dufour
(1995) for two models with feedback. The nonparametric tests displayed remarkable
power, generally outperforming the ¢-statistic applied with correct critical values in
the presence of nonnormal disturbances and/or heteroskedasticity and having
comparable power with homoskedastic normal disturbances. We now need to deal
with the fact that the centering parameter b, is generally unknown.

3. ORTHOGONALITY TESTS WITH UNKNOWN DRIFT PARAMETER

In this section we adapt a general procedure introduced in Dufour (1990) for a
parametric model to the nonparametric setup described in the previous section, in
order to obtain exact tests of the hypothesis that a variable is independent of past
information in the presence of the unknown nuisance parameter b,. A straightfor-
ward response to the problem of the unknown median in the spirit of the previous
section is to estimate the parameter using the sample median 50 of the observations
Y,, t=1,...,n, and consider the statistics Sg(BO) and SRg(l;o). These aligned sign
and signed rank statistics are of independent interest and their power performance
will be considered in the simulation exercises conducted in the next section of this
paper. However, we do not have a finite-sample theory for these statistics in the
general framework studied here; and indeed it appears quite doubtful that such a
theory is even possible for such statistics.

To obtain provably valid finite-sample procedures, we shall adopt a three-stage
approach: First, we find an exact confidence set for the nuisance parameter b,
which is valid at least under the null hypothesis. Second, corresponding to each
value b in the confidence set, we construct a nonparametric test based on the
methods of the previous section. Third, the latter are combined with the confidence
set for b, using Bonferroni’s inequality to obtain valid nonparametric tests at the
desired level a.

Let J(a;) be a confidence set for b, with level 1 — a; (where a, < @), which is
valid either on the assumption that Y, has median b, for t=1,...,n or that Y, is
symmetric about b, for each ¢. Different approaches to the construction of J(a;)
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based on counting procedures will be discussed below. On any approach, we have
Plbyel(aDl=1 - a;.

For any b €J(a,), we now consider the aligned sign and signed rank statistics
S,(b) and SR (b). Under different hypotheses, Proposition 1 established the exact
dlstrlbutxon of S,(by) and SR (by). For any 0 < a <1, let S ,(a) and SR (a) be the
critical values of the correspondmg right one-sided tests Wlth nominal level a, ie.
S,(a) and SR,(a) are the smallest points (in the extended real numbers R) such
that

(6) P[S,(by) > 5 ()] < @, P[SR,(bg) > SRe(a)] < a.

Since S,(b,) and SR,(b,) have discrete distributions, it may not be possible to make
the tail areas in (6) equal to a. The following proposition establishes probability
bounds for the events that S,(b) is significant (or nonsignificant) at an appropriate
level for all b €J(a,;) for both one-sided and two-sided tests, and similarly for
SR (D).

PROPOSITION 2. Let Y=(Y,,...,Y,) and X=(X,,...,X,_1) be two nXx1
random vectors satisfying the assumptions (1) and (2) with P[Y,=0]=0 fort=1,...,n,
and let g,=g,(1,), t=0,...,n—1, be a sequence of measurable functions of 1, such
that P[g,=0]=0 for t=0,. ..,n—1. Let also Sg(b), SR(b), S S (") and SR() be
defined as in (4), (5) and (6) let § (8)=n-S§, (1 -9) and SR(6) (n(n i 1)/2)
- SR (1-28) forany 0<6<1, and choose a, a;, a,, and o in the interval [0,1]
suchthat O<oy<a—a;<at+ao;<ay<l

(@) If J(a,) is a confidence set for by, such that P[by€J(a;)] > 1 — ay, then

(7a) P[S,(b) >S5 (o), VbEI(a)] <y +ay < @,
(7b) P[M—=S,(b)>35,(a,),YbeI(ay)]| <o + ey,
(7¢)
P[max{S,(b), M — S,(b)} > 5,(,/2), Vb €J(a))]| < &, + oy,
(7d) P[Sy(b) <S,(a3),VbeT(a)] <1-(ay—ay) <1-a,
(7e) p[M—S,(b) <Sy(as), Vb ET(ay)] <1 (a5 —ay),
(76)

P[max{Sg(b)’M_Sg(b)} <§g(a3/2)’ vb EJ(O‘l)] <1-(a3—a),

where M = n.

(b) If the additional Assumption (3) holds and K(a,) is a confidence set for b, such
that Plby € K(a,)] 21 — ay, then the inequalities (7a) to (7f) also hold with S,(b)
replaced by SR (b),S,() by SR(),S,(-) by SR (),J(a;) by K(a,), and M by
M =n(n+1)/2.



EXACT NONPARAMETRIC TESTS 157

Under the maintained hypothesis (1) and (2), or (1) through (3), the probability
bounds established by the proposition suggest the following bounds test for the
hypothesis that Y, is orthogonal to past information I,_,, for ¢t =1,..., n. Using the
notations adopted in Proposition 2, define

(8a)  Qu(S,) =Inf{S,(b): b€J()}, Qu(SR,)=Inf{SR,(b): b€ K(a,)},
(8b)  Qu(S,) =Sup{S,(b): beJ(a,)}, Qu(SR,)=Sup{SR,(b): bEK(a;)}.

From Proposition 2(a), it is clear that
(8¢c) P[QL(S,) > Se(@))] <@, P[Qy(S,) <Sp(as)] <1-a,

where it is easy to see that the conjunction of the events Q,(S, )>§ ¢(@;) and
Qu(S, )<S§ ¢(@3) has probability zero, and similarly for Q,(SR, ) and QU(SR ).
Consequently, a reasonable right one-sided test would reject the hypothesis of
conditional independence if Q,(S,) > S, ¢(a,) (alternatively, if Q,(SR,) > SR (@))),
and would accept it if Qy(S, )<S (a3) [alt., Qy(SR,) < SR (as)l; othervwsc, we
consider the test inconclusive. For cxample, for a=0. 05 and o, = 0.025, the null is
rejected if S (b) is significant at level 0.025 [S,(b) > §,(0.025)] for each b in a 97.5%
confidence interval for b,, and accepted if S,(b) is never significant at level 0.075
over the confidence interval. According to the proposition, the probability of a Type
I error is bounded from above by a, whereas the probability of accepting the true
hypothesis according to this procedure is bounded from above by 1 — a. It is clear
that one should normally set a, =a — a; and a;=a + a;.

To obtain a left one-sided test of the model described by the assumptions of
Proposition 2, one can proceed in exactly the same way with S, (b) replaced by
M —S,(b)=n—S,(b), and SR,(b) by M’ — SR (b); e.g., the rejectlon region of
the S1gn test is Inf{M S, (b) beJ(a)}>S (az) and the acceptance region
Sup{M — S (b): b€ J(ap)} <S ,(a;). Finally, we obtain a two-sided sign test with
level a by cons1der1ng

0B, (S,) = Inf{max{S,(b), M — S,(b)}: beI(a,)},
OBy (S,) = Sup{max{S,(b), M — S,(b)}: beJ(ay)},

and then taking OB,(S,) > §g(a2/2), and OBy (S,) < fg(a3/2) as the rejection and
acceptance regions, respectively. The procedures are similar for the Wilcoxon-type
tests.

It remains to discuss the construction of the confidence set J(a,) for b,, which
should be valid at least under the null hypothesis. If Y, is assumed to have median
by, the order statistics Yy, ...,Y,, of the random sample Y;,...,Y, can be ysed to
construct a confidence interval for b,. Let B be a binomial random variable with
number of trials n and probability of success equal to 0.5. Choose k the largest
integer such that P[B <k]< a/2. Then [Yj,,),Y,,_,,] is a confidence interval for
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by with level 1 — a (see Hettmansperger 1984, pp. 12-15 for details). On the other
hand, if the distributions of the Y;’s are symmetric, one can obtain a (tighter)
confidence interval for b, by considering the n(n + 1)/2 Walsh averages defined by
(Y;+Y))/2, 1 <i<j<n (Hettmansperger 1984, pp. 38-41 for details). One diffi-
culty with using Walsh averages, particularly in simulations, is the large number of
averages that must be computed and then ordered. For n =200, there are some
20000 Walsh averages to be ordered. In what follows, we only use the method based -
on the binomial distribution to derive the confidence interval for b, even though the
underlying distributions may be symmetric. An example of the construction of a
nonparametric confidence interval is given in Section 5.

To address the issue of the power of the procedure proposed above, it is
instructive to consider the following linear model:

9 Y,=By+BX,_; +e,t=1,...,n

where e, has the same properties as Y, in (1) and (2) [or (1) through (3)] with median
0. Suppose that we wish to test the null hypothesis that B, =0 against the
alternative that B, # 0. If B, is in fact zero, then Y, satisfies (1) and (2) [or (1)
through (3)], and the bounds testing procedure will have the properties described
above; in particular, the probability of rejecting the null will be at most as large as
a. Now suppose that B, is not equal to zero and let m, = m(X,) be the median of
X,. To continue the illustration, if we assume that m(X,) is constant, i.e. m, = m(X)
for all ¢, then J(«;) is a confidence set for b, = B, + B;m(X) instead of B,. When
8, =X,, it follows that the basic building block of the nonparametric statistics
introduced in the previous section can be rewritten:

Z:(bo) = (Yt —by)X,_1 = ( Bo+ B X,_1 te _bO)Xl—l
=B X,y —m(X)]X,_,+e,X,_1,t=1,...,n.

If we assume that X,_; and e, have symmetric distributions, it is easy to see that
Z,(b,) will have median 0 even if B, #0, since e, is independent of X,_, by
assumption. Accordingly, a sign statistic based on Z,(b,) will have virtually no power
to detect B, # 0, no matter the size of B;.

This general problem, suggested by the previous illustration, can be resolved by
altering the definition of Z,(b,). Let us replace X,_; by X,_; —m(X) in Z,(b,):

Z,(bo) = (Y, - bO)[Xt—l —m(X)]
=B X, —m(X)] +e[ X, —m(X)].
We see now that the median of Z,(b,) is clearly shifted toward the right or left
depending on whether B; >0 or B, <0. In practice, of course, we will need to

replace m(X) by an estimator 7,_,. Further, in order to have g, =g,(1,), i1, should
only depend on observations up to time ¢, e.g., /1, = med(X,, X, ..., X,) the sample
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median of X,,..., X,. This suggests replacing g, =X, by
(10) g=[XxX-m],t=0,...,n—1,

where M, is an estimate of m(X,) that is a function of I,. Of course, if X, is
nonstationary, other centering functions 7, may be more appropriate. There is no
need here to assume that the median of X, is constant.

It is straightforward to apply the above results to test the random walk hypothesis
in the presence of a drift. Here we should mention that there are tests of the
random walk hypothesis based on a transformation of the data involving signs (level
crossings); see Granger and Hallman (1991) and Burridge and Guerre (1995). But
these statistics are more specific than ours (involving for example the number of
times the series changes sign), and in contrast to the results presented in this paper
only the asymptotic distributions of the test statistics are at best established.
Furthermore, from the asymptotic results of Burridge and Guerre (1995), it is clear
that their tests are not distribution-free in finite samples. Consider the model in the
following form:

(11) YI‘_K—1=BO+B1Yt—1+el’ t=1,-..,n.

The null hypothesis of a random walk is then equivalent to B8, =0, with B8; <0
under the alternative of stationarity. This null hypothesis should not be confused
strictu senso with the unit root hypothesis. Appropriate nonparametric statistics to
consider in this context are given by:

n

(12) $,) = Lul(%,~¥ - b)eic]
(13) SR(b) = 2:1 u[(Y,~ Y-, ~5)gi ] RF (b)),

where R;(b) is the rank of |Y,—Y,_; —b| among |Y,-Y._, —b|, 7=1,...,n and
g, is given by

(14) gt=[Yt_rhl(Y)]?t=0:"'7n_19

with #,(Y) = med(Yy,...,Y,), the sample median of Y;, s=0,...,¢. Once a confi-
dence interval for B, is determined under the null, the bounds procedures are
defined precisely as before. Against the alternative of stationarity ( 8, < 0), the most
appropriate test here is a left one-sided test with rejection region of the form:
Sg(b) <S,(1 —a,) for all beJ(a;) [or equivalently, M—S,(b)>S,(a,) for all
b €J(ay)]. The power of these procedures applied in the random walk context will
be assessed in the next section.
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4. A SIMULATION STUDY OF TWO EXAMPLES

The specifications of model (9) considered in this section correspond to those
studied in Campbell and Dufour (1995) with the addition of the intercept B,. The
first example is drawn from Mankiw and Shapiro (1986). X, is assumed to follow a
stationary autoregressive process given by

(15) X,=0,+6,X,_, +e,t=1,...,n.

where the ¢, are assumed to be mutually independent and each ¢, is independent of
X,_;, j = 1; the disturbances ¢, and ¢, are also assumed to follow a bivariate normal
distribution with correlation coefficient p. The results of the simulations presented
in our previous study elaborated the basic theme of Mankiw and Shapiro, who found
that the usual #-test considerably over-rejects the null hypothesis when p and 6, are
close to one and asymptotic critical points are used. The simulations presented in
this section contrast the power of the nonparametric bounds procedure proposed
above with the ¢-statistic based on standard regression procedures. The organization
of this Monte Carlo study follows that of our earlier work which investigated the
performance of both parametric and nonparametric procedures under different data
generating mechanisms, including nonnormal and heteroskedastic patterns. Since
these processes are essentially those of our previous work with the addition of an
intercept term, we focus here primarily on issues related to the application of the
nonparametric procedures introduced in the previous section, and direct the inter-
ested reader to Campbell and Dufour (1995) for a more thorough presentation of
the details of the models studied. The parameter values are 6, =0.99, p=0.9 and
Bo = 6y =0.0. In this study, sample sizes » = 100,200 are considered. Finally, there
are 1000 replications in each experiment.

In the application of the bounds procedure, there is an evident tradeoff between
the width of the confidence interval J(a,) and the significance level a, = a — a; of
the tests based on elements of J(«;). For n = 200, the following confidence intervals
based on counting procedures associated with the binomial distribution are consid-
ered: [Yigo), Yoon b [¥a2), Y10y b [Yiga), Yirg) ] and [Yigs), Yiy16)], where Yy, is the kth
order statistic, corresponding, respectively, to «; equal to 0.4%, 0.9%, 1.3% and
2.8%. It should be noted that there is not a sizable decrease in the width of the
confidence interval as its significance decreases, a reflection of the fact that the tails
of the binomial distribution are relatively thin.

With « fixed at 0.05 and for sample size n = 200, there is a different bounds test
corresponding to each of these confidence intervals J(a,), where «; is 0.003, 0.009,
0.013 or 0.028. The construction of the statistics S ,(b) and SR,(b) for each
b €J(a,), with g defined as in (10), does not vary with a,. According to the bounds
procedure denoted SB [alternatively, SRB], the null is rejected if Sg(b) [alt., SRg(b)]
is significant at level a — a; for each b in J(a,); the null is accepted if no S,(b)
[alt., SR (b)] is significant at level « + a;; otherwise, the procedure is considered
inconclusive. The results of these procedures for the Mankiw-Shapiro model in the
case of normal disturbances are given in Table 1. Overall, the results suggest that it
is better to take a wider confidence interval for B, in the first step of the bounds
procedure in order to expand the critical region of the nonparametric statistics used
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TABLE 1
MANKIW-SHAPIRO MODEL WITH NORMAL DISTURBANCES*: p = 0.9, 6; = 0.99, n = 200.
COMPARISONS BETWEEN BOUNDS TESTS

Testing Strategy Bounds Tests
SB SRB
ay a, B Reject Accept Reject Accept
2.8 2.2
0.00 0.1 67.6 0.4 63.5
0.05 6.2 353 14.7 29.5
0.07 17.2 23.1 28.5 15.7
13 37
0.00 0.1 69.5 0.4 62.9
0.05 6.6 36.8 16.9 30.5
0.07 18.3 271 31.9 16.5
0.9 4.1
0.00 0.1 67.4 0.5 62.1
0.05 8.0 34.8 17.1 29.6
0.07 201 224 320 16.4
0.4 4.6
0.00 0.0 715 0.5 60.0
0.05 7.1 37.7 16.6 29.2
0.07 19.0 23.8 30.2 16.3

*By = 6, =0.0. Probabilities are given in percentages. A nonparametric confidence interval
J(a;) with level 1 — a; is first constructed for B;. The null ( B; = 0) is rejected if for all b € J(a;)
the nonparametric test based on b is significant at level a,; the null is accepted if no such test is
significant at level a3 =0.05+ a;; otherwise, the procedure is inconclusive. SB refers to the sign
procedure, SRB to the Wilcoxon. The level of each strategy is bounded by 0.05. See text for further
details.

in the second stage. There is a clear gain in power: when B, is 0.05, there is a 30%
increase in power for the procedure based on the sign statistic and a 15% gain for
the Wilcoxon in passing from a procedure based on the narrowest confidence
interval to the the confidence interval given by «; = 0.009. There does not appear to
be any additional gain in power available from reducing «, even further. Accord-
ingly, in the comparative studies for n = 200 presented in Tables 3 and 4, the results
for the testing strategy represented by a; = 0.009 will be pursued. A similar analysis
was conducted to investigate the impact on the power of the nonparametric
procedures obtained by varying «; when n = 100. The results (not reported here)
also suggest that power is increased somewhat by taking a wide confidence interval
for the unknown intercept parameter (a; = 0.007), but that there appear to be no
further gains in power associated with smaller «,. The results of the bounds tests
given in Table 2 are obtained for this «;.

In what follows, we also study the performance of the following statistics based on
the sample median b, of Y,,...,Y,:

ne

(16) Sg(EO) ”[(Y: _50)8:-1]a

-~

I
ipa

(17) SRg(EO) u[(Yt_l;O)gt-I]R:-(BO)’

I
Mg

t
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TABLE 2
MANKIW-SHAPIRO MODEL; VARIOUS TYPES OF DISTURBANCES*: p = 0.9, 6, = 0.99, n = 100.
LEVEL AND POWER COMPARISONS

t-test Median-Estimate Tests Bounds Tests
B RB
Size-Corrected  Size-Corrected _ _ 2 2
Bi Asymptotic  (specific) (model) S(by) SR(by)  Reject Accept Reject Accept
Cauchy Distribution
0.00 13.8 5.0 34 2.3 4.0 0.0 656 08 677
0.07 40.0 29.9 26.8 64.2 67.5 29.8 75 369 101
0.10 64.4 48.9 43.1 742 76.7 375 49 449 6.0
t(3) Distribution
0.00 18.9 5.0 2.8 1.6 3.8 00 679 03 589
0.07 28.2 14.7 11.9 25.1 30.0 6.7 369 120 322
0.10 50.0 36.3 30.8 42.7 46.5 137 249 197 217
Normal Distribution
0.00 18.4 5.0 2.8 2.6 42 02 1705 1.0 556
0.07 26.2 14.0 11.0 149 . 223 22 48.6 6.5 36.2
0.10 43.5 324 28.1 26.0 35.5 63 357 122 248
Lognormal Distribution
0.00 19.1 5.0 2.7 2.1 9.3 0.1 67.6 0.8 53.1
0.07 29.9 17.3 13.6 40.9 45.8 143 196 208 205
0.10 513 37.6 322 59.7 62.1 24.8 93 342 112

* By = 6, = 0.0. Probabilities are given in percentages. Empirical critical points are used in power calcula-
tions for both the size-corrected ¢-test: when B, = 0, the rejection frequency for the specific size correction is
5.0% by construction. The model-correction critical_values are obtained when p=6,=0.9999 and the
disturbances are normal. The statistics S(b,) and SR(b,) are defined by (16) and (17), with g, given by (10).
The bounds tests, SB and SRB, are described in Table 1, with a; = 0.7% and a, = 4.3%.

TABLE 3
MANKIW-SHAPIRO MODEL; VARIOUS TYPES OF DISTURBANCES*: p = 0.9, 8, = 0.99, n = 200.
LEVEL AND POWER COMPARISONS

t-test Median-Estimate Tests Bounds Tests
Size-Corrected Size-Corrected . . i SRB
B: Asymptotic  (specific) (model) S(by) SR(b,)  Reject Accept Reject Accept
Cauchy Distribution
0.00 10.0 5.0 2.9 31 44 0.3 59.8 0.8 68.0
0.03 30.5 22.6 18.9 78.0 78.4 50.6 3.7 557 5.8
0.05 61.0 47.4 384 86.8 89.6 62.5 1.1 694 1.9
t(3) Distribution
0.00 14.3 5.0 2.1 2.7 4.6 00 659 0.6 665
0.03 19.7 10.2 6.2 21.7 26.8 69 393 104 388
0.05 474 345 283 45.5 53.5 196 190 282 212
Normal Distribution
0.00 14.4 5.0 23 2.7 4.6 01 674 05 621
0.03 14.9 7.3 52 12.8 18.0 2.5 52.6 47 463
0.05 429 308 24.1 29.4 374 80 348 171 296
Lognormal Distribution
0.00 15.1 5.0 1.7 2.8 14.1 04 667 1.5 544
0.03 17.5 9.4 52 39.1 48.1 170 256 262 283
0.05 46.3 32.8 275 - 67.6 70.7 404 104 511 120

* By = 6y = 0.0. Probabilities are given in percentages. See Table 2 for details.
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TABLE 4
MANKIW-SHAPIRO MODEL; HETEROSCEDASTIC DISTURBANCES*: p = 0.9, 6; = 0.99, n = 200.
LEVEL AND POWER COMPARISONS

Median-Estimate Tests Bounds Tests
SB SRB
B: t-test wm-test S(by) SR(by) Reject  Accept Reject  Accept
Break at ¢ = 100
0.00 18.5 9.6 3.0 35 0.0 67.7 0.5 76.6
5.0 5.0
39 34
0.0 0.0
0.05 48.0 39.1 31.9 42.4 9.8 30.9 222 334
31.6 334
30.6 30.0
0.0 11.5
Breaks at ¢t = 75,150
0.00 18.7 8.3 39 41 0.1 66.0 0.9 78.4
5.0 5.0
5.0 33
0.0 0.0
0.05 47.7 36.4 304 40.9 10.5 329 23.1 36.1
313 31.5
31.3 27.6
0.0 8.7
Linear
0.00 17.1 10.0 35 41 0.0 70.4 0.8 82.3
5.0 5.0
3.9 14
0.0 0.1
0.05 46.1 38.2 321 45.7 8.7 345 21.7 35.6
329 29.3
29.8 20.7
0.0 9.5
Exponential
0.00 86.0 114 4.9 51 0.3 74.7 2.8 92.1
5.0 5.0
0.30 84.9 14.1 46.0 42.0 13.0 27.7 320 513
6.7 4.9

*By = 6y = 0.0. In the Break model, the variance of the disturbances jumps from 1 to 16 at ¢ = 100;
in the two-break model, the variance jumps first by 16 then by 64 at the indicated points; in the linear
(alt., exponential model), the variance grows linearly (alt., exponentially) with time. The median-esti-
mate tests are given by (16) and (17); the wm test is described in the text. For break and linear
heteroscedasticity models, the entries under the asymptotic percentage rejections for the z-test (alt.,
wm-test where indicated) represent rejections according to different empirical critical values for each
statistic determined by: (i) specific model; (i) two-break model (linear model with p= 6, = 0.9999); (iii)
exponential model. For exponential heteroscedasticity, only asymptotic and specific percentage rejec-
tions are reported.

where g, is the usual centering function given by (10) and R; defined in (5). These
are simply aligned sign and signed rank statistics, which give rise to what are termed
median-estimate tests in the account that follows, based on a reasonable point
estimate of B,. In what follows, critical points associated with the Bi(n,0.5)
distribution are used for (16), while those for (17) come from the distribution of the
Wilcoxon variate W,. We do not have analytical results for the distribution of these
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statistics, but is easy to see that the conditional distributions of Sg(I;O) and SRg(EO)
given |Y — byl = (1Y, — by, ..., 1Y, —byl) depend on |Y — byl, (e.g., by considering
the special case where g, = 1). Furthermore, for the general nonparametric hypothe-
sis (1) and (2) [or (1) through (3)}, it is well known that any valid test of such an
hypothesis should be a “randomization text,” that is, a test whose level is the same
conditional on any value of the (unknown) vector |Y — b,| (see Lehmann and Stein
1949, and Pratt and Gibbons 1981, pp. 216—222). Critical values for such tests are
determined by assigning random signs to the absolute values |Y, ~byl, t=1,...,n
(according to a uniform distribution) and will generally depend on |Y — by|. This
characterization does not apply to the median-estimate tests considered above.

In Tables 2 and 3, the power of the r-test applied with both asymptotic and
size-corrected critical values is compared with median-estimate tests and nonpara-
metric bounds procedures for sample size n =100 (with a=0.05 and «, = 0.007)
for various types of disturbances. Two types of size correction are considered. In the
first (specific size-correction), we use the empirical critical values obtained when
B,=0, p=0.9 and 6, =0.99. In the second (model size-correction), we use the
larger critical values associated with the specification p = 6, = 0.9999 with normal
disturbances to emphasize the point that, ultimately, the correct analysis of power
must be relative to all potential specifications of the model, compatible with the null
hypothesis (1) and (2) [or (1) through (3)]. Even with these corrections, the power
comparisons are biased in favor of the parametric tests because the (unknown)
correct critical values should be greater than the ones used. Each of these size
corrections, moreover, remains specific to the particular distributions considered
and so none yields a truly distribution-free test. The “size-corrected tests” should
not be viewed as alternative tests (because they are not feasible in practice,
especially under the general assumptions (1) and (2)), but as theoretical benchmarks
to which truly distribution-free tests may be compared. In particular, we would like
to see whether the distribution-free procedures have power not too far below these
benchmarks.

First, as expected, it is clear from the results in Tables 2 and 3 that the asymptotic
t-tests do not have the stated level. Interestingly, the level distortion is especially
strong for the normal and lognormal distributions. Second, it is quite striking that
the bounds procedure using Wilcoxon statistics in the second stage outperforms the
model size-corrected ¢-test in the case of Cauchy disturbances and is comparable in
power for alternatives close to the null when the disturbances are #(3). Moreover,
the bounds procedure based on the sign statistic is comparable in power to the
model size-corrected ¢-test for Cauchy and lognormal disturbances. A further
interesting result is that the median-estimate tests do not over-reject under the null,
except in the case of asymmetric lognormal disturbances where the Wilcoxon
statistic should not be applied; here the sign-based test appears to have empirical
level bounded by 5%. Both these tests, moreover, outperform the parametric tests in
having comparable (better, in the case of the Wilcoxon variant) power to the
size-corrected f-test in the case of normal disturbances, while outperforming by a
wide margin the size-corrected ¢-tests for both the fat-tailed disturbances. When the
sample size is increased to »n =200, the relative performance of the two bounds
procedures improves considerably. Both bounds tests are considerably more power-
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ful that the specific size-corrected #-test when the disturbances are Cauchy (as does
the sign-based procedure under lognormal disturbances) and are comparable to the
model size-corrected t-test under #(3) disturbances. Even when the disturbances are
normal, the Wilcoxon-based bounds procedures performs respectably compared to
the size-corrected t-test. As in the previous table, the median-estimate tests domi-
nate the size-corrected parametric test no matter the type of disturbance with
nominal size bounded by 5% in all the appropriate circumstances.

Four general types of heteroskedasticity are studied in Table 4. In the first, the
variance of the underlying normal disturbances jumps from 1 to 16 halfway though
the sample; in the two-break model the variance jumps first from 1 to 16 at t =75
and then to 64 at ¢ =150. In the third variant, the variability of the disturbances
grows linearly through the sample (i.e. ¢, is a N(0, 1) variable multiplied by ¢), while
in the last variability grows exponentially (e, is a N(0,1) variable multiplied by
exp(t/2)). Along with the testing procedures presented in Tables 2 and 3, we
consider in this context an attempt taken from MacKinnon and White (1985), to
correct in a general manner for heteroskedasticity through the preliminary estima-
tion of a heteroskedastic-consistent covariance matrix which is then used in a GLS
estimation of the model coefficients. A consistent quasi-¢ statistics (denoted by wm)
can be computed and its performance is compared here with the other statistics. We
consider three types of size-correction in investigating the power of the parametric
tests in the cases of break heteroskedasticity. The first applies the empirical critical
points associated with each specification studied; the second applies the largest
critical points associated with specifications involving break or linear heteroskedas-
ticity in either of the specifications of the Mankiw-Shapiro model considered in
Tables 2 and 3; in the third, the empirical critical points determined in the case of
exponential heteroskedasticity are applied, because they are the largest of all those
considered. Of course, the largest critical value is by definition the one closest to the
(unknown) critical value that would be appropriate in making the test truly robust to
heteroskedasticity of unknown form.

The results of Table 4 repeat the previous themes. The asymptotic tests are
unreliable. The power of the bounds procedure based on the Wilcoxon statistic is
comparable to the size-corrected parametric statistics corrected according to the
first and second procedures described above. Moreover, the bounds procedure
based on the sign test is at least comparable in power to the wm-test corrected to
account for all possibilities of heteroskedasticity, while the Wilcoxon-based bounds
procedure is superior. It should be emphasized that if the ¢-test were to be corrected
in a similar manner it would have zero power. The Wilcoxon version of the
median-estimate test is superior in power to the wm-test corrected for the specific
model considered, while the sign version is comparable in power. Finally, it should
be noted that in all the experiments considered here the empirical level of the
median-estimate tests does not exceed the nominal level.

In comparing the properties of the nonparametric procedures introduced in this
paper with standard parametric tests based on the #-statistic, in contexts with
different data generating processes such as those considered in the previous Tables,
it is tempting to suggest that the parametric procedures should be modified to
account for the specific data generating process and that a fairer comparison would
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match the nonparametric bounds procedure against the modified parametric test.
The new parametric test could even have better power against such a parametric
alternative in this context, but would of course provide no grounds for rejecting a
wider nonparametric hypothesis. The approach here is to consider procedures that
are provably valid in finite samples for a general nonparametric hypothesis. The
power comparisons in the simulations of this section serve to illustrate that such
general procedures do have reasonable power relative to tests that are valid only for
narrower hypotheses.

We now turn to a simulation study of the random walk model given by (11). The
parametric tests considered in what follows are based on » ﬁl, and the ¢-statistic,
both defined using the OLS estimate of B, = 6 — 1 in (11). Since these statistics are
sensitive to the value of the intercept, it is usual practice to consider tests based on
nﬁl, and the #-statistic now defined using ﬁl, the OLS estimate of B; in the
presence of a trend term. Critical points for the various parametric tests have been
determined by simulation; see Fuller (1976, pp. 371, 373) for the relevant tables. As
indicated in the previous section, the nonparametric bounds procedure are based on
statistics given by (12) and (13). We will also consider median-based tests given by

(18) Ss(Bo) = 2 W[ (Y= Yy ~Bo)gima]
(19) SRg(EO) = éu[(Yl_Yt—l _50)81—1]R7(50):

where 50 is the sample median of Y¥,-Y,_;, t=1,...,n, and g, is the centering
function given by (14). Critical points associated with the Bi(n,0.5) distribution are
used for (18), while those for (19) come from the distribution of the Wilcoxon
variate W,

To assess the relative merits of the six parametric and nonparametric tests of the
random walk hypothesis, we follow the same pattern of Monte Carlo simulation
used in the analysis of the Mankiw-Shapiro specification. The intercept is B, = 2.0
in all experiments with the point of departure Y, = 0.0 under the null and Y, =
Bo/(1 — 6) under the alternative. The results are presented in Tables 5, 6 and 7.
With regard to the issue of the appropriate bounds strategy to pursue, the results of
Table 5 confirm in this setting the wisdom that it is best to choose a wide confidence
interval for B, so that the significance level for the second stage of the bounds
procedure is not too small. Accordingly, the testing strategy represented by «, =
0.009 is considered in the following Tables.

The results reported in Table 6 concerning the relative power of the different
tests under various types of disturbances when n =100 are noteworthy. First, the
empirical size of the t-test based on the model without trend is considerably less
than 0.05; it should be recalled that the Dickey-Fuller critical values are derived
from simulations with 8, = 0.and when circumstances indicate a non-zero drift, it is
usual practice to estimate a model with a trend term. The nonparametric signed-rank
bounds procedure is comparable in power to the #-test based on the trend model
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TABLE 5
RANDOM WALK WITH DRIFT; NORMAL DISTURBANCES*:
COMPARISONS BETWEEN BOUNDS TESTS N = 200

Testing Strategy Bounds Tests
SB SRB
a a, 0 Reject Accept Reject Accept
2.8 22
1.00 0.0 0.0 0.0 23
0.96 0.2 45.1 0.6 36.0
0.94 3.9 327 11.0 23.6
13 3.7
1.00 0.0 0.0 0.0 0.3
0.96 24 49.2 8.4 38.0
0.94 4.7 36.4 17.2 26.4
0.9 4.1
1.00 0.0 0.0 0.0 0.3
0.96 33 47.1 8.7 389
0.94 6.3 35.2 18.1 274
04 4.6
1.00 0.0 0.0 0.0 0.0
0.96 24 44.7 9.3 38.7
0.94 5.5 325 18.2 277

* Model (11) with B, =2.0 and B; = 6 — 1. Probabilities are given in percentages. A nonparamet-
ric confidence interval J(a,) with level 1 — a; is first constructed for B,. The null (§=1.0) is
rejected if for all b €J(«,) the nonparametric test based on b is significant at level a,; the null is
accepted if no such test is significant at level a3 =0.05 + a,; otherwise, the procedure is inconclu-
sive. SB refers to the sign procedure, SRB to the Wilcoxon. The level of each strategy is bounded by
0.05. See text for further details.

TABLE 6
RANDOM WALK WITH DRIFT; VARIOUS TYPES OF DISTURBANCES*:
LEVEL AND POWER COMPARISONS. N = 100

t-test Median-Estimate Tests Bounds Tests
Without With . . SB SRB
0 trend trend S(by) SR(by) Reject  Accept Reject  Accept
Cauchy Distribution
1.00 33 6.5 0.5 14 0.0 21.6 0.2 26.6
0.95 7.3 7.9 72.9 78.2 325 5.6 50.4 6.6
0.90 20.6 13.5 88.2 91.3 51.2 0.8 72.4 2.1
t(3) Distribution
1.00 0.1 5.2 0.0 0.0 0.0 0.0 0.0 0.1
0.95 12.1 9.2 17.1 25.8 1.1 453 6.9 421
0.90 338 20.6 38.4 52.7 52 23.0 20.4 22.0
Normal Distribution
1.00 0.2 5.4 0.0 0.2 0.0 0.0 0.0 0.3
0.95 12.2 8.5 9.7 18.8 0.9 575 37 46.4
0.90 31.7 20.8 21.1 372 14 395 10.9 33.0

*Model (11) with By =2.0 and B, = 6— 1. Entries for the t-test and median-estimate tests are
percentage rejections; the latter statistics are given by (18) and (19).
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TABLE 7
RANDOM WALK WITH DRIFT; VARIOUS TYPES OF DISTURBANCES*:
Level and Power Comparisons. n = 200

t-test Median-Estimate Tests Bounds Tests
. SB SRB
Without With . .
9 trend trend S(by) SR(by) Reject  Accept Reject Accept
Cauchy Distribution
1.00 43 5.6 0.1 2.5 0.1 438 0.6 30.5
0.98 6.2 7.2 81.5 84.9 54.1 1.8 64.1 3.6
0.96 13.1 10.8 93.1 94.8 76.1 0.0 81.6 0.8
t(3) Distribution
1.00 0.1 5.0 0.0 0.1 0.0 0.0 0.0 0.7
0.96 20.0 13.4 32.0 453 6.8 24.6 18.5 24.8
0.94 42.2 25.2 49.1 66.4 17.7 144 355 13.5
Normal Distribution
1.00 . 02 3.9 0.0 0.1 0.0 0.0 0.0 0.3
0.96 21.8 12.5 15.7 29.5 33 47.1 8.7 38.9
0.94 44.3 24.5 24.8 45.0 6.3 35.2 18.1 27.7

*Model (11) with B;=2.0 and B; = 6—1. Entries for the t-test and median-estimate tests are
percentage rejections; the latter statistics are given by (18) and (19).

and is strikingly superior when the disturbances are Cauchy, as is the sign-based
bounds procedure in this case. The Wilcoxon bounds procedure performs re-
spectably even when the disturbances are normal. Moreover, in all cases considered,
the median-estimate test based on signed ranks outperforms the f-test based on a
regression without drift with size bounded by the nominal level of the test. The
strong power performance is repeated in Table 7 when n = 200. It should be noted
that the median-estimate sign test has power comparable to the #-test based on a
regression with trend even when the disturbances are normal.

5. AN APPLICATION

According to the strict theory of the term structure of interest rates, differences in
yields at different maturities of, say, government bonds can be explained in a
straightforward way by agents’ expectations concerning future interest rates: long-
term rates can be analyzed as the expected return from a series of shorter rates plus
a constant risk or liquidity premium. Mankiw and Summers (1984) tested the
expectations theory at the short end of the term structure with the additional
assumption that expectations are formed rationally with strikingly negative results.
Such findings, as more general analyses over the full term structure such as Shiller
et al. (1983), are based on parametric statistical inference which may not be valid as
the relevant regression disturbances are generally not normally distributed. Our goal
in this section is to illustrate the nonparametric approach in this context. In striking
contrast to the usual literature, we find for Canadian data that the expectations
theory cannot be rejected when more correct nonparametric procedures are used.
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The strict form of the expectations theory states that the relation between the
return on three month and six month bonds is given by

(20) r®=0+0.5r® + 0.5/,

where 7@ and r® are the yields of three- and six-month bonds sold at time ¢ and
73, is the market forecast at time ¢ of r&). It follows according to the theory that
the implied forecast error may be written as

2(3) — 3 6) 3
21) 9 — 72 = (2 = 21 +12) + 26,

If we assume further that expectations are formed efficiently, then the implied
forecast error must be independent of all information available to the market at
time ¢, in particular the spread r® — r®. Further, this also implies that the forecast
errors observed at the monthly frequencies should be serially independent at lags
greater than two. These implications can be tested by considering the regression

22) (1) =26 +10) = 8y + 8,(10 — 1) + €111,

where 8,= —26 and the ¢, are serially independent at lags greater than two. We
wish to test the null hypothesis that §, = 0.

The first section of Table 8 presents the results of OLS estimation of (22) based
on monthly three- and six-month Canadian government bonds from 1969 to 1989.

TABLE 8
TERM STRUCTURE OF INTEREST RATES:
PARAMETRIC AND NONPARAMETRIC EFFICIENCY RESULTS*

Data Set
S, S, S,
OLS Estimates
8 (t-test) —0.22 (—1.66) —0.09 (—0.75) —0.01(-0.04)
5 —0.30 (—0.66) —1.01 (—2.46) —1.52(-3.56)
Residual 46.41 113.51 250.24
Normality ( x$)
Nonparametric
Analysis
Confidence (-0.38,—0.03) (—0.46,— 0.05) (—0.38,— 0.05)
Interval (99%)
Sign Tests
Median-Estimate 0.36 0.58 0.20
0,(8) 0.71 0.85 0.99
Qu(S 0.14 0.46 0.20
Wilcoxon Tests
Median-Estimate 0.57 0.53 0.87
Q:(SR) 0.70 0.58 0.98
Qu(SR) 0.44 0.51 0.72

*Monthly data taken from Statistics Canada on three- and six-month Canadian Government
bonds from 1960 to 1989 is divided into three sub-samples, S;, S, and S;. The regression equation is
given by (22); the Jarque-Bera (1987) normality test is applied to the residuals. The Median-Esti-
mate tests are given by (16) and (17). According to the nonparametric bounds procedure, the null is
rejected if Q; < 0.04; the null is accepted if Qy; > 0.06.
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Since the model applied to interest rates of these maturities describes the relation-
ship at three-month intervals, the monthly data are treated as three sub-samples of
observations, S;, S, and S;, taken at three-month intervals. The regression results
for this particular data set confirm the general findings of Mankiw and Summers
(1984). The null hypothesis is rejected for two of the three samples with §,; in all
cases less than 0. It should be noticed, however, that a standard test of disturbance
normality rejects the normality assumption in all three subsamples.

The second section of Table 8 presents the results of the nonparametric tests.
Following the approach described in the previous sections, we first construct a
confidence interval for the intercept —26, where 6 is the constant liquidity
premium. The confidence intervals are roughly identical for the three samples.
Aligned sign and signed rank statistics are constructed based on different point
estimates of the intercept taken throughout the confidence interval. The test based
on the mid-point corresponds to the median-estimate test. For each sample, the
maximum and minimum values of these statistics are found. The associated p-values
are given in Table 8. In all samples, not only is the null not rejected, since Q,(S)
and Q,(SR) are greater than 0.04; but the null is accepted as well in all samples,
since Q,(S) and Qy(SR) are not less than 0.09 (for illustrative purposes we are
taking a = 0.05). The median-estimate tests are not significant as well.

The contrast between the parametric and nonparametric results is striking. Where
the parametric results pointed to a rejection of the expectations theory of the term
structure, the nonparametric analysis confirms the theory. It should be emphasized
that there is accompanying evidence (normality tests) that the parametric inference
is not appropriate here, while the nonparametric procedures are valid for such small
samples under the framework of the model.

6. CONCLUSION

The testing procedures presented in this paper have been developed in response
to a specific challenge. In many situations which arise naturally in testing fundamen-
tal implications of the rational expectations hypothesis, standard regression-based
testing procedures reject much too often, even when the sample size is as large as
200. This paper, along with earlier work in Campbell and Dufour (1995), offers an
alternative nonparametric approach which does not suffer from this parametric test
defect. Nonparametric tests based on signs and signed-ranks are valid for a wide
class of models involving feedback; these include as specific cases the model studied
by Mankiw and Shapiro (1986), and the random walk model. Our previous results
were suited to models involving no intercept or drift term. In this paper we have
extended these results to cover these important cases as well. To complement the
results establishing the validity of our nonparametric procedures, the results of
simulation studies presented here show that the tests have good power relative to
the parametric alternatives even in circumstances favorable to the usual regression
tests. In cases involving outliers or heteroskedastic disturbances, nonparametric tests
remain valid and can exhibit considerably greater power.

The procedures presented in this paper can be generalized in different directions
and is the subject of ongoing research. For example, it is possible to relax somewhat



EXACT NONPARAMETRIC TESTS 171

the assumption of the independence of Y, from past information in a manner that
permits the possibility of stochastic volatility of a recursive type such as in ARCH
models. Our procedures would then apply to a variety of examples of interest to
researchers in empirical finance. These results will be presented in a future paper.
We do not want to over-emphasize the usefulness of the nonparametric proce-
dures presented in this paper. The tests are best applied in situations where the null
hypothesis simplifies the model, as in the null of efficiency in rational expectations
models. The procedures cannot be readily applied to a more complicated testing
environment. Such extensions are pursued in current research. But there is no good
reason to continue to use flawed parametric regression-based tests in situations
where there are valid nonparametric testing alternatives that have good power.

APPENDIX

PRrROOF OF PROPOSITION 1. Follows directly from Propositions 1, 2 and 3 of
Campbell and Dufour (1995).

PROOF OF PROPOSITION 2. E s1mp11fy the notation, write S = A S= §g,
S= S SR = SRy, SR= SRg and SR= SRg

(a) Let A be the event that S(b) > 5(a,) for all b €J(a;). We wish to show that
P[A] < a, + a,. First, define I={b: b €J(a,) and S(b) <S(a,)}. Then, by stan-
dard rules of the probability calculus, it follows that

P[byeI]=1-P[by&J(a,) or S(by) > 5( ;)]
>1-P[by&J( ;)] —=P[S(bo) >5(a,)] 21~ @, — ay,

since by definition P[b,€J(a;)]>1~- a; and P[S(b,) > S(a,)] < a,. Observe that
P[A]=P[B°), where B is the event that S(b) <S(a,) for some b €J(a,). Since
B 2{S(by) < S(a,) and b, €J(a,)}, we have

P[B]>P[bOEI]>1—a1—a2 21l-a,

with the immediate consequence that P[A]< a; + a, < a, so that (7a) is estab-
lished.

The two inequalities (7b) and (7c) follow by using Proposition 1, which implies
that S(by) ~ Bi(n,0.5), a symmetric distribution on the integers {0,1,..., n}, so that
M — S(by) = n —S(by) ~ Bi(n,0.5). The proof of (7b) is then similar to the one of
(7a) with S(b) replaced by M — S(b), while the proof of (7¢) is obtained on replacing
S(b) by Max{S(b), M — S(b)} and S(a,) by S(a,/2) in the same proof.

We now turn to (7d). Let C represent the event that S(b) <S(a;) for all
b €J(a,). We have to show that P[C] <1 — (a; — o). By the definition of S(a;),
we have

P[S(bg) <5(3)] =P[S(bg) <n—3(1 — a3)] =P[n—5(by) > 5(1 — a3)] <1 — a,.
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Now, as in the proof of (7a), we consider the complement of C, i.e. the event that
S(b) = S(a;) for some b €J(a,), and let I ={b: b €J(a;) and S(b) = S(a;)}. Then
we have

P[byef] 21— P[S(by) <S(a)] — P[by&J(a,)]
21l-(1-a3)—ay=a3—ay >«
and, since the event C implies b, el
P[C1<P[by&f] <1-(a3— ) <1-a,

and (7d) is established. The inequalities (7¢) and (7f) follow on observing that
n — S(by) ~ Bi(n,0.5): the proofs of (7¢) and (7f) are similar to that of (7d) with S(b)
replaced by n — S(b) and Max{S(b), n — S(b)} respectively.

(b) The same argument as in (a) with S(b) replaced with SR(b) and S with SR
establishes the result.
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