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EXACT NONPARAMETRIC ORTHOGONALITY AND
RANDOM WALK TESTS

Bryan Campbell and Jean-Marie Dufour*

Abstract—The hypothesis that a variable is independent of
past information, such as its own past and past realizations of
other observable variables, is a frequent implication of eco-
nomic theory. Yet standard regression-based tests of orthogo-
nality may not have the correct level if there is feedback from
innovations to future values of the regressors. In this paper we
develop nonparametric tests of orthogonality based on signs
and signed ranks which are proved to reject at their nominal
levels over a wide class of models admitting feedback. The
tests are robust to problems of non-normality and het-
eroskedasticity. Further, in simulation studies of two specifi-
cations of feedback—a rational expectations model consid-
ered by Mankiw and Shapiro, and. the random walk model—
we find that the nonparametric tests display remarkable power.
The paper concludes with an application which assesses the
efficiency of survey data on interest rate expectations previ-
ously studied by Friedman.

L. Introduction

HE hypothesis that markets are efficient im-

plies the testable proposition that forecast
errors made by the market are independent of
any information available to the market when the
forecast was made. This orthogonality property of
efficient markets or, more generally, of rational
expectations is an instance of the wider statistical
issue of determining whether two time series are
stochastically independent given that they are
independent of other past values of the same
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variables. Yet standard regression testing proce-
dures which attempt to evaluate conditional inde-
pendence may reject too often, even with fairly
large samples.

We have two apparently dissimilar examples in
mind. The first is a simple linear regression with
predetermined variables considered by Mankiw
and Shapiro (1986, referred to as MS in what
follows) who found by Monte Carlo techniques
that the true level of the z-test may be consider-
ably larger than its nominal level even for fairly
large samples. Even though asymptotic inference
based on a normal distribution for the ¢-statistic
is correct in their specification, the finite-sample
distribution of the #-statistic differs considerably
from its asymptotic distribution. The issue has
been treated further by Banerjee and Dolado
(1987, 1988), Galbraith, Dolado and Banerjee
(1987), Banerjee, Dolado and Galbraith (1990), as
well as by Mankiw and Shapiro (1985). The sec-
ond example is the random walk model without
drift which has necessitated even more radical
readjustment, since the ¢-statistic associated with
the OLS estimate does not have the usual asymp-
totic normal distribution. These two examples are
illustrative of a class of models which involve
feedback: future values of the regressors are af-
fected by disturbances which are contemporane-
ously uncorrelated with the regressors.

In this paper, we introduce nonparametric ana-
logues of the z-test, based on sign and signed
rank statistics, that are applicable to a specific
class of feedback models including both the MS
model and the random walk without drift. The
sign tests are provably exact for this class of
models, irrespective of the nature of feedback,
even if the disturbances are asymmetric or non-
normal or heteroskedastic; under the additional
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assumption of symmetry, similar results are ob-
tained for a class of linear signed rank statistics
(e.g., Wilcoxon-type statistics). Modifications of
these results are obtained as well as for cases
involving discrete random variables, possibly with
a mass at zero. Most importantly, simulations
indicate that the nonparametric tests considered
have good power relative to the t-test, using
either the asymptotic or size-corrected critical
values for the MS model or the Dickey-Fuller
critical values as can be found in Fuller (1976) for
the random walk model. The results of this paper
involve a considerable generalization of those in
Campbell and Dufour (1991), where various non-
parametric statistics are introduced to deal with a
- variant of the MS model. In particular, the nature
of the allowed feedback is considerably more
general and exact distributional results are estab-
lished for a class of Wilcoxon-type statistics.

The paper is organized as follows. In section II
we introduce the relevant test statistics in the
general feedback context and derive distribu-
tional results for various sign and signed-rank
statistics. In section III two specific cases illustrat-
ing such feedback are introduced, and we present
Monte Carlo results on the level and power of
the proposed tests applied to these two cases. A
relevant application is presented in section IV:
the orthogonality of forecast errors are tested
using the same survey data considered by
Friedman (1980). Section V offers some conclud-
ing remarks.

II. Nonparametric Statistics in the
Feedback Context

In many tests of orthogonality between two
random variables, the null hypothesis asserts that
a variable Y, is independent of its own past as
well as past realizations of a second variate X,.
Our goal is to introduce tests of this assertion
which are exact under very weak assumptions
concerning the distribution of Y, and the rela-
tionship between Y, and X,. For one group of
tests, we simply assume that Y, has median zero;
for the other, we suppose that the distribution of
Y, is symmetric about zero. No additional as-
sumption other than the independence of Y, with
respect to the past (denoted in what follows by
I,_,) governs the relationship between Y, and X,.
In more precise language, we work within the

framework of the following general specification
involving the random variables Y,,...,Y,,
Xy, ..., X, _;, and the corresponding information
vectors I, = (X, Xy,..., X,,Y,,...,Y,), where

‘t=0,...,n — 1, with the convention I, = (X,):

Y, is independent of I,_,,
‘ foreacht=1,...,n;
PlY,>0] =P[Y,<0], fort=1,...,n.

(1)
(2

Assumption (1) states that Y, is independent of
the past values of Y, and X,, while Assumption
(2) means that Y,,...,Y, have median zero.
These assumptions leave open the possibility of
feedback from Y, to current and future values
of the X-variable without specifying the form of
feedback. The variables Y, and X, may have
discrete distributions (which includes the possibil-
ity of non-zero probability mass at zero); as well,
the variables Y, need not be normal nor identi-
cally distributed. In what follows, we shall also
consider the additional assumption that Y;,...,Y,
have distributions symmetric about zero:

Y,,...,Y, have continuous distributions

symmetric about zero. 3)
Clearly, the latter assumption implies (2), but the
converse is not true.

In order to motivate the nonparametric statis-
tics introduced in this paper, it is useful to con-
sider the following linear model:

Y,=BX,_, te, (4)
where e, has the same properties as Y, in (1) and
(2). Suppose we wish to test the null hypothesis
that B = 0. It seems reasonable to focus on non-

parametric analogues of Student’s ¢-statistics,
which in this environment are derived from

t=1,...,n

n YX, _
A B t§1 te—1
T= _1/2 = - 1/2
s(La) oL
t=1 t=1
n
= ZVt’ (5)
t=1
where

n
B = ZYtXt—l/ Zth—la
t=1

62= ¥ (Y, - BX,\) /(n—1)
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and

n 12
V, = Y,X,_l/&( )» sz—l) :

T=1

Nonparametric procedures abstract from the spe-
cific values of V, to consider simply its sign and
possibly the rank of its absolute value among
Vil,...,IV,|. In such a context the denominator
F(X7_ X2 )V? plays no role and we are led to
consider the simple products Z, = Y, X,_, as the
basic building block in the definition of various
nonparametric statistics. More generally, to test
B = B, in the context of (4), we would start with
Z, = (Y, — ByX,_)X,_, as the basic product. In
particular, if X,_; is identified with Y,_, in (4),
we can develop in this way tests of the random
walk hypothesis without drift (8 = 1).

A natural nonparametric analogue of the
statistic 7" is thus the sign statistic given by

n
So = Z u(YtXt—l)’ (6)
t=1
where u(z) = 1,if z > 0, and u(z) = 0 for z < 0.
In this paper, we shall in fact study a more
general sign statistic of the form

S,= Y u(Ye, ), 1)
t=1

where g, =g/(1), t=0,...,n—1, is a se-
quence of measurable functions of the informa-
tion vector /,. Clearly S, is a special case of S,
obtained by taking g, = X,. The functions g,(-)
allow one to consider various (possibly nonlinear)
transformations of the data, provided g, depends
only on past and current values of X, and Y,
(7 < t). The role of such transformations will be
elaborated further below.

The statistic S, is an integer-valued random
variable assuming values between 0 and ». Under
the quite general conditions described by (1) and
(2), the following proposition establishes the ex-
act distribution of S, when Y, and g, have no
probability mass at zero. This result represents a
considerable generalization of the main theorem
of Campbell and Dufour (1991). The proofs of all
the propositions given in this section can be found
in the appendix. We denote by Bi(n, p) the bino-

mial distribution with number of trials n and .

probability of success p.

ProposiTiON 1: Let Y =(Yy,...,Y,) and X =
(Xy,...,X,_1Y be two n X1 random vectors
which satisfy assumptions (1) and (2). Suppose
further that P[Y,=0]=0, for t =1,...,n, and
letg,=g(1),t=0,..., n— 1, be a sequence of
measurable functions of I, such that P[g, = 0] = 0
fort =0,..., n— 1. Then the statistic S, defined
by (7) follows a Bi(n,0.5) distribution, i.e.
P[S, =x]=C;1/2)" for x =0,1,...,n, where
Cy=n!/x(n —x)].

This distributional result obviously also holds
for §,. It must be stressed that S, and, more
generally, S, have well-known distribution under
very general conditions. The assumption P[Y, =
0] = P[g, = 0] = 0 simply means that the vari-
ables Y, and g, have no mass at zero, which of
course will hold when they have continuous dis-
tributions. Otherwise, the nature of the distribu-
tion of each Y, is left open; there are no assump-
tions concerning the existence of moments;
heteroskedasticity of unknown form is permitted;
the nature of the feedback mechanism between
Y, and current and future values of X, (s > 0)
is not specified. As long as Y, has median 0 and is
independent of the past, the sign statistics S, and
S, are all binomial with mean n/2 and variance
n/4. When Y, has a mean and follows a symmet-
ric distribution, the mean and median of Y, are
identical, and so the assumptions of a zero me-
dian is equivalent to that of a zero mean. For
asymmetric distributions, however, this equiva-
lence does not hold.

Under the further assumption that each Y, has
a continuous distribution symmetric around zero,
i.e., under (3), it is natural to introduce ranks as
well. In this paper, we consider two basic types of
signed rank statistics:

W, = L u(Y.g-)R], (8
t=1
SR, = Y u(Y,g,1)R3, (9

t=1

where R{, in W, is the rank of |Z,,|=1Y,g,_l,
ie. Rf;=X7_u(lZ,|—1Z,;) the rank of |Z,|
when |Z,,,...,|Z,,| are put in ascending order,
while RJ, in SR, denotes the rank of |Y,| among
|Yyl,...,1Y,|. We also call W, and SR, the statis-
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tics obtained by taking g, = X, in (8) and (9):

n
W, = E u(Y, X,_,)RY,,

t=1

(10)

n
SR, = E u(YtXt—l)R;t-

t=1

(11)

The statistics W, and W, defined above are
standard signed rank analogues of the statistics
S, and S,: the statistics are computed by weight-
ing the sign of each positive product Y, X,_; (or
Y,g,_,) by the rank of its absolute value. The
possibility of feedback makes it impossible to
establish in general that W, and W, are dis-
tributed as a Wilcoxon signed rank variate, i.c., as
W = X}_tB, where B,,..., B, are independent
random variables such that P[B, = 0] = P[B, =
11=0.5 for t =1,..., n (independent uniform
Bernoulli variables on {0, 1}). A counter-example
can be found in Campbell (1990). However, simu-
lation studies indicate that W, and W, reject at
their nominal levels for the two specifications of
(4) considered in this paper and, consequently,
these statistics are included in the empirical stud-
ies of power in the next section. Without feed-
back, it is easy to establish the following proposi-
tion, which slightly extends a standard result of
the theory of linear signed rank tests.

ProposiTiON 2: Let Y =(Y},...,Y,) and X =
(Xy,..., X,_1) be independent n X 1 random
vectors such that (1) and (3) hold. Let g, = g (X),
t=0,...,n—1, be a sequence of measurable
functions of the vector X such that P[g, = 0] = 0.
Then the statistic W, defined in (8) is distributed
like W = L}_,tB,, where B,,..., B, are indepen-
dent uniform Bernoulli variables on {0, 1}.

Note that g, in Proposition 2 can be a function
of all the variables X,,..., X, _;, but does not
depend on Y. When g, = X,, the result applies
to S,. By contrast, exact distributional results can
be established for SR, and SR, without the
additional assumption that the vectors Y and X
are independent. In the definitions of these
Wilcoxon-type statistics, the absolute ranks are
defined with respect to Y;,...,Y,, which are mu-
tually independent according to (1)._It is this
feature which is crucial in establishing the follow-
ing proposition.

ProposiTioN 3: Let Y =(Y},...,Y,)Y and X =
(Xy, ..., X,_1) betwon X 1 random vectors such
that (1) and (3) hold. Let also g, =g/(1,),t =
0,...,n — 1, be a sequence of measurable func-
tions of I, =(X,,...,X,,Y,,...,Y,Y such that
Plg,=01=0 for t=0,...,n—1, let |Y|=
(Yil,...,|Y,]Y, and define the sign variables s, =
u(Y,g,_y) fort =1,...,n. Then the following two
properties hold:

(a) the signs s,,...,s, are mutually indepen-
dent and, provided |Y,| # 0 for t =
1,...,n,

P[s,=0|lY[] = P[s, = 1]lY]] =05,
fort=1,...,n;

(b) the statistic SR, defined by (9) follows the
same distribution as the Wilcoxon signed
rank variate W = ¥7_,tB,, whereB,, ..., B,
are independent uniform Bernoulli variables
on {0, 1}.

Again it is clear that the result of Proposition 3
also holds for SR, by taking g, = X,. For a
general discussion of the variable W, see Lehmann
(1975). The distribution of W has been exten-
sively tabulated (see, for example, Wilcoxon, Katti
and Wilcox (1970)) and the normal approximation
with E(W) = n(n + 1)/4 and Var(W) = n(n +
1)2n + 1)/24 works well even for small values of
n. Proposition 3(a) also provides the basic prop-
erty for establishing the distributions of more
general linear signed rank statistics analogous to
SR,, i.e., statistics of the form

S

u()’tgt—l)an(R;t)
1

t

where a,(-) is a “score” function. The distribu-
tions of such statistics, however, are not well
tabulated and studying the choice of the score
function is beyond the scope of the present pa-
per. For further discussion of linear signed rank
statistics, see Hajek and Sidak (1967), Dufour
(1981), and Dufour and Hallin (1992, 1993).

Up to this point we have assumed that Y, and
X, (or more generally g,) had no probability mass
at zero. In the following proposition, we relax
totally or partially these assumptions.

ProposiTioN 4: Let Y =(Y,,...,Y,) and X =
(Xy,..., X, _1) betwo n X 1 random vectors such
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that (1) and (2) hold, let g, = g(1,),t =0,...,
n — 1, be a sequence of measurable functions of
I, =(X,,....,X,,Y,,....,Y,), and set g, =g, +
5(g,), where 8(x) =1 if x =0, and 8(x) =0 if
x # 0. Let also S, and SR, be defined as in (7)
and (9), set

'§g = Z u(Ytgt—l)’S_Rg = Z u(Ytgt—l)R;t’
t=1

t=1

8(Y) =[8(Y),...,8(Y), and let n* =n —
Ir_8(Y,), the number of non-zero Y,'s. Then the
following properties hold:

(@ 0<S,<8,0<SR, <SR,, and the con-
ditional distribution of S, given 8(Y) is
Bi(n*,0.5),

() if Plg,=0]=0 for t=0,...,n—1, we
have S, = S, and SR, = SR, with probabil-
ity 1, and the conditional distribution of S,
given 8(Y) is Bi(n*,0.5);

(c) If assumption (3) holds, SR, follows the
same distribution as the Wilcoxon signed
rank variate W = ¥}_,tB,, where B,, ..., B,

are independent uniform Bernoulli variables

on {0, 1}.

Part (b) of Proposition 4 shows that, provided
g0>---»8,—1 have no probability mass at zero,
tests based on §, can be performed conditionally
on the non-zero Y,’s, i.e. after dropping the zero
Y,g,_, products. For the more general case where
gos---» 8,1 May have a mass at zero, the distri-
bution of S, appears difficult to determine.
Proposition 4(a), however, shows that a simple
alternative consists in replacing S, by the closely
related statistic S, to which the result of part (b)
applies. When P[g,=0]=0 for ¢t=0,...,
n — 1, the two statistics coincide with probability
1. Similarly under assumption (3), we can use the
statistic SR, instead of SR,; by Proposition 4(c),
SR, follows the usual Wilcoxon distribution. We
do not study here the distribution of SR, when
Y;,...,Y, have masses at zero, because in such a
situation it is a more complicated linear signed
rank statistic. For a further discussion of such
statistics, see again Dufour and Hallin (1992,
1993).

Given that the exact distribution of both a sign
statistic and a class of signed rank statistics is
known under quite general conditions, the issue
of power becomes crucial in determining the use-

fulness of these nonparametric tests. For exam-
ple, in model (4) we have

VX = Bth—l +eX, ;.

The sign and Wilcoxon tests based on Z, =
Y, X,_, test in effect whether the random variable
Z, is centered at zero, more precisely whether Z,
has median zero. Under the null hypothesis (8 =
0), the median is determined by the behavior of
e, X,_; which is zero under assumption (2). When
B # 0, the median of Z, is displaced from zero by
the expression X2, and, as B gets larger, it is
expected that the displacement is more severe
and the test more powerful. This intuition is
confirmed by the empirical studies in the follow-
ing section.

There remain two points which are relevant to
the application of these nonparametric tests. First,
the assumption in (1) that the disturbances are
mutually independent cannot be relaxed without
compromising the distributional results estab-
lished in this section. But the approach can be
modified to deal with certain patterns of depen-
dence such as MA(q) disturbances. For example,
if Y, represented a two-period forecast error, it is
entirely consistent with the efficiency hypothesis
associated with rational forecasting that Y, be-
have as an MA(1) process. In this instance, the
independence required to use the nonparametric
procedures can be recaptured by splitting the
sample into two with alternate points assigned to
different subsamples. At least two simple testing
strategies are then available. In the first, a non-
parametric test with level a/2 is applied to each
subsample and the null hypothesis is rejected if
one of the tests is significant; by Bonferroni in-
equality, this yields a test whose level does not
exceed a. In the second strategy, a single test
with level « is applied to a randomly chosen
subsample; this procedure is not conservative but
involves dropping half the sample. Both proce-
dures can be adapted to deal with MA(q) distur-
bances or, more generally, to situations where Y,
is g-dependent. The relative performance of these
procedures with respect to power and the possi-
bility of finding better ones are subjects of ongo-
ing research.

Second, in many applications, it is more appro-
priate to consider the following variant of model
(4):

Y, = B(Xt—l - I’Lt—l) + e, (4,)
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where u, is a centering parameter for X,, such as
the mean, the median or the trend of X,; for
example, if X, is stationary, u, = u may repre-
sent the mean of X,. If Y, represent forecast
errors (under the null when B =00, Y, =¢,)
which are centered at zero and X, is a macroeco-
nomic variable which assumes only positive val-
ues, it is clear that the nonparametric statistics
Sy, W, and SR, introduced above will have no
power whatever the value of B. In this context,
the rejection of the null is associated with co-
movements of Y, around zero and X,_; around
its mean. However, as the proofs of Propositions
1, 2 and 4 reveal, u, should be estimated using
only information available at time ¢ if the exact
distribution of the nonparametric statistic is to be
preserved. The functions g,(/,) then represent
any such estimation attempt based on partial
information; various ways of centering the X,
variable are considered in the application pre-
sented in section IV. For given functions g,(1,),
the sign statistic is defined in (7) and the signed
rank statistics W, and SR, are given in equations
(8) and (9).

III. A Simulation Study of Two Examples

Two specifications of model (4) are now intro-
duced to contrast the behavior of nonparametric
statistics with standard regression procedures. In
Mankiw and Shapiro (1986), X, is assumed to
follow a stationary autoregressive process given
by

Xt=00+01Xt—l+Et’ t=1,...,n

" (12)

_ where the €, are assumed to be mutually inde-
pendent and each ¢, is independent of X,_;, j >
1; the disturbances e, and €, are also assumed to
follow a bivariate normal distribution with corre-
lation coefficient p. It follows that e, in (4) is
related to X, through €, and hence to future
X,,; (j > 1) by the autoregressive process. Since
the disturbance vector (ey,...,e,) is not inde-
pendent of the explanatory variable vector
(X,,...,X,_,), the t-test associated with the
least squares estimate of B in model (4) can only
be justified in large samples. Mankiw and Shapiro
(1986) investigated the finite-sample properties of
the usual z-test in a Monte Carlo study and found
that it over-rejects the null hypothesis when p
and 0, are close to one and asymptotic critical

points are used. By contrast, since the exact
finite-sample distribution of S, and SR, are given
by Propositions 1 and 3, the reliability of the
associated sign and Wilcoxon tests under the null
is not an issue.

To investigate empirically the relative behavior
of the nonparametric versus the asymptotic re-
gression-based procedures in the MS speci-
fication, data were generated from model
(4), with the X process specified as (12), by
setting €, = pe, + w,y1 — p*,0, =0 and X, =
wo/ {1 — 6%, where e, and w, are independent
with the same distribution either N(O, 1), ¢(3),
Cauchy, truncated Cauchy or lognormal; the
asymmetric lognormal disturbances are centered
at their median. Experiments illustrating the im-
pact of heteroskedasticity involve modifications of
standard normal disturbances as described in
table 3. Five tests are usually considered: the
non-centered T-test (determined by OLS regres-
sion estimates of (12) without the intercept term),
the centered t-test (found by including an inter-
cept in the regression) and the three nonparamet-
ric tests based on S,, W, and SR, as defined in
equations (6), (10) and (11). Asymptotic 5% criti-
cal values are used in applying the parametric
tests; in situations where the #-test over-rejects, it
is also applied using size-corrected critical points
which are determined empirically. Note that the
“size corrections” are only valid for the particular
value of p used (p = 0.8), and so the compar- -
isons here are biased in favor of the parametric
tests, since the nonparametric tests can be cor-
rectly applied without knowing the value of p. A
more accurate size correction for the #- and 7T-
tests would require one to find the supremum of
the relevant critical points over all possible values
of p, and even then would remain specific to the
particular feedback model considered here. Be-
cause the sign and Wilcoxon statistics have dis-
crete distributions, it is not possible (without ran-
domization) to obtain tests whose size is precisely
5%; here, the sizes of the sign tests are 4.33%,
6.49%, 3.52%, 4.00% for n = 25, 50, 100, 200,
respectively; for n =25, 50, the levels of the
Wilcoxon tests are 4.82% and 4.94%, while the
normal approximation is used for the larger sam-
ple sizes. Each experiment comprises 2000 repli-
cations.

Table 1 presents simulation results based on
normal disturbances for the specification given by
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p =08 and 6, = 0.99 for various sample sizes.
The results confirm the MS finding that asymp-
totic regression-based tests are unreliable when p
and 6, are close to one: the r-test rejects at over
twice its nominal level for sample sizes as large as
200. It is curious that the T-test appears to reject
at its nominal level except perhaps when the
sample size is small, and it should also be noted
that the test based on W, rejects at its nominal
level. Further, since the T-test does not fit a
non-existent intercept (in contrast with the ¢-test),
and thus is the natural parametric test to imple-
ment under the assumptions of this specification,
it is to be expected that the T-test will exhibit
better power than the t-test. This presumption
appears to be confirmed by the results shown
here. However, the most striking message of table
1 is that not much power is lost relative to the
T-test in applying the sign test with small sample
sizes or either of the Wilcoxon procedures for any
sample size. Overall, the -test based on cor-
rected critical points is a poor last. Furthermore,
if we were using more correct critical values for
the t- and T-statistics, which should yield a prob-
ability of rejection no greater than 0.05 irrespec-

tive of the unknown value of p, the power func-
tions of both these tests could only deteriorate
with respect to the nonparametric tests.

It is possible to give a heuristic explanation of
the curious result of the 7-test having apparently
correct size in table 1. Under the null hypothesis,
the T-statistic in (5) can be written

n
Z X,_1€,

t=1

[&2( )E)XE_I)

t=1

720

hence for p # 0 and using €, = pe, + (1 —
P)lﬂwn

n n
12 ’
P Z X, 1€ + (1 - p2) Z X, 1w,
t=1 t=1

T=

n 12 ’
|52z |

t=1

where w, = [(1 — p?)"2%¢, — w,]/p is uncorrelated
with €, (and X,). The second term in the latter
expression for T is asymptotically distributed like
a normal random variable with mean zero, while

TABLE 1.—MANKIW-SHAPIRO MODEL: NORMAL DISTURBANCES
p=108,0,=0.99
VARIOUS SAMPLE SIZES

t-test
Size-
B: Asymptotic Corrected® T-test So SR, W,
n=25
0.00 19.6 5.0 7.7 3.8 53 4.6
0.04 11.8 3.0 253 19.3 26.1 24.6
0.07 9.5 22 433 36.0 434 41.5
n=>50
0.00 18.7 5.0 6.6 3.9 44 49
0.02 12.3 31 16.7 119 18.8 17.2
0.07 114 4.1 57.8 48.1 573 571
n =100
0.00 14.7 5.0 5.0 4.2 4.4 4.7
0.02 78 2.7 254 18.1 26.2 25.5
0.04 12.4 5.6 52.1 40.9 51.2 50.9
n =200
0.00 119 5.0 5.5 .43 4.9 4.7
0.01 7.1 32 16.2 12.1 17.9 16.6
0.02 11.7 6.1 39.1 27.1 37.1 37.0

 Entries represent percentage rejections. The statistics S0, Wy and SR, are defined in equations (6), (10) and

(11).

bEmpirical critical points are used in power calculations. For B, = 0, the rejection frequency for the size-cor-

rected t-test is 5.0% by construction.
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the first should have a distribution similar to the
Dickey-Fuller distribution with known zero inter-
cept (since 6, = 0.99 is close to 1). Then we can
note that the tail areas associated with the critical
values +1.96 for the Dickey-Fuller distribution
are roughly 0.05 for the lower tail and 0.01 for
the upper (see Fuller (1976, table 8.5.2)), and
thus should yield good size properties for a two-
sided test.! On the other hand, because of the
asymmetry of the Dickey-Fuller distribution, we
cannot expect one-sided versions of the 7T-test to
be reliable, especially T-tests against B < 0. T-
tests would also need to be size-corrected in this
case; assuming p to be known, the measured
power of the one-sided 7-test against 8 > 0 would
increase, while “that against B <0 would de-
crease. More importantly, a size correction that
would try to take into account the unknown value
of p can only lower the power function of the
T-test (since the asymptotic critical values roughly
correspond to the case where p = 0).

Two general types of héteroskedasticity, again
restricted to (p, 6,) = (0.8,0.99), with sample size
n = 100, are considered in table 2. In the first,
the variance of the underlying normal distur-
bances jumps from 1 to 16; the break occurs at
one of three possible points (¢ = 25, 50, 75). In
the second, the variability of the disturbances
grows exponentially through the sample (i.e. e, is

an N(0, 1) variable multiplied by exp(t)). Along

with the four statistics considered throughout the
study, we consider in this context an attempt due
to MacKinnon and White (1985) to correct in a
general manner for heteroskedasticity through the
preliminary estimation of a heteroskedastic-con-
sistent covariance matrix which is then used in a
GLS estimation of the model coefficients. Consis-
tent quasi-T and quasi-¢ statistics (WM and wm,
respectively) can be computed and their perfor-
mance is compared here with the other statistics.

The results of table 2 are interesting indeed.
Both types of heteroscedasticity compromise the
reliability of the four parametric tests, including
the MacKinnon-White procedures, again the W,
test rejects at its nominal level in all the specifi-
cations considered. Accordingly, the power per-
formance of the parametric tests should be as-
sessed using the (empirically) correct critical
points. It is apparent that in the context of break

! We are grateful to a referee for this argument.

heteroskedasticity these corrected tests are out-
performed by all the nonparametric tests. Under
the extreme form of exponential heteroscedastic-
ity, the parametric tests over-reject considerably
and the corresponding size-corrected tests show
no power whatsoever. By contrast, the nonpara-
metric tests behave quite well even under this
extreme specification.

Table 3 presents results for homoskedastic
non-normal disturbances which again show the
nonparametric tests in a favorable light. The
power of these tests improves when the distur-
bances are fat-tailed. With Cauchy disturbances,
the sign and the Wilcoxon tests both outperform
the parametric tests by a wide margin. We also
consider Cauchy disturbances that have been
truncated to exclude 0.025 of the distribution in
each tail; all moments exist for such a bounded
distribution and so standard central limit theo-
rems would apply. Here the nonparametric tests
continue substantially to outperform the 7-test.
Under lognormal disturbances, the sign test per-
forms best; notice here that the signed rank tests
appear to over-reject, a result which underscores
the importance of the assumption of symmetry in
using the signed rank procedures.

The second specification of model (4) identifies
the X and Y processes to obtain the autoregres-
sive model:

Y,=0Y,_,+e, t=1,... (13)

where the vector (e,,...,e,) is independent of
Y,. We wish to test H,: 6 =1 (random walk
without drift) against the one-sided alternative
that the process is stationary (6 < 1). Here, un-
der H,, the disturbances have permanent effect,
and the t-statistic associated with the usual re-
gression estimate of § does not have the usual
asymptotic normal distribution. To test 6 = 1, it
will be convenient to consider the following
equivalent form of (13):

Y,-Y_,=BY,_, te, t=1,...,

’n’

n,
(13y

where B =6 — 1. The null hypothesis is then
equivalent to B = 0, with 8 < 0 under the alter-
native. Clearly, under the null hypothesis and
provided Y, and (e,,...,e,) have continuous
distributions, the assumptions of Propositions 1
and 3 are satisfied when Y, is replaced by Y, —
Y,_, and X, by Y,. This suggests considering the
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TABLE 2.—MANKIW-SHAPIRO MODEL: HETEROSKEDASTIC DISTURBANCES?
p=208,6,=099nr =100

By t-test T-test wm-test WM-test So SR, W,
Break at ¢ = 25°
0.00 12.5 7.8 11.2 6.0 37 5.4 53
0.04 13.4 37.0 12.5 324 28.2 36.3 355
6.5 327 6.1 30.7
0.07 36.2 63.0 35.1 59.7 54.6 60.5 62.0
25.0 58.9 24.7 583
Bréak att =50
0.00 15.2 10.4 8.8 5.7 4.0 4.8 4.5
0.04 20.1 35.2 13.7 26.5 31.7 37.1 36.3
8.1 28.1 9.3 24.8
0.07 38.3 59.3 30.6 521 55.9 61.7 63.4
24.6 514 25.6 49.7
Break at ¢t = 75
0.00 247 13.9 8.9 58 4.3 49 4.8
0.04 25.8 35.7 9.3 21.2 345 40.9 41.9
7.8 21.7 6.2 19.8
0.07 36.1 59.3 20.2 46.3 59.4 66.4 67.5
18.2 44.0 15.0 444
Exponential
0.00 89.2 89.4 12.3 12.2 32 4.4 4.5
0.5 89.1 89.2 12.9 12.9 19.6 18.7 18.5
6.0 6.1 5.9 5.6
0.70 89.2 89.5 13.6 13.5 35.7 324 32.1
6.3 6.4 5.8 5.7

“ Entries represent percentage rejections; empirical critical points are used in the power calculations for the
segond entry in a cell. The statistics wm and WM are defined in the text.

In the Break model, the variance of the disturbances jumps from 1 to 16 at the indicated point; in the

exponential model, the variance grows exponentially with time (i.e., ¢, is an N(0, 1) variable multiplied by exp(¢)).

TABLE 3.—MANKIW-SHAPIRO MODEL: NON-NORMAL DISTURBANCES ?
p=038,0, =099,n =100

t-test
Size-
By Asymptotic Corrected T-test So SR, W,
t(3) Distribution
0.00 15.7 5.0 5.5 3.4 44 49
0.02 8.7 29 24.5 279 334 35.7
0.07 35.8 24.6 76.6 75.3 80.4 83.6
Cauchy Distribution
0.00 14.2 5.0 54 37 5.7 5.5
0.005 15.8 7.0 11.3 51.5 49.7 56.1
0.02 20.8 129 31.8 88.5 87.9 914
Truncated Cauchy Distribution
0.00 15.6 5.0 5.4 33 4.7 5.0
0.02 8.2 2.3 243 42.7 423 473
0.03 9.6 3.6 384 57.0 56.6 62.1
Lognormal Distribution
0.00 13.9 5.0 70.1 33 27.4 22.6
0.02 10.1 43 44.0 . 479 42.6 44.6
0.04 17.8 10.7 46.6 76.7 71.5 76.1

2 Entries represent percentage rejections. The two-sided 0.975 critical points are used to truncate the Cauchy
distribution. -
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following statistics for testing the random walk
hypothesis:

S i (¥, - Y,_)¥,_,],

WA (14)
t=1
where R7, is the rank of |Y, — Y,_,| among |Y, —
Y,_i,7 = 1,..., n. The critical regions against the
one-sided alternative of stationarity have the form
Spw < c(a) and SRy, < c,(a), where the criti-
cal values are determined by the distributions
given in Propositions 1 and 3, respectively. As in
the MS specification, we also consider a second
Wilcoxon statistic based on the ranks Ry, associ-
ated with (Y, — Y,_)Y,_,[:
n
Wew = L ul(Y, - (15)
t=1

On the assumption that the e, are i.i.d. normal
and that Y, = 0, the appropriate parametric tests
to consider in this context are based on n(f — 1)
(the P-test in tables 4, 5 and 6) and the T-statistic
both defined using the OLS estimate of § in (13).
Since these statistics are sensitive to the value of
the point of departure, 1t is usual practice to
consider tests based on n(6 — 1) (the p-test) and
the t-statistic both defined using 0, the OLS
estimate of 6 in the presence of an intercept
term. The correct critical points for the various
parametric tests have been determined by simula-
tion; see Fuller (1976, pp. 371, 373) for the rele-

SRy = Yt—l)Yt—I]R;t’

Y)Y ] R

vant tables. It should be noted that the theoreti-
cal results of the previous section establish the
robustness of Sz, and SRy, to the point of
departure Y.

These parametric procedures were chosen sim-
ply because they are widely used in applied work.
The intention in this study is to highlight the
potential of nonparametric procedures in what
for some may be a surprising context. We should
emphasize that the nonparametric tests consid-
ered here are appropriate in testing for the null
of a random walk (that is, a unit root with no
serial correlation) against a stationary alternative
and are not meant to test the more general
hypothesis of a unit root. It would be interesting
to compare our testing procedures with Cochrane
(1988) who has applied variogram procedures to
investigate the presence of a random walk.

To assess the relative merits of the seven para-
metric and nonparametric tests of the random
walk null, we follow the same pattern of Monte
Carlo simulation used in the analysis of the MS
specification. The results are presented in tables
4,5, and 6. For the experiments with normal and
heteroskedastic errors, Y, was assumed to be
standard normal under the null and, under the
alternative, to be drawn from a normal distribu-
tion with the appropriate variance determined by
the alternative. For the analysis with non-normal
errors, Y, is taken to be zero under both the null
and the alternative; for such cases, n + 1 obser-
vations were generated using model (13), and the

TaBLE 4.—RANDOM WALK WITHOUT DRIFT: NORMAL DISTURBANCES?

0 P-test T-Test p-test t-test Srw SR rw Waw
n =150
1.0 5.5 5.7 4.1 5.1 6.7 6.1 7.3
0.97 7.0 12.1 7.0 6.6 11.3 10.6 13.9
0.95 12.4 18.0 9.5 7.9 15.8 14.6 20.0
n =100
1.0 5.2 5.3 5.0 5.3 4.7 6.1 6.9
0.97 15.4 21.3 10.2 8.2 14.5 16.9 235
0.95 30.6 36.9 16.7 12.7 21.0 28.1 375
n =250
1.0 5.3 5.4 4.6 4.7 4.6 5.1 6.4
0.99 12.0 18.0 9.1 7.1 11.5 16.1 20.5
0.98 30.6 38.0 18.1 12.7 20.3 278 37.0

2 Entries represent percentage rejections. The statistics Sgy, SRRW and Wgyy are defined in equations (14) and
(15). The critical values for the four parametric tests can be found in tables 8.5.1 and 8.5.2 in Fuller (1976).
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TABLE 5.—RANDOM WALK WITHOUT DRIFT: HETEROSKEDASTIC DISTURBANCES 2
n =100

0 P-test T-test D-test t-test Srw SR Wew

Break at ¢ = 25

1.0 8.6 8.1 4.5 23 43 5.2 6.7

0.97 21.0 21.4 10.7 6.0 13.8 14.1 18.0
14.0 14.0 11.7 12.1

0.95 35.3 35.9 18.0 10.4 19.3 23.2 29.6
24.2 24.8 19.1 20.1

Break at ¢ = 50

1.0 114 10.5 7.1 4.6 55 5.8 7.7

0.97 26.0 25.6 14.8 9.4 13.4 15.1 18.2
11.0 12.0 11.2 10.2

0.95 40.7 39.7 22.5 14.1 19.6 229 28.3
21.7 21.0 17.1 - 16.1

Break at t = 75

1.0 13.6 124 10.5 6.6 4.5 48 6.5

0.97 30.1 28.6 20.9 13.3 13.6 15.5 19.5
13.7 14.6 9.8 10.0

0.95 46.1 42.8 29.5 19.8 194 235 28.6
23.6 24.1 15.9 14.7

Exponential

1.0 54.9 51.2 53.9 48.4 49 4.8 5.0

0.8 543 50.9 53.5 48.2 11.1 10.8 11.0
5.7 5.6 5.7 - 5.6

0.7 55.7 52.0 54.9 49.8 16.4 15.0 15.2
5.7 6.0 5.6 6.1

? Entries represent rejections; empirical critical points are used in the power calculations for the second entry in
a cell. In the Break model, the variance of the disturbances jumps from 1 to 16 at the indicated point; the variance
grows exponentially with with time in the exponential model (e, is an N(0, 1) variable multiplied by exp(¢)).

TABLE 6.—RANDOM WALK WiTHOUT DRIFT: NON-NORMAL DISTURBANCES ¢

n =100
0 P-test T-test p-test t-test Srw SRrw Wrw
t(3) Disturbances
1.0 42 41 4.8 5.7 4.1 52 58
0.98 10.3 10.5 7.8 5.7 174 17.7 24.6
0.97 15.3 159 9.5 6.5 243 245 36.2
Cauchy Disturbances
1.0 32 3.1 5.7 7.6 4.8 5.6 5.9
0.99 47 5.0 5.6 6.4 69.3 66.2 74.7
0.98 6.7 7.2 5.7 4.8 85.0 84.7 92.2
Truncated Cauchy Distribution
1.0 4.6 5.0 5.4 5.7 4.6 53 6.8
0.99 7.8 8.0 79 6.0 150 114 16.1
0.98 11.7 12.2 9.9 6.9 30.0 23.3 36.8
Lognormal Disturbances
1.0 0.0 0.0 0.0 0.1 48 0.0 0.0
0.99 0.0 0.0 0.0 59 47.7 4.8 13.5
0.98 0.0 0.0 2.0 9.0 78.2 24.4 50.2

“ Entries represent percentage rejections. The two-sided 97.5 points are used to truncate the Cauchy distribu-
tion.

11
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summations in (14) and (15) run from ¢ = 2 to
t = n + 1 (because the first sign variable is always
Z€ET0).

The power of the nonparametric statistics as
revealed in table 4 is striking. Sz, uniformly
outperforms both the centered parametric tests
which are usually applied in the context of inde-
pendent homoskedastic normal disturbances. For
larger samples the signed rank statistic with
known distribution under the null displays more
power than the sign test; there is some indication
that the other Wilcoxon statistic rejects somewhat
more than its nominal level. In the presence of
heteroskedastic disturbances (table 5), the para-
metric tests perform irregularly. For example,
when the variance suddenly jumps at a point in
the sample, the -test may either be conservative
if the break point is early or somewhat liberal if
the point occurs later in the sample. By contrast,
Sgw and SRgy are reliable and show similar
powers, both superior to that of the centered
parametric tests. '

As in the MS specification, the nonparametric
statistics display considerable power in the con-
text of fat-tailed distributions, outperforming by a
considerable margin the parametric alternatives
(table 6). With asymmetric lognormal distur-
bances, both signed rank statistics appear highly
conservative; again the sign test exhibits remark-
able power.

IV. An Application

Friedman (1980) studied interest rate expecta-
tions based on survey data published by The
Goldsmith-Nagan Bond and Money Market Letter,
a publication with a wide circulation among
money market professionals. Late in the conclud-
ing month of each quarter, a selected group of its
subscribers were asked to forecast the values of
ten interest rates on the last business day of the
two following quarters. The means of the differ-
ent forecasts were subsequently published along
with the names of the participants in the survey.
In his study based on data from 1969 to 1977,
Friedman focused on six rates of the most highly
traded assets; here we consider three: U.S. Trea-
sury Bills (3-month), Utility Bonds, and Munici-
pal Bonds. We follow Friedman in considering
one aspect of the rationality hypothesis: whether
the forecasters made efficient use of readily avail-

able information concerning, to use his examples,
the unemployment rate, the growth rates of the
consumer price index (CPI), industrial production
and M1, and the federal deficit (in levels). Our
goal in this section is to illustrate the details of
the nonparametric approach and to compare the
results with those of the more standard regres-
sion-based approach used by Friedman. A more
thorough analysis of a nonparametric methodol-
ogy to assess the adequacy or rationality of fed-
eral budget forecasts can be found in Campbell
and Ghysels (1995).

The nonparametric statistics considered in this
section have the form:

X

S¢ = lu[(r, -r) X, ),
t

n
SR; = Z u[(rt - rte)Xtc—j]an
t=1

n
I'V;‘c = Zu[(rt—rf)Xf_j]R;“ (16)
t=1

for j = 1,...,4. It should be emphasized that the
Wilcoxon-type statistics are only valid under the
assumption of symmetry of forecast errors. Here
rf is the forecast of r, determined in the previous
period. Further, if r, —r{ has an asymmetric
distribution, the sign statistic provides a valid test
of independence between r, — r/ and X, _; jointly
with the hypothesis of a zero median (as opposed
to a zero mean, suggested by several rational
expectations models).? X7 denotes a centered
value of X, where the centering (or detrending)
is based only on information available at time ¢;
see the end of section II for a discussion of the
motivation for using such variables. Simulation
studies involving such a centering procedure in
this context are presented in Campbell and Du-
four (1991). In this application, we use one of two
general centering methods: (1) the distance rela-
tive to a cumulative moving average of the mean,
and (2) the distance from a recursively estimated
linear time trend. Specifically to obtain X[, the
unemployment rate and the growth rates of the
CPI, industrial production and M1 were centered
using the first method. The fifth macroeconomic

2 Median unbiasedness is entailed by rational expectations
when the mean absolute forecast error is minimized rather
than the mean square forecast error.
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variable considered by Friedman was the Federal
Deficit (in levels) and, given its evident non-
stationarity, it is more appropriate to center this
variable using the second method. All the vari-
ables are taken from the Main Economic Indica-
tors of the OECD data base for a sample begin-
ning in 1962. Each of the nonparametric statistics
is then computed for j=1,...,4; p-values (for
two-sided tests) are reported in table 7. The
results of a joint nonparametric test are also
reported: here the null of efficiency is rejected if
the smallest p-value (among j=1,... ,4) is less

than 0.0125. This procedure yields a test whose
level does not exceed 0.05. Table 7 presents anal-
ogous regression-based results: we consider the
t-statistic calculated from a one-variable regres-
sion (with constant) corresponding to the non-
parametric tests introduced in (16) for each
j=1,...,4 (e., the equation (r,—r/) =a+
BX:_; + w,), as well as the results of the appro-
priate F-test in a linear regression with four lags
(i.e., the F-test of the hypothesis B; = B, = B3 =
B, =0 in the regression (r, — ré) = a +
E;!=IBthc—j +e,).

TaBLE 7.—GoLDsMITH-NAGAN INTEREST RATE FORECASTS
NONPARAMETRIC ORTHOGONALITY RESULTS: 1-PERIOD FORECAST ERRORS

Treasury Bills Utility Bonds Municipal Bonds
Lag ¢ ¢ ¢
Joint S; SR; W,  F-test S; SR; W; F-test y SR; W; F-test
Unemployment rate
Mean? j=1 099 210 .123 218 585 918  .681 .165 362 465 285 .340
j=2 200 245 175 189  .856 999  .607 .058 .585 491 149 A11
j=3 .362 .465 267 .189 .99 622 .666 015° 856  .629 .084 032°
j=4 585 821 459 375 .856 579 869 .028° 999 727 .096 023°
Joint .099 210 .123 400 585 .579  .607 031 362 465 .084 134
CPI Growth Rate
Mean j=1 362 213 258 .385 585 999  .636 .369 362 .943 758 211
j=2 999 902 934 315 .099 051 .044> 030> 585 .079 .074 .001°
j=3 999 .766 .902  .829 099 .031° .053 071 .585 .094 139 .068
j=4 .58 329 365 322 999 334 537 751 999  .614 .696 244
Joint 362 213 258 129 .099 .031 .044 .108 362 .079 074 031°
Industrial Production
(Growth Rate)
mean j=1 .85 .781 523  .986 200 .061  .092 .149 099  .006° .015° .104
j=2 999 .89 .711 298 362 067 .025° .004°> .043° 009° .002° .003°
j=3 .58 355 323 .133 362 .853 918 818 .585 267 .303 736
j=4 362 304 .144 024° 043 232 144 207 856  .837 934 619
Joint .362 .304 .144 068 .043 061  .025 025°  .043 006 .002°  .048°
M1 Growth Rate
Mean j=1 855 .992 .97 .339 585 .789  .696 .699 099 399 113 .501
j=2 .099 .092 038® 141 .043° 056 .005° 074 099  .136 025° 329
j=3 999 593 .773 562 362 484 355 981 999 975 934 .816
j=4 200 .053 .113 042° 016 .003° .010° .074 200 159 241 .661
Joint 099 .053 .038 .107 .016 .003° .011° 224 099 136 025 .843
Federal Deficit
Regression j=1 .200 241 .181 369 362 294 294 215 200 217 144 430
j=2 099 249 .175 098 .09 .036°  .056 017°  .016° .014°> 013° .080
j=3 .043° 060 .074 .129 016° .007° .014® .007° .005° 002° .002° .018°
j=4 361 478 472 674 200 ‘031° .048® 076  .016° .002® .001° .056
Joint .043 060 .074 120 .016 .007° .048 026°  .005¢ .002° .001° .104

Notes: The sample covers 1969:4 to 1977:1(n = 30). The statistics S;, SR; and W; are given in equation (16) for j = 1 to 4. Exact p-values (two-sided tests)
are calculated for the sign statistics; the normal approximation is used for SR; and W;. A joint nonparametric test is significant if the smallest p-value-(among

j=1,...,4) is less than or equal to 0.0125. We also report the corresponding p

-values of the ¢-statistic (¢;) for the explanatory variables in a regression (with

intercept) of the forecast error on the indicated lag of the centered macroeconomic variable considered, as well as the p-value of the standard F-test for the
joint significance of the explanatory variables associated with the appropriate regression (with intercept).
4 The macroeconomic variables are centered recursively according to the indicated procedure: Mean corresponds to method (1) in the text; Regression, to

method (3).
b p-values less than or equal to 0.05.
¢ p-values less than or equal to 0.0125.
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Table 7 indicates there is core agreement be-
tween the parametric and nonparametric ap-
proaches. In sixteen of the twenty single-variable
cases considered, neither the nonparametric nor
parametric test of the efficiency of the Treasury
Bills forecasts is significant and, in the other four
cases, the evidence is mixed. The joint efficiency
tests are not significant for all five macroeco-
nomic variables under both approaches. In sum,
there is little evidence that the information con-
tained in the five variables is not efficiently used
in the Treasury Bills forecasts. By contrast, the
interest rate forecasts for Utility Bonds do not
appear to be as efficient: both the nonparametric
and parametric results reject the efficiency hy-
pothesis regarding specified lags of the Federal
Deficit, as well as the joint efficiency hypothesis
for this variable. However, there is interesting
divergence between the two approaches applied
to the Utility Bonds forecasts, which are found to
be inefficient with regard to the information con-
tained in the unemployment rate only by the
parametric tests and inefficient with regard to M1
only by the nonparametric tests. Such divergence
is somewhat less dramatic in the analysis of the
efficiency of the Municipal Bonds forecasts which
are found to be inefficient according to the para-
metric and nonparametric approaches with re-
gard to information contained in both Industrial
Production and the Federal Deficit. It is notewor-
thy that in contrast to the nonparametric results
the t-test is significant for two of the lags of the
Unemployment Rate in the single-equation effi-
ciency tests and in one lag of the CPL. These may
represent examples of spurious rejection as un-
derscored by Mankiw and Shapiro (1986). What-
ever the ultimate interpretation of these results,
the important point is that the nonparametric
results are more credible than the regression-
based alternatives.

V. Concluding Remarks

It is a testable implication of expectations mod-
els which imply that some observed variable is a
rational forecast of another unobserved variable
that the forecast error is independent of informa-
tion available to the forecaster. Generally, this
information is not strictly exogenous, and the
issue of finite-sample bias associated with the
usual regression procedure arises. The sign and

signed rank procedures introduced in this paper
are exact in such situations under minimal as-
sumptions of 0-median for the sign procedures
and symmetry about O for the signed rank proce-
dures, and are robust to problems of het-
eroskedasticity and non-normality. Moreover, as
revealed in two simulation studies, the power of
the nonparametric tests can be considerably su-
perior to that of the parametric t-tests, particu-
larly in the presence of heteroskedasticity or
non-normal disturbances.

The general feedback model considered in this
paper does not contain an intercept term. In the
presence of such a term, a, the methods used in
this paper could readily be modified if a were
known. Various methods of dealing with such
situations are discussed in Campbell (1990). In
particular, it is possible to adapt the procedures
of Dufour (1990) to obtain exact nonparametric
tests in the presence of the unknown nuisance
parameter a. These results will be presented in a
forthcoming paper. As well, our results depend
on the assumption that there is no serial correla-
tion among the disturbances; while two ap-
proaches to specific instances of this problem
were suggested in section II, the issue of depen-
dence is the focus of ongoing research.

APPENDIX

Proof of Proposition 1: Let s, = u(Y,g,_,) and consider the
characteristic function of S,:

¢g(“') = E[CXD(iTSg)] = E[liexp(ifs,)],

where 7€ R and i =V— 1. Conditional on the vector
I,y = (Xg, Xy ooy Xy 1Y, .- -5 Y, _y), the variables
Sps--+>Sn_1s 8n—y are fixed. We can thus write

n—1
d (1) = E{ Y exp(ifrs,)E[exp(i‘rs,,)II,,_1]}.
t=1

When computing Elexp(its,)II,_,], we can assume without
loss of generality that g,_; # 0 (an event with probability 1).
Then, from (1), (2), and the assumption that Y, has no
probability mass at 0, we have Pls,=0lI,_;]=Pls,=
1/I,_;] = 0.5 almost everywhere. It follows that

n—1

b () = (0.5)[1 + exp(if)]E[ [[1 exp(its,)|.

Applying the same argument to E[IT"Z{exp(its,)] for j =
1,...,n — 1, we find

d(r) = {(05)[1 + exp(it)]}",
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which is the characteristic function of the binomial distribu-
tion with number of trials » and probability of success 0.5.
Thus S, follows a Bi(n, 0.5) distribution. ]

Proof of Proposition 2: Let Z;, =Yg, ,t=1....n With-
out loss of generality, we can only consider the case where
g, #0 for t =1,...,n (an event with probability 1). Condi-
tional on |g|= (goh...,g,_1)V, the variables Z,,,t =
1,...,n, are mutually independent with P[Z, > 0] |gll =
P[Z,, < 0] |gll = 0.5; further, the rank vector Rf =
(R}, ..., R},), which is a function of |gl, is a fixed permuta-
tion of the integers 1,2, ..., n. Conditional on |gl, W, has the
same distribution as the Wilcoxon variate W = L}_;B,. Since
the distribution does not depend on |g|, the result also holds
unconditionally. ]

Proof of Proposition 3: (a) Let z = (zy,..., z,) € R" and

5,=%f_,z,s, fort = 1,..., n. The conditional characteristic
function of the random vector s = (sy,..., S,) given |Y| can
be written:

é.(2) = E{exp(iz's) ||Y]} = E{exp(iS,) Y1}
= E{exp[i(S,-1 + zasa)] 1171}
= E{exp(i8, 1) E[exp(iz,5,) | 11>Vl 1 1Y 1}

When computing Elexp(iz,s,) |1, -1, |Y [}, we can assume that
gn—1 * 0 (an event with probability 1). Further, by (1), (3) and
the assumption that Y, has no mass at zero,

E[eXp(iznsn) | In— 1 |Yn|]
= E[exp(iz,5,) | In—1]
= (05)[1 + exp(iz,)],
so that

é(2) = (05)[1 + exp(iz,)]
X E{exp(iS,_1) | lyl}.

Applying the same argument to E{exp(iS,, _PIYD for j=
1,...,n — 1, we find

8.(2) = 05" L [1 + exsiz)],
t=1

which is the characteristic function we obtain when sy,..., s,
are mutually independent with uniform Bernoulli distribu-
tions over {0,1). Thus sy,...,s, are mutually independent
conditional on |Y|, with P[s,=0]||Y|]1=Pls,=1|IY|]=
05,fort=1,...,n.

(b) With probability 1, we have |Y,|# 0 for t=1,...,n.
Conditional on |Y|such that Y, # Ofor t = 1,...,n, the rank
vector (R%, ..., R3,) is a fixed permutation of the integers
(,...,nY. Hence, using part (a) of the proposition, SR,
conditional on |Y| follows a Wilcoxon signed rank distribution
W = T/_,tB,. Since this distribution does not depend on |Y],
the result also holds unconditionally. (m]

Proof of Proposition 4: 1t will be convenient to prove (b) first.
(b) Since g, and g, differ only when g, = 0 (an event with
probability zero by assumption), it is clear that S, = S, and
SR, = S’Rg with probability 1. By assumption (2), we have
P[Y, > 0]5(Y)]
— P[Y,<0[8(¥)] =0 , if8(Y)=1
= 0.5, otherwise,

fort=1,...,n. Set p, = P[Y, < 0|8(Y)}, ¢t = 1,...,n. Then,
by assumption (1), we have when g,_; # 0 an event with
probability 1):

p,=P[g, 1Y, > 0|,_1,8(Y)] =P[g,-1Y: < 0]1,_1,8(Y)]

for ¢t = 1,...,n. Consider now the characteristic function of
S, conditional on 8(Y):forzeR
bg[218(Y)]

= E[exp(izs,) |8(Y)]

n—1
- E{ [T exp(izs,) Elexp(izs, )| -1, ()] |8(Y)}

t=1
n—1 .
=[(1-py) +pn exp(iZ)]E{ l'_'[lexp(izs,) |5(Y)},
where i = \/——1_ , hence

d[z16(Y)] = 1:[1[(1 - p.) + p,exp(iz)]
= {(0.5)[1 + exp(iz)]}"*,

where n* is the number of non-zero Y’s. Since this is the
characteristic function of a Bi(n*,0.5) variable, we can con-
clude that the conditional distributional of S, given 8(Y)is
Bi(n*,0.5).

(a) Since g, = g, when g, # 0 and g, = 1 when g, = 0, we
have u(Y,g,_;) < u(Y,g,_,) for all ¢, hence

n n
0<S,= Z u(Y,8,-1) < Z u(ngt—l) = §g’
t=1 t=1
n
0 <SR, = Y, u(Y.8-1)R3

t=1

n
< Y u(Y.8-1)R3 = SRe.

t=1

Further, §g satisfies all the assumptions of part (b), so that its
conditional distribution given 8(Y) is Bi(n*,0.5).

(c) Since g, # 0 for all ¢, the distribution of SR, follows
from Proposition 3(b). O
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