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Standard tests for rationality may not have the correct size if there is feedback from innovations to future values of the 

regressors. It is shown that nonparametric tests reject at their nominal level and display good power in a variety of 

specifications of a model involving feedback. 

1. Introduction 

The hypothesis that two time series are stochastically independent given the past is a frequent 
implication of economic theory. In particular, under usual stochastic assumptions, the claim that 
expectations are rational implies that prediction errors have mean zero and are independent of the 
information available when the predictions were formed. Yet standard testing procedure which 
attempt to assess the rationality of expectations may reject much too often, even with fairly large 
samples. The problem largely originates in feedback from disturbances that may affect future values 
of the regressors, even though the disturbance and the regressors are contemporaneously uncorre- 
lated. For a simple linear regression, striking evidence of this difficulty was presented recently by 
Mankiw and Shapiro (1986, in what follows referred to as MS) who found by Monte Carlo 
techniques that the true level of the f-test may be considerably greater than its nominal level in a 
fairly simple model. The same authors also determined a revised set of critical values for the correct 
application of the t-statistic in the particular model studied by them. These critical values, however, 
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are difficult to use in practice because they depend on unknown nuisance parameters; this problem is 
emphasized by Galbraith, Dolado and Banerjee (1987). For related results, see also Banerjee and 
Dolado (1987, 1988), Banerjee, Dolado and Glabraith (1990) and Mankiw and Shapiro (1985). 

In this paper, we introduce non-parametric analogues of the r-test, based on sign statistics and 
Wilcoxon signed-rank statistics, that are applicable in the context of an important variant of the MS 
framework, and we compare their behavior with the t-test both under the null hypothesis and the 
alternative. The sign tests are probably exact in this case, irrespective of the presence of feedback 
even if the disturbances are non-normal or heteroskedastic (with heteroskedasticity of unknown 
form). With regard to the Wilcoxon statistics we could not prove exactness analytically in the model 
studied here, but we present simulation results indicating that Wilcoxon tests reject at their nominal 
levels and are robust to various changes in the nature of the disturbances. Further the non-paramet- 
ric tests suggested display good power relative to the t-test applied using either asymptotic or 
size-corrected critical values. Indeed, in the presence of feedback or non-normality, the powers of the 
sign and Wilcoxon tests can be considerably superior to that of the r-test. The methods described in 
this paper are an extension of Dufour (1981) where various non-parametric statistics are proposed to 
test independence against serial correlation alternative in a time series. 

In section 2, after describing the model, we introduce the relevant test statistics and derive the 
exact distribution of the sign statistics in this context. In section 3, we present Monte Carlo results on 
the level and power of the tests proposed. Section 4 contains a few concluding remarks. 

2. The model and four nonparametric statistics 

We consider the following variant of the two-equation MS model: 

~=p,(x,_,-p)+c,, t=l I..., T, (1) 

x,=e,+e,x,_,+q,, t=l,..., T. (2) 

where the vectors (ei, qi)‘, . . . , (cT, qT)’ are independent with absolutely continuous (not necessarily 
identical) distribution, ef and q, have median zero (for all r), cl,. . . , cT are independent of X0, and 
pi, p, 13, and 8, are fixed coefficients. Clearly, if et and vr ,have symmetric distributions (e.g., normal 
distributions), they also have mean zero. ~1 may be interpreted as a centering constant for X,, e.g. the 
mean of X, when X, is weakly stationary. However, the tests proposed below remain valid when p is 
an arbitrary constant. e, and 7, may not be independent. For example, MS assume that cr and nr 
have finite second moments with Corr(es, ql) = p es,, for all s and r (where S,, = 1 if s = r, and 
S,, = 0 if s # r). In this case, the coefficient p determines the importance of feedback; when p = 0, 
there is no feedback from the disturbances E, to the explanatory variable. We study the problem of 
testing H, : /3i = 0. 

Note that eq. (1) has no intercept when & = 0, so that the mean (or the median) of Y is zero 
under the null hypothesis. In several important cases, such as the one where Y, is a forecast error 
under rational expectations, this is a reasonable assumption. To test whether such errors are 
independent of past movements of X,, it is standard procedure to apply the r-test associated with the 
slope coefficient of the regression model 

~=a,+a,x,_,+~,. (3) 
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However, with (e,, n,) identically and normally distributed, MS found that this approach rejects 
much too often the null hypothesis even for sample sizes as large as 200, especially when p and 8, 
take values close to 1. This result leads to the problem of finding procedures with the correct size 
despite the presence of feedback. For this purpose, we suggest nonparametric analogues of the t-test 
that are applicable in the context of the model given by (1) and (2). 

The statistics proposed make use of centered values of X, where the mean (or median) of X, is 
estimated from the observations available only up to time t (instead an estimate based on the 
complete sample). It turns out that this repeated estimation procedure is important in obtaining the 
exactness of the sign tests. Let x, = (C:=,X,)/(t + 1) and 2, = med{ X,,, X,, . . . , X,) denote the 
sample mean and median of X, based on the observations up to time t. Let also u(r) = 1 if z 2 0, 
and U(Z) = 0 if z < 0. We consider the following four statistics: 

S, 

T T 

w,= c u[~(xt-,-x,-,)]R:,~ w,= c z4[l@-~-~-,,]R~t. (5) 
t=1 t=1 

With Z,, = Y,(X,_, - X,-i>, Rz is the rank of 1 Z,, 1 when 1 Z,, 1, 1 Z,, 1,. . . , 1 Z,, 1 are placed in 
ascending order. R 2: is defined analogously from Z,, = Y( X,_, - T?_ ,). S, and S, are the sign 
statistics based on the series Z,, and Z,, respectively, while W, and W, are the corresponding 
Wilcoxon signed-rank statistics. The distributions of such statistics are typically established under 
the assumption that the observations are mutually independent; see Lehmann (1975) or Pratt and 
Gibbons (1981). Here it is clear that Z,,, . . . , Z,, are not independent, and similarly for Z,,, . _ . , Z,,. 
Despite this difficulty, we can establish the following result for sign statistics. 

Theorem 1. Let the model given by (1) and (2) hold, let g, = g,( Z,) be a measurable function of the 
information vector Z, = (X0, X,, . . . , X,, Yi ,..., F), whereZO=X,,, andfetS,=cT=, u(ylg,_,). Then, 

when & = 0, Sg follows a binomial distribution with number of trials T and probability of success 0.5. 

Proof. When p, = 0, we have Y = e,, t = 1,. . . , T. Let s, = u(e,g,_,) and consider the characteristic 
function of SR when p, = 0: 

Go, = E[exp(i$)] = E n [ ,I, exp(iTs,)], 

where 7 E R and i = J-1. Conditional on the information vector I, 
ei, . . . , cT_ ,), the variables si, . . . , sT- ], g,_, are fixed and sr follows 
distribution on (0, 11, i.e. P[s,= 0] = P[s,= 1 ] = 0.5. We thus have 

irs*) 1 

, =(&, Xl,..., XT-13 
the uniform Bernoulli 

This argument can be repeated recursively and we find 

Gg,(~) = { [+I [I+ ediT) > T, 
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which is the characteristic function of the binomial distribution with number 
probability of success 0.5. q 

of trials T and 

This theorem motivates the introduction of the variables S, and S,. Even though the variables 
2, = Y,g,_,, t = 1,. . . , T, are not generally independent, we can conclude from Theorem 1 that the 
distribution of S, is the same as in the case where the Z!‘s are independent with continuous 
distributions having median zero. In particular, it is easy to see that this result applies to S, and S, in 
(4). We see here the importance of estimating the mean (or median) of X, recursively. Note also that 
cr and q1 need not have finite second moments. 

If the variables Z,,, . . . , Z,, were independent with continuous distributions symmetric about 
zero, W, would be distributed like a weighted sum W, = CTcl tB, of T independent uniform 
Bernoulli variables B,, . . . , B, on (0, l}, and similarly for W,. W, has been extensively tabled; see, 
for example, Wilcoxon, Katti and Wilcox (1970). It should be noted that the normal approximation 

with E( W,) = T( T + 1)/4 and Var( W,) = T(T + 1)/(2T + 1)/24 works well even for small values of 
T, see Lehmann (1975) for a general discussion of 
like Theorem 1 for the Wilcoxon statistics W, 

distributions by Monte Carlo methods. 

W,. However, we do not have an analytical result 
and W,. For this reason. We will study their 

3. Simulation results 

For each of the following experiments, data were generated from model (l)-(2) by setting 
_-, 

Tj, = per + l/l- ’ p q, &=p=O and XO=QJY-@i, where et and 77; are independent with the 
same distribution either normal, t(3) or Cauchy. Each experiment comprises 1000 replications. We 

Table 1 

Ma&k-Shapiro Model: Normal disturbances. a 

f-test Sl s2 w, w 

Asymptotic Corrected b 

(6% 8,) = (0,0.9) 

0.00 5.2 n.a. 3.8 3.7 5.3 5.2 

0.07 30.5 n.a. 11.1 13.8 20.7 19.1 

0.10 53.3 n.a. 18.5 23.1 34.6 33.2 

(P. 0,) = (0.9,0.9) 

0.00 8.1 4.9 3.4 3.5 4.0 3.4 

0.07 19.8 13.5 15.3 17.7 21.8 21.4 

0.10 36.0 28.2 22.3 26.8 34.7 33.1 

(p, e,) = (0.9,0.99) 

0.00 18.4 

0.07 29.6 

0.10 52.5 

4.7 2.9 3.6 5.0 4.9 
18.2 32.6 32.9 43.0 41.8 

37.5 43.5 43.6 56.3 53.6 

a T = 100 and p = 10. Entries represent percentages of rejections. 
b Empirical critical points are used in power calculations when p # 0. 
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Table 2 

Mankiw-Shapiro Model: Non-classical disturbances. a 

PI t-test 

Asymptotic 

Break heteroskedasticity ’ 

Corrected b 

SI s2 K w, 

0.00 12.4 4.1 3.5 4.3 4.6 4.6 

0.07 23.9 11.0 14.2 17.2 19.6 21.2 

0.10 37.8 21.4 22.9 27.0 31.5 32.2 

t(3) distribution d 

0.00 8.2 

0.07 18.2 

0.10 35.1 

n.a. 3.3 3.2 4.6 4.8 

n.a. 21.4 23.4 31.9 32.0 

*.a. 35.6 39.0 48.9 49.5 

Cauchy distribution’ 

0.00 5.2 n.a. 3.0 3.4 

0.07 12.3 n.a. 57.8 70.2 

0.10 28.8 n.a. 64.7 77.6 

a p = 10 and T = 100. Entries represent percentage rejections. 

b Empirical critical points are used in power calculations when p # 0. 

i Before t = 50 the disturbances are N(0, 1); afterwards they are N(O,16); p = 8, = 0.9. 
Student’s t-distribution with 3 degrees of freedom; p = 0, = 0.9. 

’ p = 1 and 0, = 0.9. 

5.0 3.9 

70.8 75.4 

78.9 85.0 

present here results for the sample size T = 100. More complete simulation results are available in 
Campbell (1990). 

Table 1 presents the results based on normal errors with E(E:) = E(T$) = 1. The r-test is applied 

using both the asymptotic critical point for the 5% level and the exact 5% points (determined 
empirically using 10000 replications); the exact critical points depend on p and 8,. The results for W, 
and W, use the normal approximation. Because the distribution of the sign statistics is discrete, the 
critical value for the sign tests was set at the closest point that yields a level less than or equal to 5%; 
in this case, this gives a level of 3.52%. Three specifications of the MS model are considered: 
(p, 0,) = (0, 0.9), (0.9, 0.9) and (0.9, 0.99). With p = 0, all is well for the f-test: the level is correct and 
it is more powerful than the nonparametric tests. With p = 0.9 and B, = 0.9, the results when & = 0 
confirm the MS conclusion that the t-test rejects too often when p and 8, are both close to 1. Here 
the nonparametric tests reject at their nominal levels under the null, and the powers of S, and W, 

generally exceed the power of the f-test applied with the correct critical points. As 0, approaches 1, 
the over-rejection problem of the asymptotic t-test becomes more acute: Under the third specifica- 
tion in table 1, the t-test rejects at more than three times its nominal level. But the non-parametric 
tests continue to reject at their nominal levels and, in this specification, can be considerably more 
powerful than the size-corrected l-test. 

The results of table 2 highlight the behavior of the non-parametric tests for three cases where the 
disturbances c, are not normal homoskedastic (non-classical disturbances): Normal distribution with 
the standard error jumping from 1 to 4 half-way through the sample, Student’s t-distribution with 3 
degrees of freedom, and Cauchy distribution. Consider first the impact of a jump in the variability of 
the disturbances (break heteroskedasticity). The asymptotic r-test then rejects overly. The sign tests 
are exact irrespective of the form of the heteroscedasticity as long as the conditions outlined in (1) 



290 B. Campbell, J.-M. Dufour / Over-rejections in rational expectations models 

and (2) are met. The Wilcoxon tests appear reliable as well. Further, the non-parametric tests are 
more powerful than the size-corrected t-test. With Cauchy and t(3) disturbances, the asymptotic 
z-test has approximately the right level (so that we do not consider size-corrected tests), but the 
non-parametric tests significantly outperform the f-test from the point of view of power. The 
conventional wisdom that non-parametric test perform well in the presence of outliers is thus 
corroborated. Notice as well that the performance of the non-parametric tests is improved consider- 
ably when the median, instead of the mean, is used to center the &‘s. 

4. Concluding remarks 

In certain contexts, such as in a consideration of the claim that forecasts are rational, the null 
hypothesis may reduce considerably the complexity of the model and allow the application of 
traditional non-parametric statistical methods. The presence of non-normal and/or heteroskedastic 
disturbances can undermine the reliability or the efficiency of parametric tests. In addition,even 
though the disturbances may be independent of the regressors, feedback can jeopardize the reliability 
of usual testing procedures. The model studied by MS is one such example. This paper has 
highlighted the potential usefulness of non-parametric testing procedures in such a context. It is 
well-known that sign tests and signed-rank tests are robust to problems of non-normality and 
heteroskedasticity. Our results suggest that they can also be valid despite the presence of feedback, 
such as the one studied by Mankiw and Shapiro (1986). The sign tests, in particular, are exact under 
very weak conditions allowing the presence of feedback. Further, the power of the non-parametric 
tests can be considerably superior to that of the parametric t-tests, especially in the presence of 
non-normality of feedback. 

Even though the simulations in this paper have focused on a simple stochastic set-up, it should be 
stressed that the nonparametric procedures developed are hardly tied to the Mankiw-Shapiro model. 
As suggested by the theorem, sign-type statistics work reliably in any environment where the 
disturbances are independent of the past. The applicability of the Wilcoxon statistic merits further 
investigation. 
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