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abstract–We analyze factor models based on the Arbitrage Pricing Theory (APT). using 
identification-robust inference methods. Such models involve nonlinear reduced-rank 
restrictions whose identification may raise serious non-regularities and lead to a failure of 
standard asymptotic theory. We build confidence sets for structural parameters based on 
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inverting Hotelling-type pivotal statistics. These confidence sets provide much more 
information than the corresponding tests. Our approach may be interpreted as a multivariate 
extension of the Fieller method for inference on mean ratios. We also introduce a formal 
definition for a redundant factor linking the presence of such factors to unbounded confidence 
sets, and we document their perverse effects on minimum-root-based model tests.

Results are applied to multifactor asset-pricing models with Canadian data, the Fama-French-
Carhart benchmarks and monthly returns of 25 portfolios from 1991 to 2010. Despite evidence 
of weak identification, several findings deserve notice when data are analyzed over ten-year 
subperiods. With equally weighted portfolios, the three-factor model is rejected before 2000, 
but weakly supported thereafter. In contrast, the three-factor model is not rejected with 
value-weighted portfolios. Interestingly in this case, the market factor is priced before 2000 
along with size, while both Fama-French factors are priced thereafter. The momentum factor 
severely compromises identification, which calls for caution in interpreting existing work 
documenting momentum effects on the Canadian market. This empirical analysis underscores 
the practical usefulness of our analytical confidence sets.

IntroductIon

Equilibrium-based financial econometric models commonly involve reduced-
rank (RR) restrictions. Well known applications include work on asset-pricing 
based on the Arbitrage Pricing Theory (APT) and factor models (Black, 1972; 
Ross, 1976)1. From a methodological perspective, RR restrictions raise statistical 
challenges. Even with linear multivariate models, discrepancies between standard 
asymptotic and finite-sample distributions can be severe, due for example to high 
dimensionality; see Dufour and Khalaf (2002) and the references therein. Rank 
restrictions pose further identification non-regularities which can lead to the failure 
of standard asymptotics. This provides the motivation of this paper.

From an empirical perspective, we focus on RR-based inference methods relevant 
to factor models of asset pricing. In multivariate-regression financial models, finite-
sample testing is important because tests which are only approximate and/or do not 
account for non-normality can lead to unreliable empirical interpretations of standard 
financial models; see Shanken (1996), Campbell et al. (1997), Dufour, Khalaf and 
Beaulieu (2003, 2010), and Beaulieu, Dufour and Khalaf (2007, 2009, 2010a, 2013). 
In parallel, an emerging literature, which builds on Kan and Zhang (1999a, 1999b) 
recognizes the adverse effects of large numbers of factors; see Kleibergen (2009), 
Kan, Robotti and Shanken (2013), Kleibergen and Zhan (2013), Gospodinov, Kan 
and Robotti (2014), and Harvey, Liu and Zhu (2015). In this paper, we develop 
inference methods immune to both dimensionality and identification difficulties.

The few finite-sample rank-based asset-pricing methods (Shanken, 1985; 
Shanken, 1986; Zhou, 1991 and 1995; Shanken and Zhou, 2007) focus on testing 

1. See also Gibbons (1982), Barone-Adesi (1985), Shanken (1986), Zhou (1991), Zhou (1995), 
Bekker, Dobbelstein and Wansbeek (1996), Costa, Gardini and Paruolo (1997), Campbell, Lo and 
MacKinlay (1997: Chapter 6), Velu and Zhou (1999), and Shanken and Zhou (2007).
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rather than set inference. Kleibergen (2009) provides numerical identification-
robust inference methods backed by a simulation study which reinforces the 
motivation for our approach2. In Beaulieu et al. (2013), we developed confidence 
sets for possibly weakly identified parameter in such a context, but the proposed 
method is limited to a model with a single factor. In this paper, we allow for 
several factors, which leads to vector nonlinear (possibly unidentified) parameters. 
This considerably expands the class of financial models considered. Overall, we 
make three main contributions.

First, we build confidence set (CS) estimates for the parameters of interest, 
which are based on inverting minimum-distance pivotal statistics. These include 
Hotelling’s T2 criterion (Hotelling, 1947). In multivariate analysis, Hotelling’s 
statistic is mostly used for testing purposes, and its popularity stems from its 
least-squares (LS) foundations which yield exact F-based null distributions in 
Gaussian setups. We apply analytical solutions to the test inversion problem. Our 
CSs provides much more information than the Hotelling-type tests on which they 
are based, and extend their relevance beyond reduced-form specifications; see 
Beaulieu, Dufour and Khalaf (2015) for the underlying finite-sample statistical 
theory and simulation evidence.

Second, we provide a formal definition of a statistically uninformative factor, 
and we link the presence of such factors to the possibility of unbounded confidence 
sets. We also document the perverse effects of adding uninformative factors on 
J-type minimum-root-based tests. Although unbounded confidence sets are not 
always uninformative, our results call for caution in exclusively relying on tests to 
assess models. This warning has obvious implications for asset-pricing models and 
motivate our empirical analysis.

Third, our results are applied to multifactor asset-pricing models with Canadian 
data and the Fama-French-Carhart benchmark model (Fama and French, 1992; 
Fama and French, 1993; Carhart, 1997). We analyze monthly returns of 25 portfolios 
from 1991 to 2010. The empirical literature on asset-pricing models in Canada is 
scarce. Most studies involving Canadian assets aim at measuring North-American 
financial market integration (see, for example, Jorion and Schwartz, 1986; Mittoo, 
1992; Foerster and Karolyi, 1993; and more recently Beaulieu, Gagnon and Khalaf, 
2008). In other cases (Griffin, 2002; and Fama and French, 2012), international 
multifactor asset-pricing models are tested on a large set of countries, including 
Canada, to measure the importance of international versus domestic asset-pricing 
factors in different countries.

One of the few articles on a multifactor asset-pricing model for Canadian 
portfolios — using exclusively Canadian factors — is L’Her, Masmoudi and Suret 
(2004); see also the references therein. We extend this literature to verify on a long 
time period the importance of domestic Fama-French factors to price Canadian 

2. In contrast, Kan et al. (2013), Kleibergen and Zhan (2013), and Gospodinov et al. (2014) 
focus on model misspecification.
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assets adding momentum to the list of factors considered by L’Her et al. (2004). 
The specificities of Canadian assets are put forward and contrasted with American 
assets for which abundant results are available. To achieve this goal, we use improved 
inference procedures based on a formal definition of a statistically non-informative 
asset-pricing factor.

In the context of the weak-instrument literature, our methodology may be 
viewed as a generalization of the Dufour and Taamouti (2005) quadric-based set 
estimation method beyond the linear limited-information simultaneous equation 
setting. For other quadric-based solutions in different contexts, see Bolduc, Khalaf 
and Yelou (2010) for inference on multiple ratios, and Khalaf and Urga (2014) on 
cointegration vectors.

In relation with Kleibergen (2009). our methodology allows one to estimate the 
zero-beta rate (Shanken, 1992; Campbell et al., 1997: Chapter 6; Lewellen, Nagel 
and Shanken, 2010), which has not been considered by Kleibergen (2009). Theoretically 
coherent empirical models often impose restrictions on the risk prices through the 
zero-beta rate; see Lewellen et al. (2010: prescription 2). Examples include: (i) 
whether the zero-beta rate is equal to the risk-free rate, and (ii) whether the risk price 
of a traded portfolio when included as a factor equals the factor’s average return in 
excess of the zero-beta rate (Shanken, 1992). We also formally control for factors 
which are tradeable portfolios. Furthermore, in contrast with Kleibergen’s numerical 
projections, our analytical solutions can easily ascertain empty or unbounded sets, 
whereas numerical solutions remain subject to precision and execution time constraints. 
Avoiding numerical searches is particularly useful for multifactor models.

In the context of the statistical literature, our test inversion approach can be viewed 
as an extension of the classical inference procedure proposed by Fieller (1954) for 
inference on mean ratios (see also Zerbe, Laska, Meisner and Kushner, 1982; Dufour, 
1997; Beaulieu et al., 2013; Bolduc et al., 2010) to a multivariate setting. Like standard 
asymptotic procedures which use the delta method, our generalized Fieller approach 
relies on LS. Yet both approaches exploit LS theory in fundamentally different ways. 
In contrast with the former — which excludes parameter discontinuity and yields 
bounded confidence intervals by construction — our test inversion procedure does not 
require parameter identification and allows for unbounded solutions.

Empirically, despite overwhelming evidence of weak identification, several 
interesting results deserve notice, particularly when data are analyzed over ten-year 
subperiods. With equally weighted portfolios, the three-factor model is rejected 
before 2000. Thereafter, the model is weakly supported with HML confirmed as 
the only priced factor. With value-weighted data, the three-factor model is not 
rejected; interestingly, the market factor is priced before 2000 and unidentified 
thereafter, while both Fama-French factors are priced after 2000. Although momen-
tum is priced with equally-weighted data before 2000, the resulting sets on other 
factors are practically uninformative. The momentum factor thus severely com-
promises identification, which calls for caution in interpreting existing work 
documenting momentum effects for the Canadian market.
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The paper is organized as follows. Section 1 sets the notation and framework. 
In section 2, we present our test inversion method and associated projections. Our 
empirical analysis is discussed in section 3. In the last section, we conclude. A 
technical appendix follows.

1. multIfactor prIcIng model

Let r
i
, i = 1,… , n,  be a vector of T returns on n assets (or portfolios) for 

t = 1,…,T, and R = [ R
1
 … R

q 
] a T x q matrix of observations on q risk factors. 

Building on multivariate regressions of the form

ri = aiιT + Rbi +ui , i = 1,…,n,  (1)

our APT based empirical analysis formally accounts for tradeable factors; see 
Shanken (1992), Campbell et al. (1997, Chapter 6), and Lewellen et al. (2010). 
Note that the inference method applied by Kleibergen (2009) relaxes tradeability 
restrictions.

Without loss of generality, suppose that R
1
 corresponds to a vector of returns 

on a tradeable portfolio, for example, a market benchmark. Consider the following 
conformable partitions of  R and b

i
: 

R = [ R
1
  F ], F = [ R

2 
 …  R

q 
],    (2)

b
i
 = [  bi1

b
iF  ], i = 1,…,n, (3)

where F is the T x (q – 1) submatrix containing the observations on the q – 1 factors 
R

2
,…,R

q
, while b

i1
 is a scalar and b

iF
 a (q – 1)-dimensional parameter vector. In 

this context, the APT implies a zero-intercept in the regression of returns in excess 
of the zero-beta rate, denoted γ

0
, on: (i) R

1
 in excess of γ

0
, and (ii) on R

2
,…,R

q 
in 

excess of a risk price (q – 1) dimensional vector denoted γ
F 
, where γ

0
 and γ

F
 are 

unknown parameters: 

ri −ιTγ0 = R1 −ιTγ0( )bi1 + F −ιTγF
'( )biF +ui , i = 1,…,n.  (4)

Rewriting the latter as in (1) produces a nonlinear RR restriction on its intercept 
which captures the zero-beta rate and risk premia as model parameters: 

ri = aiιT + R1bi1 +FbiF +ui ,  (5)

ai + γ0 (bi1 −1)+ γF
' biF = 0.  

(6)

We wish to build confidence sets for the q-dimensional vector

θ = γ0 ,γF
'( )'  

(7)
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which we interpret using a traditional cross-sectional factor pricing approach; see 
Campbell et al. (1997: Chapter 6) or Shanken and Zhou (2007). Indeed, the time 
series averages of (5) lead (with obvious notation) to

ri = γ0 (1− bi1)− γF
' biF + R1bi1 +FbiF +ui

= γ0 + R1 − γ0( )bi1 + F − γF
'( )biF +ui , i = 1,…,n.

 
(8)

It follows that γ
0
 retains its traditional cross-sectional definition, and the coefficients 

on betas of the non-tradeable factors correspond to F − γF
'( ) . This implies that R

1
 

is not priced if R1 − γ0 = 0  and each one of the remaining factors will be not be 
priced in turn if the corresponding component of F − γF

'( )  is zero. Our procedure as 
described below yields confidence intervals on γ

0
 and the components of γ

F 
. Given 

these intervals, we assess whether the tradeable factor is not priced if R
1
 is covered, 

and whether each factor besides R
1
 is not priced if the average of each factor is, in 

turn, not covered.

Our intervals are simultaneous in the sense of joint coverage, which implies 
that decisions on pricing will also be simultaneous. A formal definition of simul-
taneity is further discussed in the next section which outlines our confidence set 
estimation method.

2. IdentIfIcatIon, estImatIon and testIng

Whether viewed as a RR multivariate or cross-sectional regression, identification 
of θ can be assessed from (4) or (8). If bi1  1, then γ

0
 almost drops out of the 

model. Furthermore, if any of the factor betas is close to zero across i, its risk price 
effectively drops out. In fact, whenever factor betas bunch up across or within test 
assets, problems akin to cross-sectional collinearity emerge and undermine the 
identification of θ. By (8), to recover θ (without additional information or instru-
ments) the betas per factor need to vary enough across equations. In practice, 
reliance on portfolios to reduce dimensionality ends up reducing the dispersion of 
the betas. Identification difficulties are thus an empirical reality.

To address this problem, we extend Beaulieu et al. (2013) beyond the case of 
a single factor and scalar nonlinear parameter. In particular, we proceed by inverting 
a multivariate test of a hypothesis that sets θ to a given value θ

0 
: 

H0 θ0( ) :θ = θ0 , θ0known.H0 θ0( ) : θ = θ0 , θ0known.
  

H0 θ0( ) :θ = θ0 , θ0known.  (9)

Inverting the test (for given level α) consists in assembling the values θ
0 
which are not 

rejected at this level. For example, given a right-tailed statistic T(θ
0
) with α -level critical 

point T
c
(α, θ

0
), our procedure involves solving, over θ

0
, the inequality

T(θ
0
) ≤ T

c
(α, θ

0
), (10)

where T
c
(α, θ

0
) controls the level for θ

0
. T

c
(α, θ

0
) may or may not depend on θ

0
. For 

Hotelling statistics discussed below (under a Gaussian error assumption), T
c
(α, θ

0
) does 
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not depend on θ
0 
so we can write T

c
(α, θ

0
) = T

c
(α) and the critical value is the same 

for tested values θ
0
. In other cases, we may also be able to find a T

c
(α) which ensure 

that the level of the test is controlled irrespective of the value θ
0
, even if the level 

may not be constant for different values of θ
0
. The confidence set for θ is the set 

*CS θ;α( ) of all values θ
0 
such that (10) holds. It is then easy to see that: 

P[θ ∈ *CS θ;α( )]≥1−α
 

P[θ ∈ *CS θ;α( )]≥1−α
 

(11)

whether θ may not be identified.

To derive confidence intervals for the individual components of θ, or more 
generally, for a given scalar function g(θ), we proceed by projecting *CS θ;α( ), i.e. 
by minimizing and maximizing g(θ) over the θ values in *CS θ;α( ). The resulting 
intervals so obtained are simultaneous, in the following sense: for any set of m 
continuous real valued functions of  θ, gi θ( )∈ R, i = 1,…, m, let g

i (CS(θ;α)) denote 
the image of *CS θ;α( ) by the function g

i 
. Then

P[gi θ( )∈ gi (*CS θ;α( )), i = 1,…,m]≥1−α.
 
g

i (CS(θ;α)), P[gi θ( )∈ gi (*CS θ;α( )), i = 1,…,m]≥1−α.
 

(12)

If T
c
 is defined so that (11) holds without identifying θ, then (12) would also hold 

whether θ is identified or not. A complete description of our methodology requires: 
(i) defining T(θ

0 
), (ii) deriving T

c
 to control size for any θ

0
, and (iii) characterizing 

the solution of (10). As in Beaulieu et al. (2013), we find an analytical solution to 
this problem.

We focus on the Hotelling-type statistic

Λ θ( ) =
(1,θ' )B̂Ŝ−1B̂' (1,θ' )'

(1,θ' )(X' X)−1(1,θ' )' , (13)

where we set θ = θ
0
 to test H

0
(θ

0 
) in (9).

B̂ = (X' X)−1 X'Y , Ŝ = Û'Û , Û = Y − XB̂,  (14)

X is a T x k full-column rank matrix that includes a constant regressor and the 
observations on all q factors so k = q + 1, and Y is the T x n matrix that stacks the 
left-hand side returns in deviation from the tradeable benchmark. Clearly, B̂ and 
Û are the OLS estimators for the underlying unrestricted reduced form

Yt = B' Xt +Ut , t = 1,� , T ,t =1, … , T,
 

(15)

or equivalently

Y = XB + U,
 

(16)

where U is the disturbance matrix and the restriction on the intercept (5) is rewritten 
as (1,θ' )B = 0  in which case (9) corresponds to

H0 θ0( ) : (1,θ0
' )B = 0, θ0known.H0 θ0( ) : (1,θ0

' )B = 0, θ0known.

We rely on the F-approximation
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Λ θ( )
τn

n
n F n,τn( ) , τn = T − k − n+1, (17)

which holds exactly when the regression error vectors Ut are contemporaneously 
correlated i.i.d. Gaussian assuming we can condition on X for statistical analysis. 
The latter distributional result does not require any identification restriction (other 
than usual full-rank assumptions on X'X and Ŝ). For proofs and further references, 
see Beaulieu et al. (2015) and references therein. Simulation studies reported in 
this paper confirm that fat-tailed disturbances arising from multivariate-t or GARCH 
do not cause size distortions for empirically relevant designs.

Λ (θ
0
) can be interpreted relative to the financial literature and in particular the 

well known zero-intercept test of Gibbons, Ross and Shanken (1989), as follows. 
The classical Hotelling statistics provide multivariate extensions of Student-t 
statistics, and take the form: 

Λ0 j =
sk[ j]' B̂Ŝ−1B̂'sk[ j]

sk[ j]' (X' X)−1sk[ j]
,

 

(18)

where sk[ j]
 
denotes a k-dimensional selection vector with all elements equal to 

zero except for the j-th element which is equal to 1. The underlying hypotheses 
assess the joint contribution of each factor in (15). i.e.

H0 j : sk[ j]' B = 0, j ∈ 1,...,k{ }.
 

(19)

For example sk[1]
 
provides inference on the unrestricted intercept, and sk[2]  

allows one to assess the betas on the tradeable factor in deviation from one; see 
Beaulieu et al. (2010a) for recent applications. As in (17) the same null distribution 
holds for each statistic Λ0 j  

(under the same conditions). Interestingly, we show 
that inverting Λ θ( ) embeds all of these tests through a sufficient condition for 
bounded outcomes that avoids pre-testing.

To get a confidence set from (13)-(17), we rewrite the inequation

Λ θ( ) ≤ fn,τn ,α ,
 

(20)

where fn,τn ,α  
denotes the α -level critical value from the F n,τn( )  

distribution, as

(1,θ' )A(1,θ' )' ≤ 0,
 

(21)

where A is the k x k data dependent matrix

A = B̂Ŝ−1B̂' − (X' X)−1 fn,τn ,α n / τn( ).  
(22)

Simple algebraic manipulations suffice to show the above. Next, inequality (21) is 
re-expressed as

θ' A22θ+ 2A12θ+ A11 ≤ 0
 

(23)

which leads to the setup of Dufour and Taamouti (2005), so projection-based CSs 
for any linear transformation of θ can be obtained as described in this paper. For 
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completeness sake, the solution is reproduced in the Appendix. This requires 
partitioning A as follows

A =
A11 A12

A21 A22

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
,
 

(24)

where A
11

 is a scalar, A
22 

is q x q, and A
12

 = A'
21

 is 1 x q. Using the partitioning

B̂ =
â'

b̂

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
, b̂ =

β̂2
'

M

β̂k
'

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,
 

(25)

(X' X)−1 =
x11 x12

x21 x22

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

,
 

(26)

where â'
 is a 1 x q vector, x11 is a scalar, x21 =  x12' is a q x 1 vector, and x22 is a q x q 

matrix, we have: 

A11 = â' Ŝ−1â− fn,τn ,α n / τn( )( ) x11,
 

(27)

A
12 

= A'
21 

= â'Ŝ–1b̂' – 
 
ƒ

n,tn,α
(n / t

n 
)

 
x 12, (28)

A
22 

= b̂Ŝ–1b̂' – 
 
ƒ

n,tn,α
(n / t

n 
)

 
x 22. (29)

The outcome of resulting projections can be empty, bounded, or the union of two 
unbounded disjoint sets. Dufour and Taamouti (2005) show that the confidence 
sets are unbounded if and only if A

22
 is not positive definite. Applying basic algebra 

to (29) reveals that the diagonal terms of A
22

 are

Fj = sk[ j]' B̂Ŝ−1B̂'sk[ j]− sk[ j]' (X' X)−1sk[ j]
nfn,τn ,α

τn

, j = 1,...,k.

Comparing this expression to the definition of Λ0 j  
in (18) implies that

Λ0 j τn( ) / n < fn,τn ,α ⇔ Fj < 0, j = 1,...,k.

So if any of the classical Hotelling tests, using the distribution in (17), is not 
significant at level α, then A

22
 cannot be positive definite and the confidence set 

will be unbounded: if the tradeable beta is not significantly different from one over 
all portfolios or if any of the factors is jointly redundant, information on the zero-
beta rate as well as the risk price for all factors is compromised. The above condition 
is sufficient but not necessary. Thus, even though Hotelling tests on each factor 



244 L’ACTUALITÉ ÉCONOMIQUE

are useful, the information they provide is incomplete as for the joint usefulness 
of the factors in identifying risk price.

An important result from Beaulieu et al. (2013) regarding empty confidence 
set outcomes also generalizes to our multifactor case. Because the critical value 
underlying the inversion of Λ θ( ) ,  which we denoted fn,τn ,α  

above, is the same 
for all θ values, then

θ
minΛ θ( ) ≥ fn,τn ,α ⇔*CS θ;α( ) =∅.

  θ
minΛ θ( ) ≥ fn,τn ,α ⇔*CS θ;α( ) =∅.
θ

minΛ θ( ) ≥ fn,τn ,α ⇔*CS θ;α( ) =∅.

Again, basic matrix algebra allows one to show (see e.g. Gouriéroux, Monfort and 
Renault, 1996) that minimizing Λ θ( )  produces the Gaussian-LR statistic to test 
the nonlinear restriction (5) which defines θ. This suggests a bounds J-type test to 
assess the overall model fit. The outcome of this test will be revealed via the quadric 
solution we implement for test inversion, so it is built into our general set inference 
procedure. A potential unbounded confidence set guards the researcher from 
misreading nonsignificant tests as evidence in favour of models on which data is 
not informative.

In summary, our confidence sets summarize the information content of the 
data (from a least-squares or Gaussian quasi-likelihood perspective) on risk price 
without compounding type-I errors.

3. empIrIcal analysIs

In our empirical analysis of a multifactor asset-pricing model, we use Canadian 
Fama-French (1992, 1993) factors as well as momentum (Carhart, 1997). We 
present results for monthly returns of 25 value-weighted portfolios from 1991 to 
2010. Portfolios were constructed with all Canadian stocks available on Datastream 
and Worldscope. The portfolios which are constructed at the end of June are the 
intersections of five portfolios formed on size (market equity) and five portfolios 
formed on the ratio of book equity to market equity. The size breakpoints for year 
s are the Toronto Stock Exchange (TSE) market equity quintiles at the end of June 
of year s. The ratio of book equity to market equity for June of year s is the book 
equity for the last fiscal year end in s–1 divided by market equity for December 
of year s–1. The ratios of book equity to market equity are TSE quintiles. We use 
the filter from Karolyi et Wu (2014) to eliminate abnormal observations in our 
database. This filter is minimally invasive as the filtered database contains an 
overall sample average of 1700 stocks.

The benchmark factors are: 1) the excess return on the market, defined as the 
value-weighted return on all TSE stocks (from Datastream and Worldscope database) 
minus the one-month Treasury bill rate (from the Bank of Canada). 2) SMB (small 
minus big) defined as the average return on three small portfolios minus the average 
return on three big portfolios, 3) HML (high minus low) defined as the average 
return on two value portfolios minus the average return on two growth portfolios, 
and (4). MOM, the average return on the two high prior return portfolios minus 
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the average return on the two low prior return portfolios. Fama-French benchmark 
factors, SMB and HML, are constructed from six size/book-to-market benchmark 
portfolios which do not include hold ranges and do not incur transaction costs. The 
portfolios for these factors are rebalanced annually using two independent sorts, 

TABLE 1

confIdence sets for rIsk premIa

ten-year subperIods

ri −ιTγ0 = R1 −ιTγ0( )bi1 + F −ιTγF
'( )biF +ui , i = 1,…,n

θ = γ0 ,γF
'( )' = θMKT,θSMB,θHML( )'

EW MKT SMB HML MOM

x10–4 R
–

1
θ

MKT
 F
–

θ
SMB

F
–

θ
HML

F
–

–

91-00 51 ∅ 25 ∅ 28 ∅ –56 –

00-10 48 [–1165,302] 149 [–105,786] 218* [–1750,187] –9 –

VW MKT SMB HML MOM

x10–4 R
–

1
θ

MKT
 F
–

θ
SMB

F
–

θ
HML

F
–

–

91-00 51* ]–∞,–521]

∪[13490,∞[

25* ]–∞,15]

∪[4284,∞[

28 ]–∞,419]

∪[7601,∞[

–56 –

00-10 48  149* ]–∞,–711]

∪[526,∞[

218* ]–∞,–1611]

∪[3056,∞[

–9 –

θ = γ0 ,γF
'( )' = θMKT,θSMB,θHML( )'θ = γ0 ,γn
'( )' = θMKT,θSMB,θHML ,θHML( )'

EW MKT SMB HML MOM

x10–4 R
–

1
δ  F

–
δ F

–
δ F

–
δ

91-00 51  25  28  –56* ]–∞,–969]

∪[415,∞[

00-10 48  149  218  –9 

  VW    MKT   SMB   HML   MOM

x10–4 R
–

1
δ  F

–
δ F

–
δ F

–
δ

91-00 51  25  28  –56 

00-10 48  149  218  –9 

note:  Sample includes monthly observations from January 1991 to December 2010. Series are 
constructed with all Canadian observations from Datastream and Worldscope. They include 
25 equally weighted (EW) and value-weighted (VW) portfolios as well as Canadian factors for 
market (MKT), size (SMB), book-to-market (HML) and momentum (MOM). Confidence sets 
are at the 5 % level.  F

– 
is the factor average over the considered time period; θ captures factor 

pricing as defined in (7). 

* denotes evidence of pricing at the 5 % significance level interpreted as follows: given the 
reported confidence sets, the tradeable factor is not priced if R

–
1 
is covered; each other factor is 

not priced if (its average) is not covered; see section 2.
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TABLE 2

confIdence sets for rIsk premIa

fIve-year subperIods

ri −ιTγ0 = R1 −ιTγ0( )bi1 + F −ιTγF
'( )biF +ui , i = 1,…,n

θ = γ0 ,γF
'( )' = θMKT,θSMB,θHML( )'

EW MKT SMB HML MOM

x10–4 R
–

1
θ

MKT
 F
–

θ
SMB

F
–

θ
HML

F
–

–

91-95 21  68  30  –152 –
96-00 80  –18  25  39 –
00-05 52  170  262  72 –
06-10 43  128  175* {–∞,–359}

∪{1026,∞}
–89 –

VW  MKT SMB HML MOM

x10–4 R
–

1
θ

MKT
 F
–

θ
SMB

F
–

θ
HML

F
–

–

91-95 21  68  30  –152 –
96-00 80* {–∞,–384} –18  25  39 –

∪{291,∞}
00-05 52 {–∞,–307} 170  262  72 –

∪{1687,∞}
06-10 43  128  175* {–∞,–556} –89 –

∪{874,∞}

θ = γ0 ,γF
'( )' = θMKT,θSMB,θHML ,θHML( )'

EW MKT SMB HML MOM

x10–4 R
–

1
δ  F

–
δ F

–
δ F

–
δ

91-95 21  68  30  –152 

96-00 80  –18  25  39 

00-05 52  170  262  72 

06-10 43  128  175* {–∞,–172} –89 

∪{894,∞}
VW  MRKT SMB HML MOM

x10–4 R
–

1
δ  F

–
δ F

–
δ F

–
δ

91-95 21  68  30  –152 

96-00 80  –18  25  39 

00-05 52  170  262  72 

06-10 43  128  175* {–∞,317} –89 

∪{807,∞}

note:  Sample includes monthly observations from January 1991 to December 2010. Series are 
constructed with all Canadian observations from Datastream and Worldscope. They include 
25 equally weighted (EW) and value-weighted (VW) portfolios as well as Canadian factors for 
market (MKT). size (SMB). book-to-market (HML) and momentum (MOM). Confidence sets 
are at the 5 % level.  F

– 
is the factor average over the considered time period; θ captures factor 

pricing as defined in (7). 

* denotes evidence of pricing at the 5 % significance level interpreted as follows: given the 
reported confidence sets, the tradeable factor is not priced if R

–
1 
is covered; each other factor is 

not priced if (its average) is not covered; see section 2.
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on size (market equity, ME) and book-to-market (the ratio of book equity to market 
equity, BE/ME). The size breakpoint (which determines the buy range for the 
small and big portfolios) is the median TSE market equity. The BE/ME breakpoints 
(which determine the buy range for the growth, neutral, and value portfolios) are 
the 30th and 70th TSE percentiles. For the construction of the MOM factor, six 
value-weighted portfolios formed on size and prior (2–12) returns are used. The 
portfolios, which are formed monthly, are the intersections of two portfolios formed 
on size (market equity, ME) and three portfolios formed on prior (2–12) return. 
The monthly size breakpoint is the median TSE market equity. The monthly prior 
(2–12) return breakpoints are the 30th and 70th TSE percentiles.

Results over 10 and 5 years subperiods are summarized in Tables 1 and 2, 
where EW and VW denotes equally weighted and value-weighted portfolios. Unless 
stated otherwise, significancy in what follows refers to the 5 % level. All reported 
confidence sets are also at the 5 % level.

Over ten-year subperiods and with equally-weighted data, the three-factor 
model is rejected before 2000. Thereafter, while very wide although bounded 
confidence intervals are observed, HML is confirmed as the only priced factor. 
Value-weighted data support the three-factor model before 2000 albeit weakly as 
all confidence sets obtained are unbounded. Interestingly, the market factor is 
priced along with SMB. In sharp contrast, the market risk is unidentified after 
2000 and despite evidence of identification difficulties, both Fama-French factors 
are priced. When the momentum factor is added over and above the Fama-French 
factor, we find completely uninformative results on all model parameters expect 
for momentum using equally-weighted data before 2000, in which case we find 
this factor is priced despite the overwhelming evidence of weak-identification.

Considering five-year subperiods may help us assess whether the above is 
driven by instability of betas. Results must however be interpreted with caution 
since sample size considerations can be consequential. Indeed, the bulk of resulting 
confidence sets are uninformative and the only evidence we can confirm is that 
the market factor seems to be priced from 1996-2000 while the HML factor is 
priced after 2006.

Our empirical results reveal that for pricing Canadian assets, a standard three 
Fama-French factor model is the best avenue after 2000. Momentum creates 
important identification problems and it should not be used to price Canadian 
assets without raising identification questions. This corroborates the empirical 
results of Beaulieu, Dufour and Khalaf (2010b), and Beaulieu et al. (2015) for 
American stocks, although the case for omitting momentum is stronger in the 
Canadian context. An important issue further analyzed by Beaulieu et al. (2015) 
for the U.S. is the portfolio formation method. Using industry portfolios seems to 
improve identification relative to size-sorting, as the latter compounds factor 
structure dependences; see also Lewellen and Nagel (2006), Lewellen et al. (2010), 
and Kleibergen and Zhan (2013).
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On balance, given the importance of Fama-French factors for pricing stocks 
internationally (Fama and French, 2012), and the potential for identification prob-
lems presented in this paper, future research should aim at finding ways of choosing 
the factors that empirically explain the cross-section of returns in a general standard 
context, as discussed by Harvey et al. (2015).

conclusIon

This paper studies the factor asset-pricing model for the Canadian market using 
identification-robust inference methods. We derive confidence sets for the zero-beta 
rate and factor price based on inverting minimum-distance Hotelling-type pivotal 
statistics. We use analytical solutions to the latter problem. Our confidence sets 
have much more informational content than usual Hotelling tests and have various 
useful applications in statistics, econometrics and finance. Our approach further 
provides multivariate extensions of the classical Fieller problem.

Empirical results illustrate, among others, severe problems with redundant 
factors. These findings concur with the (above cited) emerging literature on 
redundant factors, on tight factor structures and statistical pitfalls of asset-pricing 
tests, and on the importance of joint (across-portfolios) tests. In practice, our results 
support a standard three Fama-French factor model for the Canadian market after 
2000. In contrast, we find that the momentum factor severely compromises iden-
tification which qualifies existing works in this regard.

Concerning the historical debate on the market factor (see Campbell et al., 
1997: Chapters 5 and 6; Fama and French, 2004; Perold, 2004; Campbell, 2003; 
Sentana, 2009), our results suggest an alternative perspective. Perhaps the uncon-
ditional market model is neither dead nor alive and well. Instead, the traditional 
methods of accounting for additional factors may have confounded underlying 
inference. Because traditional methods severely understate true uncertainty, 
identification problems in the literature may have escaped concrete notice so far. 
More to the point here is that with reference to e.g. Harvey et al. (2015) who consider 
a very large number of factors, we document identification problems with only 
three to four factors. We thus concur with Lewellen et al. (2010: prescriptions 5 
and 6) that it is by far more useful to report set estimates rather than model tests. 
However, the proliferation of factors in practice increases the likelihood of redun-
dancies. Their associated costs support the use of our method, and motivate further 
refinements and improvements as important future research avenues.
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APPENDIX

This appendix summarizes the solution of (23) from Dufour and Taamouti 
(2005). Projections based confidence sets for any linear transformation of θ of the 
form ω'θ  can be obtained as follows. Let %A = −A22

−1A12
' , %D = A12 A22

−1A12 − A11. If all 
the eigenvalues of A

22
 (as defined in (24)) are positive so A

22 
is positive definite then: 

*CSα(ω'θ) = ω' %A− %D ω' A22
−1ω( ) ,ω' %A+ %D ω' A22

−1ω( )⎡
⎣⎢

⎤
⎦⎥
, if %D ≥ 0

 
(A1)

*CSα(ω'θ) =∅, if %D < 0.  (A2)

If A
22

 is non-singular and has one negative eigenvalue then: 

(i) if ω' A22
−1ω < 0  and %D < 0 : 

*CSα(ω'θ) = −∞,ω' %A− %D ω' A22
−1ω( )⎤

⎦⎥
⎤
⎦⎥
∪ ω' %A+ %D ω' A22

−1ω( ) ,+∞⎡
⎣⎢

⎡
⎣⎢
;  (A3)

(ii) if ω' A22
−1ω > 0  or if ω' A22

−1ω ≤ 0  and %D ≥ 0  then: 

CSα(ω'θ) = !;  (A4)

(iii) if ω' A22
−1ω = 0  and %D < 0  then: 

CSα(ω'θ) = ! \ ω' "A{ }.  (A5)

The projection is given by (A4) if A
22

 is non-singular and has at least two 
negative eigenvalues.

REFERENCES

Barone-AdesI, G. (1985). “Arbitrage Equilibrium with Skewed Asset Returns.” 
Journal of Financial and Quantitative Analysis, 20(3): 299–313.

BeaulIeu, M.-C., J.-M. Dufour, and L. Khalaf (2007). “ Multivariate Tests of Mean- 
variance Efficiency with Possibly Non-Gaussian Errors: An Exact Simulation- 
based Approach.” Journal of Business and Economic Statistics, 25: 398–410.

BeaulIeu, M.-C., J.-M. Dufour, and L. Khalaf (2009). “Finite Sample Multivariate 
Tests of Asset Pricing Models with Coskewness.” Computational Statistics and 
Data Analysis, 53: 2008–2021.

BeaulIeu, M.-C., J.-M. Dufour, and L. Khalaf (2010a). “Asset-pricing Anom-
alies and Spanning: Multivariate Multifactor Tests with Heavy-tailed  
Distributions.” Journal of Empirical Finance, 17: 763–782.

BeaulIeu, M.-C., Dufour, J.-M., and Khalaf, L. (2010b). “Identification- 
robust Estimation and Testing of the Zero-Beta CAPM.” Technical report, 
Mc Gill University, Université Laval and Carleton University.

BeaulIeu, M.-C., J.-M. Dufour, and L. Khalaf (2013). “Identification- 
robust Estimation and Testing of the Zero-Beta CAPM.” The Review of Economics  
Studies, 80: 892–924.



250 L’ACTUALITÉ ÉCONOMIQUE

BeaulIeu, M.-C., J.-M. Dufour, and L. Khalaf (2015). “Weak Beta, Strong Beta: 
Factor Proliferation and Rank Restrictions.” Technical report, Mc Gill Univer-
sity, Université Laval and Carleton University.

BeaulIeu, M.-C., M.- H. Gagnon, and L. Khalaf (2008). “A Cross-section An-
alysis of Financial Market Integration in North America Using a Four Factor 
Model.” International Journal of Managerial Finance, 5: 248–267.

Bekker, P., P. DobbelsteIn, and T. Wansbeek (1996). “The APT Model as Reduced-rank 
Regression.” Journal of Business and Economic Statistics, 14: 199–202.

Black, F. (1972). “Capital Market Equilibrium with Restricted Borrowing.” Jour-
nal of Business, 45: 444–454.

Bolduc, D., L. Khalaf, and c. Yelou (2010). “Identification Robust Confidence 
Sets Methods for Inference on Parameter Ratios with Application to Discrete 
Choice Models.” Journal of Econometrics, 157: 317–327.

Campbell, J. Y. (2003). “Asset Pricing at the Millennium.” Journal of Finance, 
55: 1515–1567.

Campbell, J. Y., A. W. Lo, and a. c. MacKInlay (1997). The Econometrics of 
Financial Markets. Princeton University Press, New Jersey.

Carhart, M. M. (1997). “On Persistence in Mutual Fund Performance,” Journal 
of Finance, 52: 57–82.

Costa, M., A. GardInI, and P. Paruolo (1997). “A Reduced Rank Regression Ap-
proach to Tests of Asset Pricing.” Oxford Bulletin of Economics and Statistics, 
59: 163–181.

Dufour, J.-M. (1997). “Some Impossibility Theorems in Econometrics, with Ap-
plications to Structural and Dynamic models.” Econometrica, 65: 1365–1389.

Dufour, J.-M., and L. Khalaf (2002). “Simulation Based Finite and Large Sample 
Tests in Multivariate Regressions.” Journal of Econometrics, 111: 303–322.

Dufour, J.-M., L. Khalaf, and M.-C. BeaulIeu (2003). “Exact Skewness-kurtosis 
Tests for Multivariate Normality and Goodness-of-fit in Multivariate Regres-
sions with Application to Asset Pricing Models.” Oxford Bulletin of Economics 
and Statistics, 65: 891–906.

Dufour, J.-M., L. Khalaf, and M.-C. BeaulIeu (2010). “Multivariate Resid-
ual-based Finitesample Tests for Serial Dependence and GARCH with Applica-
tions to Asset Pricing Models.” Journal of Applied Econometrics, 25: 263–285.

Dufour, J.-M., and M. TaamoutI (2005). “Projection-based Statistical Inference 
in Linear Structural Models with Possibly Weak Instruments.” Econometrica, 
73: 1351–1365.

Fama, E. F., and K. R. French (1992). “The Cross-section of Expected Stock 
Returns.” Journal of Finance, 47: 427–465.

Fama, E. F., and K. R. French. (1993). “Common Risk Factors in the Returns on 
Stocks and Bonds.” Journal of Financial Economics, 33: 3–56.

Fama, E. F., and K. R. French (2004). “The Capital Asset Pricing Model: Theory 
and Evidence.” Journal of Economic Perspectives, 18: 25–46.



251IDENTIFICATION-ROBUST FACTOR PRICING: CANADIAN EVIDENCE

Fama, E. F., and K. R. French (2012). “Size, Value and Momentum in Inter-
national Stock Returns.” Journal of Financial Economics, 105: 457–472.

FIeller, E. C. (1954). “Some Problems in Interval Estimation.” Journal of the 
Royal Statistical Society, Series B. 16(2): 175–185.

Foerster, S., and A. KarolyI. (1993).”International Listings of Stocks: The Case 
of Canada and the U.S.” Journal of International Business Studies, 24: 763–784.

GIbbons, M. R. (1982). “Multivariate Tests of Financial Models: A New Ap-
proach.” Journal of Financial Economics, 10: 3–27.

GIbbons, M. R., S. A. Ross, and J. Shanken (1989). “A Test of the Efficiency of a 
Given Portfolio.” Econometrica, 57: 1121–1152.

GospodInov, N., R. Kan, and C. RobottI (2014). “Misspecification-robust Infer-
ence in Linear Asset-pricing Models with Irrelevant Risk Factors.” Review of 
Financial Studies, 27: 2139–2170.

GourIéroux, C., A. Monfort, and E. Renault (1996). Tests sur le noyau, l’image 
et le rang de la matrice des coefficients d’un modèle linéaire multivarié. Ox-
ford University Press, Oxford (U.K.).

GrIffIn, J. (2002). “Are the Fama and French Factors Global or Country Specif-
ic?” Review of Financial Studies, 15: 783–803.

Harvey, C. R., Y. LIu, and H. Zhu (2015). “...and the Cross-section of Expected 
Returns.” Review of Financial Studies Forthcoming.

HotellIng, H. (1947). Multivariate Quality Control Illustrated by the Air Testing 
of Sample Bomb Sights,Techniques of Statistical Analysis, Ch. II, McGraw-Hill, 
New York.

JorIon, P., and E. SchWartz (1986). “Integration versus Segmentation in the Can-
adian Stock Market.” Journal of Finance, 41: 603–640.

Kan, R., C. RobottI, and J. Shanken (2013). “Pricing Model Performance and the 
Two-pass Cross-sectional Regression Methodology.” The Journal of Finance, 
68: 2617-2649.

Kan, R., and C. Zhang (1999a). “GMM Tests of Stochastic Discount Factor Mod-
els with Useless Factors.” Journal of Financial Economics, 54(1): 103–127.

Kan, R., and C. Zhang (1999b). “Two-pass Tests of Asset Pricing Models with 
Useless Factors.” Journal of Finance, 54: 204–235.

KarolyI, A., and Y. Wu (2014). “ Size, Value, and Momentum in International Stock 
Returns: A Partial Segmentation Approach.” Technical report, Cornell University.

Khalaf, L., and G. urga (2014). “Identification Robust Inference in Cointegrat-
ing Regressions.” Journal of Econometrics, 182: 385–396.

KleIbergen, F. (2009). “Tests of Risk Premia in Linear Factor Models.” Journal of 
Econometrics, 149: 149–173.

KleIbergen, F., and Z. Zhan (2013). “Unexplained Factors and their Effects on 
Second Pass r-squared’s and t-tests. “Technical report, Brown University.

LeWellen, J., S. Nagel, and J. Shanken (2010). “A Skeptical Appraisal of Asset-
pricing Tests.”Journal of Financial Economics, 92: 175–194.



252 L’ACTUALITÉ ÉCONOMIQUE

LeWellen, J. W, and S. Nagel (2006). “The Conditional CAPM Does Not Ex-
plain Asset-pricing Anomalies.” Journal of Financial Economics, 82: 289–314.

L’Her, J. F., T. MasmoudI, and J.-M. Suret (2004). “Evidence to Support the 
Four-factor Pricing Model from the Canadian Market.” Journal of Inter-
national Financial Markets, Institutions and Money, 14: 313–328.

MIttoo, U. (1992). “Additional Evidence in the Canadian Stock Market.” Journal 
of Finance, 47: 2035–2054.

Perold, A. F. (2004). “The Capital Asset Pricing Model.” Journal of Economic 
Perspectives, 18: 3–24.

Ross, S. A. (1976). “The Arbitrage Theory of Capital Asset Pricing.” Journal of 
Economic Theory, 13: 341–360.

Sentana, E. (2009). “The Econometrics of Mean-variance Efficiency Tests: A 
Survey.” Econometrics Journal, 12: C65–C101.

Shanken, J. (1985). “Multivariate Tests of the Zero-beta CAPM.” Journal of Fi-
nancial Economics, 14: 325–348.

Shanken, J. (1986). “Testing Portfolio Efficiency when the Zero-beta Rate is Un-
known: A Note.” Journal of Finance, 41: 269–276.

Shanken, J. (1992). “On the Estimation of Beta-pricing Models.” Review of Fi-
nancial Studies, 5: 1–33.

Shanken, J. (1996). “Statistical Methods in Tests of Portfolio Efficiency: A Syn-
thesis.” In G. S. Maddala, and C. R. Rao (Eds), Handbook of Statistics 14: 
Statistical Methods in Finance. North-Holland, Amsterdam, pp. 693–711.

Shanken, J., and G. Zhou (2007). “Estimating and Testing Beta Pricing Models: Al-
ternative Methods and their Performance in Simulations.” Journal of Financial 
Economics,84: 40–86.

Velu, R., and G. Zhou (1999). “Testing Multi-beta Asset Pricing Models.” Jour-
nal of Empirical Finance, 6: 219–241.

Zerbe, G. O., E. Laska, m. MeIsner, and H. B. Kushner (1982). “On Multivariate 
Confidence Regions and Simultaneous Confidence Limits for Ratios.” Com-
munications in Statistics, Theory and Methods, 11: 2401–2425.

Zhou, G. (1991). “Small Sample Tests of Portfolio Efficiency.” Journal of Finan-
cial Economics,30: 165–191.

Zhou, G. (1995). “Small Sample Rank Tests with Applications to Asset Pricing.” 
Journal of Empirical Finance, 2: 71–93.


