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In the analysis of economic time series, a question often
raised is whether a vector of variables causes another one in
the sense of Granger (1969). Most of the literature on this
topic is concerned with bivariate relationships or uses finite-
order autoregressive (AR) specifications; see the reviews of
Geweke (1984a), Gouriéroux and Monfort (1990, chap. X),
Newbold (1982), and Pierce and Haugh (1977). In particular,
little attempt has been made to characterize and test causality
in the context of multivariate autoregressive moving average
(ARMA) models. Because an AR model can only approxi-
mate a moving average (MA) model and may require the
estimation of a large number of parameters to do so, mul-
tivariate ARMA models can be considerably more parsi-
monious than AR models and thus lead to more powerful
tests.

Characterizing and testing causality is, however, more
complicated in multivariate ARMA models than in pure
AR or MA models. Kang (1981) derived a necessary and
sufficient condition for noncausality in a general bivariate
ARMA model and suggested that a likelihood ratio test could
be based on this condition, but did not discuss its imple-
mentation. Similarly, Newbold (1982) suggested using a
likelihood ratio to test a sufficient (but not necessary) con-
dition of noncausality in a bivariatet ARMA model, and
Eberts and Steece (1984), Newbold and Hotopp (1986) and
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Taylor (1989) studied Wald, likelihood ratio, and Rao score
tests of the necessary and sufficient condition of noncausality
again in a bivariate model. For the multivariate case with
more than two variables, Tjostheim (1981) gave a formu-
lation of the concept of Granger causality in a general mul-
tivariate situation and developed a test procedure for cau-
sality in multivariate autoregressions. Hsiao (1982) also
proposed a generalization of the Granger notion of causality
to make some provision for spurious and indirect causality
that may arise in multivariate analysis; however, most of his
results were limited to trivariate situations. Osborn (1984)
examined Granger causality in multivariate ARMA models
by rewriting the model so that the autoregressive polynomials
were the same for all the variables. Causality tests were then
based on MA coefficients only. This approach does not take
into account all the restrictions implied by the vector ARMA
specification and may require estimating an unduly large
number of moving average and autoregressive coefficients.
Similarly, even though noncausality hypotheses are in prin-
ciple easy to test in the context of vector autoregressive mod-
els (VAR), like those suggested by Doan, Litterman, and
Sims (1984), Litterman and Weiss (1985), and Sims
(1980a,b), such models may require a large number of pa-
rameters to represent even simple vector ARMA models,
especially when the MA coefficients are large. Note also that
a subvector of a stationary VAR process is a vector ARMA
process but not necessarily a VAR process. In a more general
context, measures of linear dependence and feedback be-
tween multivariate time series were defined by Geweke (1982,
1984b).

The purpose of this article is to develop a causality analysis
for general vector ARMA models. In Section 1 we give a
simple definition of Granger causality between vectors and
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point out its equivalence with the more complex alternative
definition proposed by Tjostheim (1981). In Section 2 we
consider the class of linear invertible processes and give a
necessary and sufficient condition for noncausality between
two vectors of variables when the latter do not necessarily
include all the variables considered in the analysis. Even
though this condition was stated by Kang (1981) for a bi-
variate process and has been used as a sufficient condition
for noncausality (e.g., in analyses based on VAR models), a
proof for the general case does not seem to be available else-
where. In Section 3 we specialize the latter result to the class
of stationary invertible ARMA processes. Further, we obtain
simpler necessary and sufficient conditions for two important
cases: (1) the case where the two vectors reduce to two vari-
ables inside a larger vector whose past belongs to the infor-
mation set used to predict (Theorem 1), and (2) the case
where the two vectors embody all the variables considered
(Theorems 2 and 3). These simpler conditions are formulated
in terms of determinants of matrices built from submatrices
of the original matrices of AR and MA polynomials. These
conditions can be considerably more tractable from the point
of view of implementing tests. In Section 4 we discuss test
procedures for the necessary and sufficient conditions pre-
viously obtained. Among other things, we note that the nec-
essary and sufficient conditions for noncausality may easily
involve singularities at which standard asymptotic regularity
conditions do not hold. To deal with such situations, we
propose a sequential approach that leads to bounds tests.
Finally, in Section 5 we apply the tests proposed to Canadian
money and income data previously studied by Hsiao (1979).
The tests are based on bivariate and trivariate models of
changes in nominal income and two money stocks (M1 and
M2) specified using the methodology of Tiao and Box (1981).
In contrast with the evidence based on bivariate models, we
find from the trivariate model that money causes income
unidirectionally.

1. CAUSALITY BETWEEN VECTORS

Let {X,:t € Z} and {Y,: ¢t € Z} be two multivariate
second-order stationary stochastic processes on the integers
Z, suppose that the dimension of X, is #, and write X, = (X,

., X)) Let A, be an “information set” containing X, and
Y, and denote 4, = {4, : s < t}. For any information set I,,
the best mean square linear predictor of X, is denoted
P(X;| 1), (X | I,) = X;; — P(X;| I,) is the corresponding
prediction error, and ¢2(X;|I,) is the variance of ¢;. The
predictor P(X;| I,) is the orthogonal projection of X;; on the
Hilbert space spanned by the variables in ,. For Gaussian
processes, P(X;| I,) = E[X;| I,], but this property does not
hold in general; see, for example, Brockwell and Davis (1991,
sec. 2.7) or Priestley (1981, chap. 10). The best linear pre-
dictor of X, is the vector P(X,|I,) = (P(Xy|IL), ...,
P(X,|1,)), the corresponding vector of prediction errors is
given by &(X,|I,) = (e1(Xu | 1)), . . ., eu(Xn| 1,))', and we
denote Z(X,| I,) the covariance matrix of ¢,.

In the sequel we will use the following definition of non-
causality, which is a natural and simple extension of the
notion of noncausality between two univariate stochastic
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processes. The set A, — Y, represents all the information in
A, apart from the information in Y,.

Definition 1. The vector Y does not cause the vector X
if

0'2(X,~,|/I,)=02(X,~,|/I,—-Y,), i=1,...,n

(1.1)

According to this definition, the vector Y causes the vector
X if and only if ¢2(X;| 4;) < 62(Xy| 4, — Y,) for at least one
value of i. On the other hand, Tjostheim (1981) proposed
an apparently different definition of noncausality between
the vectors, which is as follows.

Definition 2. The vector Y does not cause the vector X
if
E(thA_t) = E(X1|1‘Iz - Yt) (1.2)

In our context the two definitions are equivalent and the
notion of noncausality can also be expressed directly in terms
of projections. Indeed, by the uniqueness of orthogonal pro-
jections, (1.1) is equivalent to P(X;|4,) = P(Xy|4, — Y,), i
=1,...,nor

P(X/|4) = P(X,| 4, — Y)), (1.3)

where the equality holds in the L, sense (hence with prob-
ability 1). Obviously, (1.3) implies (1.2). Conversely, non-
causality in Tjostheim’s sense implies noncausality in our
sense, and (1.3) follows. Thus the formulations (1.1), (1.2),
and (1.3) are equivalent.

2. CAUSALITY IN INVERTIBLE LINEAR PROCESSES

Let {X,:t € Z} be a second-order stationary purely in-
deterministic #-dimensional vector process. Without loss of
generality, we can suppose that E[X,] = 0. By Wold’s de-
composition theorem, the process { X, } admits the following
representation:

Xl = z ‘I,jat—j’

Jj=0

teZ, 2.1

where the ¥,’s are n X n matrices such that Z20 Yl < o0,

| -] is the Euclidean norm matrix, ¥, = I is the identity
matrix of order n, and {a,: t € Z } is the innovation process.
The a,’s are uncorrelated random vectors with mean 0 and
nonsingular covariance matrix V. We suppose that the pro-
cess (2.1) is invertible; that is, X, admits a possibly infinite
autoregressive representation

Xt = 2 l'IjX,_j + a,,

Jj=1

teZ, 2.2)
where the II;’s are n X n matrices such that the series in (2.2)
converges in quadratic mean. A characterization of the in-
vertibility of a multivariate linear process in terms of its
spectral density (matrix) function was given in Nsiri and
Roy (1992). Stationary invertible multivariate ARMA pro-
cesses are special cases of (2.2). Using the notation of the
backward shift operator B, (2.2) is equivalent to

II(B)X; = a,, te’z, (2.3)

where II(B) = =% 2o I; B/ = (I1;;(B) )uxn is an n X n matrix

of power series in the operator B and Iy = —Lx,.
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Let us partition X, and a, into three subvectors as follows:
X, = (X1, X%, X5)', a, = (a},, a%, a%y)’, where X, and a;
are n; X 1 vectors; i = 1,2, 3, withn; = 1, n, = 1, and ns
> 0; and n; + n, + n3 = n. When n; = 0, X, is partitioned
into two subvectors only. Using the corresponding partition
of II( B), (2.3) can be written as

a\ -
axy]. (24)
a3,

I0,(B) Ix(B) M;3(B)\ [ Xy

II(B) IIn(B) ILs(B) || Xz ) =
II; (B) IIxn(B) Is(B)/ \X

For any operator II(B), the corresponding function of the
complex variable z is denoted by II(z).

The following result is important for the sequel. It was

stated by Kang (1981) for a bivariate process, but a proof

for the general case does not seem to be available in the

literature. The proofs of the proposition and theorems are
given in the Appendix.

Proposition 1. In the linear invertible process (2.3) par-
titioned as in (2.4), X, does not cause X, if and only if IT,,(z)
=0.

By taking n, = n, = 1, we obtain a characterization of
noncausality between any two components of X.

Corollary 1. In the linear invertible process (2.3), for
any / and j, the variable .X; does not cause the variable X; if
and only if II;(z) = 0.

From Proposition 1 and Corollary 1, we deduce the fol-
lowing useful characterization.

Corollary 2. In the linear invertible process (2.3) parti-
tioned as in (2.4), X, does not cause X if and only if X; does
notcause X;, i=1,...,n,j=n+1,...,n + n,.

3. CAUSALITY IN ARMA PROCESSES
Let the n-dimensional ARMA (p, ¢g) process
®(B)X; = O(B)a, 3.1

be stationary and invertible, where #(B) =1—&® B — - - -
—®,B’and®(B)=1—-0,B— - - - —@,B? We also assume
that the parameters in ®(B) and @( B) are identified (uniquely
defined) as functions of the autocovariance matrices of X,,
so that ®(B) and O(B) have no common factor. Using Cor-
ollary 1, we derive the following characterization of noncau-
sality between any two components of X. In the sequel,
det A will denote the determinant of the matrix A.

Theorem 1. In the stationary and invertible ARMA pro-
cess (3.1), X; does not cause X; if and only if

det(®,(z), 8((z)) =0, 3.2)

where ®;(z) is the ith column of the matrix $(z) and 8;)(z)
is the matrix @(z) without its jth column.

If X = (X, X%, X4)/, as in Section 2, then the following
result follows immediately from Theorem 1 and Corollary 2.

Corollary 3. In the stationary and invertible ARMA
process (3.1), X; does not cause X, if and only if (3.2) is
satisfied fori=1,...,n,andj=n+1,...,n + n,.

From now on we will suppose that X is partitioned into
two subvectors: X = (X}, X4%)', where X;isn; X 1, i =1, 2,
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and n; + n, = n. In this case model (3.1) can be rewritten
as

(‘1’11(3) ‘sz(B))(Xu)=(9u(B) 912(3))(311

)(3.3)
®,(B) ®»(B)/\Xy 08,1(B) 0x(B)/\ay

where ®;(B) and ®,(B) are n; X n; matrices, i, j = 1, 2.
Then the condition of noncausality between X, and X, can
be formulated in the following way.

Theorem 2. Suppose that the stationary ARMA process
(3.3) is invertible, with det[®,,(z)] # O for all z € C such
that |z| < 1. Then, X, does not cause X, if and only if

®,1(z) — 0,,(2)8,,(2) '®,(2) =0. (3.4)

If ny = n, = 1, then X, does not cause X, if and only if
0,,(2)®,(z) — 0,,(2)®,,(z) =0, and we retrieve the con-
dition of Kang (1981). For a pure MA process, ®,,(z) =0,
®,,(z) =1, and (3.4) reduces to 8,,(z) = 0.

The following characterization of the noncausality be-
tween X, and X is more convenient to deal with applications.
Write ®(z) = (2;(2))nxn and 8(z) = (0,(2))ux». To simplify
the notation, we omit the argument z in ®;(z) and 0;(z).

Theorem 3. Suppose that the stationary ARMA process
(3.3) is invertible, with det[®,,(z)] # O for all z € C such
that |z| < 1. Then, X, does not cause X, if and only if

@y, 01 012 0y,
o, 0y, 0, 0,
: : : : =0 39)
q’rj Orl ®r2 Grr
q>r+i, Jj ®r+i,l ®r+i,2 ®r+i,r
fori=1,...,s,andj=1,...,r,wherer=n,; and s = n,.
Example 1. Let X, be a three-dimensional ARMA pro-

cess. From Corollary 3 it follows that X; does not cause (X5,
X;)' if and only if

®;,, 0, O
By 0y 0y =0
@3 03 O3

and
@, 0, 0O
Py 0, Oy =0.
®;; 03 05

On the other hand, by Theorem 3, X; does not cause (X>,
X;)' if and only if

‘I)”
CI)I'H',I

01

=0,
®l+i,l

i=1,2.

Thus Theorem 1 and Corollary 3 lead to the evaluation of
3 X 3 determinants, whereas Theorem 3 leads to the eval-
uation of 2 X 2 determinants.

More generally, the determinants involved in Corollary 3
are of dimension #, where # is the number of variables con-
sidered in the analysis, and the determinants involved in
Theorem 3 are of dimension r + 1, where r is the number
of variables in the subvector X;. In many situations, appli-
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cation of Theorem 3 can simplify the computations consid-
erably.

4. TESTING CAUSALITY
4.1 General Test Procedure

Given a series of N observations of the vector X = (X,
X%)’, we want to test the hypothesis of noncausality between
X, and X,. We propose a three-stage procedure:

1. Build a multivariate ARMA model for the series fol-
lowing the procedure of Tiao and Box (1981).

2. Using the results of Section 3, derive the noncausality
conditions and express them in terms of the AR and MA
parameters of the estimated model. Denoting 8 as the vector
of all AR and MA parameters, the noncausality conditions
lead to (possibly nonlinear) constraints on an / X 1 subvector
B, of 8. We will denote these restrictions by

Ri(8)) =0, j=1...,K, 4.1

where K < [.
3. Choose a test criterion. We will consider Wald and
likelihood ratio (LR) tests.

The Wald test is easier to apply, because it uses only the
unconstrained maximum likelihood estimators (MLE’s) of
the parameters of the full model. It does not require esti-
mation of the constrained model. Let T(8,) be the / X K
matrix of derivatives

OR;(8:)

T(BI) = ( 38;

b
81=6) )IXK

and [et V(B8,) be the asymptotic covariance matrix of
VN(B, — 8.). The Wald statistic is given by

Ew = NR(B)'[T(6)'V(B)T(B)]'R(B), (4.2)

where R(8)) = (R;(B1), . . . , Rx(81))'. In this definition T(8,)
must be of full rank. Because this is not always the case, we
propose in Section 4.2, a sequential procedure for such sit-
uations.

Let L(8, X) be the logarithm of the likelihood function
of the N observations. The likelihood ratio statistic is given
by

£rr = 2(L(B, X) — L(B*, X)), (4.3)

where 8* is the MLE of 8 under the constraints (4.1) and
G is the unconstrained estimator.

Under the null hypothesis of noncausality, it is well known
that £, and £,z are asymptotically equivalent and follow
x% distributions; see Basawa and Koul (1979) and Basawa,
Billard, and Srinivasan (1984). At the significance level «,
we reject the hypothesis of noncausality if £ > X%, —,, where
X% 1-«18 the (1 — a)-quantile of the chi-squared distribution
with K degrees of freedom and £ represents £y or 5.

4.2 A Sequential Bounds Procedure
for the Singular Case

We now describe a sequential approach to deal with sin-
gular cases. Consider the bivariate stationary and invertible
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ARMA (1, 1) model:

(1 —¢uB —9¢12B )(Xn)
—¢nB 1 — ¢nB/\ Xy

~ ( —6,,B

o)
1 — 0B /\ay
From (3.4), X, does not cause X,

= 011(2)P21(2) — 021(2)®11(2) =0,

& (21 — 021)z + (011621 — $21011)2* = 0,

1‘_01|B
—0,B

= ¢y — 0 =0 and ¢,0; — ¢210;, =0. (4.4)

For the vector ﬂl = (d)“, ¢2|, 011, 021)', the matrix

0 6y

I -6
TBY=| o _g

LY

is not necessarily a full column-rank matrix under the null
hypothesis Hj : X, does not cause X;. To avoid this problem,
rewrite the noncausality constraints (4.4) as follows:

¢ — 0 =0
and

$21 =0, =0 or [¢ #0and ¢, —0;;,=0]. (4.5)

Thus ¢,; — 6>; = 0 is a necessary condition for Hy, ¢
=@,, = 0 is a sufficient condition for Hp, and ¢, — 0
= 0 and ¢,; = 0, (taken jointly) are sufficient conditions for
H,. Consider the hypotheses: H}: ¢o; — 02 = 0; Hj: ¢
=0, = 0; H3: ¢21 # 0, ¢p1 — 02, = 0, and ¢y, — 0, = 0;
and H3: ¢;, — 6;, = 0. We have the following relations:
H3=H3N H}, HY < Hy < H}, H3 < Hy < H}. Suppose
now that we can test the three hypotheses H), H3, and
H3 separately. For H3, it will be sufficient to test ¢;; — 0y
= ( under the assumption ¢,; # 0. Then, for given signifi-
cance level (0 < a < 1), we can test Hy in the following
way. Leta = a; + apand 0 < ;< 1,i =1, 2.

1. We first test H} at level «,. If H} is rejected, then H,
is rejected too and the procedure stops.

2. If H} is not rejected, then we test H3 at level a,. If
H3 is not rejected, then we cannot reject Hy and we stop.

3. If we reject H3, then we test H3: ¢;; — 6,, = 0 at level
ay. If H} is rejected, then Hj is also rejected. If H} is not
rejected, then Hj is also not rejected.

If H, is rejected by this procedure, then we write (o, a3)
= 1; if it is not rejected, then we write Y(a,, az) = 0. The
procedure is summarized in Figure 1.

The procedure just described is conservative: Under Hy,
we have P[Y(a;, as) = 1] < P[A] + P[B], where A4 represents
the event “reject H{}” and B represents the event “do not
reject H{ and reject H3 and H3.” For the event B there are

two possible cases (under Hy):

1. ¢5, = 65, = 0, in which case we have P[B] < P[reject
Hil=«a
0 2
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H, H,

Figure 1. Sequential Procedure for Testing H,. The symbols R and R
mean “reject”’ and ‘‘do not reject,”” and H, stands for “‘not H,."

2. ¢ =~021 # 0 and ¢,, = 6,,, in which case P[B]
< P[reject H3] = as.

Therefore, we have

PiY(ay,a)) =1]<a; + an < a. 4.5)

Because the critical region Y(«;, a;) = 1 is conservative, it
is better to view the test as inconclusive when Y(«a;, ;) = 0.
However, it is possible to reduce the probability of an in-
conclusive test by observing that

P[Y(ay, a;) =01 < 1 — P[reject H)] = 1 — ;. (4.6)

Because Y(a, a,) = 0 implies Y(a;, o) = 0 (because a = «;),
this suggests the following bounds procedure:

1. Reject Hy when Y(a;, az) = 1.
2. Accept Hy when Y(a, o) = 0.

3. Consider the test inconclusive otherwise. 4.7)

Clearly, under H,, P[reject Hy] < a and P[accept Hy] < 1
— «a. For further discussion of bounds procedures, see Dufour
(1989, 1990). It is easy to see that the approach just described
can be adapted to other situations. Of course, the occurrence
of such singularities depends on the structure of the ARMA
model studied, and so a bounds procedure may not be
needed.

5. CAUSALITY TESTS BETWEEN
MONEY AND INCOME

Causality relations between money and income have been
much debated in the economic literature; see Feige and
Pearce (1979), Hsiao (1979), Osborn (1984) and Sims (1972,
1980b). To illustrate the causality conditions and tests given
previously, we will now study causality between money and
income in Canada. The data used are those of Hsiao (1979)
and Osborn (1984). They consist of quarterly seasonally ad-
justed nominal GNP, M1, and M2 over the period 1955-
1977 (92 observations). A listing of the data is available in
the Appendix of Hsiao (1979).

The natural logarithm of all three variables was taken be-
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fore modeling. Unit root tests, following the methods of
Dickey and Fuller (1979, 1981) and Phillips and Perron
(1988), led us to analyze the first difference of each series.
In the following we will denote y, = (1 — B)ln GNP,, m,,
= (1 — B)In M1,, and my = (1 — B)In M2,. Using the ap-
proach of Tiao and Box (1981), we first performed bivariate
analyses of (y,, my,)’, (y;, ma,), and (m,,, my,)" and then
performed a trivariate analysis of (y,, my,, my,)". The models
obtained in this way appear in Figure 2. These models all
satisfy the diagnostic checks suggested by Tiao and Box
(1981) to ensure model adequacy. Further details on these
analyses are available in Boudjellaba (1988).

Let us first consider the bivariate models. For (y,, my,)’,
we see from Theorem 1 that

®1(z) 0,(2)
®,51(z) 05(2)

Vi my e

1-¢0z 1-6Y)2
I d)ll 11 504:’(]5(211):0 and

- ¢(2l1)2 0

(1) 5(1) 1 _
¢$2101 =0e= ¢ =0

Bivariate Models

1-798 -208)[%] [o001] [i- 8618 0 ag
(.049) (.040) (.001) (071)
- 374B  1-2396B| [my,|={002|*] o 1- 50884 |afb
(101) (096 | | (002) (.088)
1- 8768 0 lr)’z’ 03] [1- 6578 0 a®
(.093) (.002) (.147)
— 2738 1-.755B| |my| =] 000 |*| o 1- 71784 | a®
(.068) 0sn || | |coon) (.079)
1 _6a08) [m] [o002] [1- 56084 0 af
(.065) (002) (.079)
- 208B2 1 781B| |my| = | 002 | * 0 1- 61684 |af
(064) (060) | { 0onf | (.074)
Trivariate model
1- 61082 - 095B — 29982 0 i 002
(077) (068) (072) (.001)
0 1 - .627B | |mu 002
(.065) = 1(.002)
0 — 224B? 1 - .784B| |m2 002
(.067) (.059) (.001)
1 - .668B2 0 0 Ay
(.105)
— .148B° 1 - .578B* 0 ay,
o102 (.080)
0 0 1 - .072B% - 594B*%| |ay
(083) (078)

Error covariance matrices ( X 10% and in the same order as the models)
29 217 ° 24 101 ° 77 106 33 1.87 .70 -
13 70 1.03

Figure 2. Multivariate ARMA Models. NOTE: Estimated standard errors
are given in parentheses.
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and
®5(z) 0y2(2)
T en(z) On(z)
W
—¢ 0
} (;)2(1) | — %4 =0 ¢ =0,
2Z -

where -+ means “does not cause,” ®;(B) and 0;(B) refer
to the correspondmg lag polynomials in the model for (y,,
my,)’, and ¢>,, and 0(,,'() are the coefficients of B* in ®,(B)
and 0,(B). The Wald and LR statistics for testing “y, does
not cause m,,” (y, - m,,) take the values 13.7 and 36.9.
(Causality tests are summarized in Table 1). To test
my, 7 y,, the corresponding statistics are 25.8 and 64.6.
Because the asymptotic null distribution of these test statistics
is X1, both null hypotheses are strongly rejected at conven-
tional significance levels, and we conclude that there is feed-
back between y, and m,, (i.e., m;, < y,). Hsiao (1979) and
Osborn (1984) reached the same conclusion.
For (y,, my,)', Theorem 1 implies

®,1(z) 011(2) _
Vi my <= =
®,,(z) 05(2)
-z 1- 0(111)2  _
_¢(211)Z 0 21 =
and
P (¢}
My, = Yy = 12(2) 12(2) -
$5,(2) 0(2)
0 0 ~0
— 9%z 1-69z4 7

where ®,(B) and ©,/(B) now refer to lag polynomials in the
model for (y,, my,). We see that the condition m,, —# y, is
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satisfied exactly by the model, whereas y, - my, is strongly
rejected by the Wald and LR tests (see Table 1). Thus y,
causes 11, unidirectionally (y, = my,). This conclusion is
also in agreement with Hsiao (1979) and Osborn (1984).

For (m,, my), we find in a similar way that m,
-+ My = ¢>(211) = 0and my, #+ m;,, < qS(llz) = (. Both of these
hypotheses are strongly rejected (especially the second one),
so that we conclude that there is feedback between m, and
My, (M, < My).

From the bivariate models we thus find m, < y,, y,
— my, and m, <> m,,. The most striking results here is that
money stock changes (1, and m,,) do not cause unidirec-
tionally nominal income changes (y,), whereas y, causes ni,,
unidirectionally.

A bivariate causality analysis between y, and m, or my,
is unsatisfactory, however. Given the use of two money stock
series, the hypothesis of interest is: Do money stock changes
(my, and m,,) cause nominal income changes (y,)? To answer
this question, a multivariate ARMA model incorporating at
least three variables is required. Again using the approach
of Tiao and Box (1981), we found the trivariate model given
in Figure 2.

The most interesting relationship here is the one between
v, and the vector (my,, my,)'. From Theorem 3, it follows
that

+ (M, M) = ®,(z) 0,(2) —0 and
Ve o T ®,,(z) 05(2)
®,,(z) 0,1(2) _ 1 - ¢(]21)Zz 0(12,)22 —0
®3,(z) O3(2) 0 0(5) 3
1 . (2) 2 1 _ 0(2) 2
and ' 0 1z 0112 =0 <05 =0

Further, by Corollary 2, (m,,, my) - y, < m;, - y,and

Table 1. Causality Tests

Null hypothesis Parametric Wald Likelihood Degrees of
(noncausality) representation statistic ratio statistic freedom
Bivariate models Ve My o1 = 13.7° 36.8° 1
My + ¥ 64 = 25.8° 64.6° 1
Vi ma b5 = 16.1° 23.3° 1
My Y ® — —_ - -
My~ My o = o 10.5° 20.4° 1
Mgy~ My, o's = 96.9° 45.6° 1
Trivariate models Ve - (M, May) 05 =0 2.1 35 1
(M, M) + 0 =00= 69.3° 62.7° 2
Ve P my° o5 =0 2.1 35 1
My + ¥ == 69.3° 62.7° . 2
Yot mz® — — — —
My ¥i° - — — -
My~ My 68 = 11.2¢ 17.22 1
My = My o = 93.0° 46.22 1

* Significant at level .05.
® The condition of noncausality is satisfied exactly by the model.

¢ Because the structure of the model implies that y, -+ my and my —+ y,, the statistics for testing noncausality between m,, and y, are identical to those between (m,,, my) and y,.
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my, - y, and, by Theorem 1,
®15(z) 012(z) 053(2)

my 2 Y= | $22(z) 0(z) 0x3(z)|=0«
®3,(z) 03(z) 0O5(2)

(1) (2)
—¢1z— ¢12z? 0 0
1 1—65z4 0 =0
2 4
— %522 0 1— 0522 — 6%z

(692 + 6321 — 659 2%
X (1= 052" — 652 = 0 = ¢ = 63 = 0
and

®13(z) 012(z) 043(2)
My 2 o= [ $3(2) 0n(z) 0x(z)|=0«
®33(z) 0O3(2) 033(2)

0 0 0
®3(z) 02(z) 0y3(z)|=0.
®33(z) 0O3(z) 0s33(2)

We see that the condition for m,, - y, holds exactly in this
model, so that (m,,, my)' -+ y, < m;, + Vi ¢(ll2) = ¢(122)
= 0. Using these conditions, we see in Table 1 that (m;,,,
my)' -+ y, is strongly rejected, but y, = (m,,, my,)’ is ac-
cepted (at level .05). Causality appears to be unidirectional
from (m;,,, my,)' to y,. This result agrees with the one obtained
by Osborn (1984) using a different methodology.

By Theorem 1 we also have m;, + my < ¢(322) = 0,
my + my, = ¢% = 0, y, + my = 65 =0, and m,,
-+ Yy e qb(.'z) = ¢(.22) = 0, and the conditions for m,, 4 y,
and y, - my, are satisfied exactly by the model. We thus
find that m,, = y,, whereas y, and m,, do not cause each
other. Further, the hypotheses q5(322) = 0 and ¢(213) = 0 are
strongly rejected, suggesting feedback between m;, and m,,.

Thus the causality structure that emerges from the trivar-
iate model of (y,, my,, my,)" is my, <> m,, = y,. There is no
direct link between m1,, and y, and no causality running from
my, and my, towards y,. Due to the presence of feedback
between m,, and my,, the causality relationships suggested
by the bivariate models now appear to be spurious. These
results are, of course, quite consistent with a monetarist in-
terpretation of the relation between money and nominal in-
come.

6. CONCLUDING REMARKS

As illustrated by the previous example, the conclusions of
a causality analysis obtained with bivariate models do not
necessarily coincide with the ones obtained from a multi-
variate model (dimension »n > 2). Therefore, it appears im-
portant when analyzing the relationships between two vari-
ables or two set of variables to work with a model that
embody all the variables in the study. Multivariate ARMA
models provide a natural and parsimonious framework for
such an analysis. Further, the necessary and sufficient con-
ditions established in this article allow one to test hypotheses
of noncausality by considering directly a multivariate ARMA
model.
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APPENDIX: PROOFS

Proposition 1. From (2.4) it follows that = 1., IL;(B)X;, = a,,.
ertlng nz,(B) = 62,’[ - 2 1 nz,'(k)Bk, i= 1, 2, 3, where 5,~,~denotcs
the Kronecker delta and I stands for the identity matrix, we have

3

Xy = 21 Z; + ay, (A.1)
i
where
Z,= 2 1L X -k, i=1,2,3. (A2)
From (A.1) we have
P(Xa | Xys, Xor, X3) = él Z,, (A3)
=1,
because a, is orthogonal to X,. Further,
P(Xy | X, X30) = P(Zy | Xor, X3)) + Zos + Zs,. (A4

IfIT;, (z) = 0, then we have Z;, = 0, so that P(Z,,|X,,, X3,) = 0.
From (A.3) and (A.4), it follows that P(Xy|X., Xa, Xs)
= P(Xy|Xy, X3:) = Zy, + Z;,. By the equivalence between (1.1)
and (1.3), the “if ” part of the proof is completed.

Conversely, if X, does not cause X, then P(Xy|X,,, X,/ X3,)
= P(X|X2, X3). From (A.3) and (A.4), it follows that Z,
= P(Z,| X2, X3.); that is, the components of Z,, are contained in
the closed span of Xy, U X3,. Therefore, we can find sequences of
matrices

{H(zg()k) . k = 1, ey T}Ojg.:],
such that

(M5 k=1,..., T},

T T
(7) (7) q.m.

2 MnXo-i + 2 M Xsik = —Zyy,

k=1 k=1

(A.5)

where q:: refers to convergence in quadratic mean (as T — o).
From (A.2) for i = 1 and (A.5), we get

z (1 (1) am.
2 { Moo X ok + Moo Xo ik + Mos(0Xsi} = 0
k=1

or, equivalently,

T T q.m.
> DX > 0,

(A.6)
k=1
where D ]((77 is the n, X n matrix defined by
D" = (I 4y, M50y, 53,
k=1,...,T, T=1 (A7)

Multiplying the left side of (A.6) by a)_,, we have 7., Di"

Ly Ly .
X X ,a;-; = 0, where = means convergencg in the L, norm (as
T,
T — o). Hence 27, D{"E[X,-xa\_,] = D{”V — 0, because

E[Xai-] =V, k=1,
=0, k> 1.

The matrix V being nonsingular, we have DET) - 0; hence II,,
= 0. Similarly, multiplying the left side of (A.7) by a}_,, we find
D{"E{X,ia},] + D;”V = 0, so that D;”V — 0, and IL, 5,
=0,andsoonfork=3,4,....ThusIl;4,=0,k = 1,and II,,(2)
=0.

Theorem 1. Because the process {X,} is invertible, it can be
expressed in a pure autoregressive form: ®(B)~'®(B)X, = a, or,
equivalently,

[det ®(B)]™'8*(B)®(B)X, = a,, (A.8)
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where @*( z) denotes the adjoint matrix of ®(z). The matrix 8*(z)
can be written as ©*( z) = ((—1)"/4;(z))’, where A is the minor
of @(z) associated with the (i, j) element. Writing

IT*(z) = ®*(2)&(z) = (11} (2)), (A.9)

it follows from Corollary 1 and (A.8) that X; does not cause X,
& I} (z) = 0, because det ®(z) # 0 for all z € C such that |z|
< 1. We see from (A.9) that

M(2) = 5 (—)*8u(2)A(2) = t( > (—1)"*'4>k,(z)Ak,(z))
k=1 k=1
= xdet(®.(z), 9;(2)),
and the result is proved.

Theorem 2. The process (3.3) being invertible, it can be ex-
pressed as an (infinite) autoregressive process:

H(B)(xlt) _ [3u
X - (821) ’

I (z) Ia(z)
I, (z) Ixn(z)

Using the inverse of a partitioned matrix as given by Searle and
Hausman (1970, p. 113) and omitting the argument z for simplicity,
we have, for |z| < 1,

01 — (9_1(1 +0,,D'8,08)
-D7'0,,0;!

where

II(z) = ( ) = 0(z) '®(z), |z] < 1.

-07/8,,D™"
D! ) ’

where I denotes the identity matrix and D = ©,, — 8,07/ ®,,. The
existence of D! follows from the assumption that @1 exists and
from the invertibility of model (3.3), because det ® = det(®,;)
X det(®,, — 8,07 0,,); see, for example, Searle and Hausman
(1970, p. 111). Then, from Proposition 1, X, does not cause X,
oI, =-D'9,07/®,+D ', =0 —0,07/d, + &, =
0, and (3.4) follows.

Theorem 3. We first suppose that n, = 1. The generalization
to n, = s, an arbitrary integer, is straightforward. For simplicity,
let

0, 0, 0Oy,
A=0,=|% €2 0 O
I o,
&, @, 3,
B=g,=|% % = |
8, @, %,
C =& = (Prer1s Pre12s -+ -5 Prary)s
and
D=0 = (0,411, 0412, - - -, Or11r).

From Theorem 2, X, does not cause X, < C — DA™'B=0 < AC
— DA*B =0, where A* and A denote the adjoint matrix and the
determinant of A: A* = [(—1)""4;]". The jth component of the
line vector DA*B is o = 2=y 041,(Zhet (—1)¥'®4Ak), and
the jth component of the vector AC is 8, = &, ;A. Hence AC —
DA*B =0 E =8;—a;=0,j=1,..., r. But we can write
= =2 (=1)0p1,i (Zhe (—1)**'®,, 4,;) and, consequently, E;
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is (%) the determinant of the matrix

¢, Oy 0.,
& O 0,
‘I;r, (.)'rl L. érr ’
®11, Opin 1,
where j=1,...,r. Whenn, = s> 1,
q>r+l,l q’r+1,r
C= q)r-fz,l ®,.0, ,
q)r;s.l q>r+s,r
®r+l,l ®r+l,r
p = | @21 Ors2s
I .y
and
C-DA " B=0<=[®y1,..., Prisr]
—[Orsits 3O, JATB=0,i=1,...,5¢
(3.5) is satisfied fori = 1,...,sandj=1,...,r.

[ Received August 1990. Revised November 1991.]
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