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ABSTRACT

We propose exact simulation-based procedures for: (i) testing memmea efficiency when the
zero-beta rate is unknown; (ii) building confidence intervals for the-beta rate. On observ-
ing that this parameter may be weakly identified, we propose likelihood-ratoigis as well
as Fieller-type procedures based on a Hotelling-HAC statistic, which éestrdo weak identi-
fication and allow for non-Gaussian distributions including parametric GAREGtctures. The
Fieller-Hotelling-HAC procedure also accounts (asymptotically) for garferms of heteroskedas-
ticity and autocorrelation. We propose confidence sets for the zeradiethased on “inverting”
exact tests for this parameter; for both procedures proposed, thisseas be interpreted as mul
tivariate extensions of the classic Fieller method for inference on ratios.eXact distribution of
likelihood-ratio-type statistics for testing efficiency is studied under bothuliend the alternative
hypotheses. The relevant nuisance parameter structure is establishfita-sample bound pro-
cedures are proposed, which extend and improve available Gaupsiaifiesbounds. Finite-sample
distributional invariance results are also demonstrated analytically for th@ $i#tistic proposed
by MacKinlay and Richardson (1991). We study invariance to portfoliacg&ing for the tests and
confidence sets proposed. The statistical properties of the proposeddsare analyzed through
a Monte Carlo study and compared with alternative available methods. Empéasedis on NYSE
returns show that exact confidence sets are very different frgmgstic ones, and allowing for
non-Gaussian distributions affects inference results. Simulation and eahgvicence suggests
that likelihood-ratio-type statistics - witp-values corrected using the Maximized Monte Carlo test
method - are generally preferable to their multivariate Fieller-Hotelling-HA@hterparts from the
viewpoints of size control and power.

Key words: capital asset pricing model; CAPM; Black; mean-variance efficienop:mormality;
weak identification; Fieller; multivariate linear regression; uniform linegudtigesis; exact test;
Monte Carlo test; bootstrap; nuisance parameters; GARCH; portfoliekama
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1. Introduction

One of the most important extensions of the Capital Asset Pricing ModdP@Aonsists in allow-
ing for the absence of a risk-free asset. From a theoretical viewpastah be due to restrictions
on borrowing [Black (1972)] or an investor’s “riskless” borrowirgfe that exceeds the Treasury
bill rate [Brennan (1971)]. In this case, portfolio mean-varianceiefiity is defined using the ex-
pected return in excess of the zero-beta portfolio. The latter is howewadrservable which leads
to considerable empirical difficulties.

Indeed, there are two basic approaches to estimating and assessingdiois séthe CAPM
(denoted below as BCAPM). The first one uses a “two-pass” apprtet may be traced back
to Black, Jensen and Scholes (1972) and Fama and MacBeth (1#t8%are first estimated from
time series regressions for each security, and then the zero-beta sttmated by a cross-sectional
regression on thedmetas This raises errors-in-variables problems that affect statistical inderi
both finite and large samplésThe second approach —which originates in the work of Jensen (1968)
— avoids this problem by using a multivariate linear regression as the batsticahframeworlk?

In this paper, we focus on the latter approach and consider two basiepra: (1) testing portfolio
efficiency; (2) building a reliable confidence set for the zero-beta rate

For clarity, letRy, i =1, ... , n, be the returns on securities in periodl, andRy the return on
a market benchmark far= 1, ... , T, and consider tha equationgi =1, ... , n) associated with
the time series regressionskf on a constant anBy, where the individual-equation disturbances
are heteroskedastic and contemporaneously cross-correlat®d: IiktK refer to the error scale (or
variance/covariance) matrix. If the intercepts from thesmuations (thelphag are denoted,
and the coefficients on the benchmark regressorl{#tag are denoteg;, i =1, ... , n, then the
BCAPM equilibrium relations imply the following: there is a scajarthe return on the zero-beta
portfolio, such thag; — y(1— ;) =0,i=1, ..., n. Our aim consists in assessing these constraints
(denoted below ag7g) as well as estimating.

The above cited literature provides analytical formulae for Gaussian likelinatio statistics,
the maximum likelihood estimator (MLE) of (denoted below ag), and for a conformable asymp-
totic variance estimator [denot&br(y)]. Itis however difficult to find reliable critical points in this
context. While Gibbons (1982) used an asymptgticritical value for the likelihood-ratio statistic,
subsequent authors found this could lead to serious over-rejectiowvarisus finite-sample correc-
tions — such as bounds — have been suggested; see Shanken @®851996), Stewart (1997),
Zhou (1991, 1995), and Velu and Zhou (1999). These correctiepsrd crucially on normality,
which may be inappropriate for financial data [see Fama (1965), Ristiardnd Smith (1993),
Dufour, Khalaf and Beaulieu (2003), and Beaulieu, Dufour and KH&205, 2007, 2009, 2010)].
Furthermore, evidence on the properties of the confidence intervedi loe/ar(y) is unavailable.
Despite the simplicity of the above framework, discrepancies between agiorgutd finite-sample

1See Litzenberger and Ramaswamy (1979), Banz (1981), Roll J188&n, Roll and Ross (1986), Shanken (1992),
Kim (1995), Shanken and Zhou (2007), Lewellen, Nagel and Sha(2@09), Kan, Robotti and Shanken (2012), and
Kleibergen (2009).

2For other work based on the multivariate regression approach to CARMsis, see Gibbons (1982), Jobson and
Korkie (1982), Kandel (1984, 1986), Amsler and Schmidt (1985&nken (1985, 1986, 1996), Kandel and Stambaugh
(1989), Zhou (1991), Shanken (1992), Fama and French (1888 (2000), Fama and French (2004) and Perold (2004).



distributions are not surprising. Indeed, three difficulties deserveeotic

(1) Dimensionality asnincreases, the dimension of the scale malrgrows rapidly and available
degrees-of-freedom decrease conformdbBven in linear or standard setups where the relevant
asymptotic distributions may be free af, this matrix can still affect the distributions in finite
samples. Furthermore, positive definite estimates céquire a largd relative ton, so portfolios
rather than securities are often used in practice.

(2) Portfolio repacking[see Kandel and Stambaugh (1989)]: to preserve meaningful prieing r
lations when portfolios are used, transformations of the return véter (Ry, ... , Ry)’ into
R = AR whereA is ann x n invertible matrix such thati, = 1, andi is ann-dimensional vector
of ones, should ideally not affect inference.

(3) Identification asfB; — 1, y becomes weakly identified. Weak identification (WI) strongly
affects the distributions of estimators and test statistics, leading to unreliaéenog even asymp-
totically* This should not be taken lightly: reportéetasare often close to one [see e.g. Fama
and MacBeth (1973)]. Further, even if estimabsdasare not close to one, irregularities associated
with WI are not at all precluded [in view of (1) and (2) above]. Indeedthe regression oR;
[from (2)] on a constant anBy;, with intercepts’ and slopeg;,a—y(1—B;)=0,i=1,...,n
sa—y(l-p)=0,i=1, ..., n foranyyandA. Portfolio repacking alterbetasalong with
scale yet preserves the definitionjgfleading to identification problems # — 1. So thebetas
and scale parameters play a role in identifyjng

Our aim in this paper consists in providing inference methods that aretrmbdisnensionality
and identification problems, whose outcomes are invariant to portfolio kifgad/NVe first consider
the problem of estimating. We show by simulation that available procedures provide poor cov-
erage. So we propose exact confidence sets based on “invertiagf’ tests for specific values of
y, i.e. the set of values not rejected by these tests. This method is a generaliZaherctassical
procedure proposed by Fieller (1954) to estimate parameter Patios.

To introduce the Fieller-type method in its simplest form with reference to th@emroat hand,
suppose (for illustrative purposes) that we aim at estimatifigm the univariate regression of the
return of thei-th security(R;) on a constant anBy, so thaty = —a;/6; whered; = (B; — 1). Let
g andd; denote the OLS estimates from this regression, with estimated variances\amiicoe
Var (&), Var(6) and Cov(&;, 6) For each possible valug, of the ratio, consider the-statistic
ti (Vo) = (& + Vpdi)/[Var(&) + 83Var(8;) + 280Cov(4;, 8;)]Y/2 for testings4(yo) : & + Vo0 = O.
Then, we obtain a confidence set with level & for y by finding the set of/, values which are not
rejected at levelr usingti (y,) and a standard (normal or Studéhtwo-tailed critical valuezy /.
This means that we coIIect agl‘o values such thdt. (Yo)| < zq2 or alternatively such thatd; +

y05) < za/2 (Var(&) + y3Var(di) + 2y,Cov(&;, 6 )), leading to a second degree inequalityyin

3See Shanken (1996), Campbell, Lo and MacKinlay (1997), Dufodtdralaf (2002), Beaulieu, Dufour and Khalaf
(2005, 2007, 2009, 2010), Sentana (2009), and the referereresth

4See,e.g. Dufour (1997, 2003), Staiger and Stock (1997), Wang and Zi@®8), Zivot, Startz and Nelson (1998),
Dufour and Jasiak (2001), Kleibergen (2002, 2005, 2009), Siatlght and Yogo (2002), Moreira (2003), Dufour and
Taamouti (2005, 2007) and Andrews, Moreira and Stock (2006).

5For the ratio of the means of two normal variables with equal variandeBeFgave a solution that avoids non-
regularities arising from a close-to-zero denominator. Extensions tanete regressions or to several ratios with equal
denominators can be found in Zerbe (1978), Dufour (1997), Beldbelaf and Yelou (2010).



The resulting confidence set has level & irrespective whethed; is zero or not. In this paper, we
generalize this method to account for the multivariate setup whappears, allowing for Gaussian
and non-Gaussian error distributions, as well as conditional hetetastety. Empirically, we
focus on multivariate Studemntand normal mixture distributions, as well as Gaussian GARCH.

To do so, we consider two statistics [denolt&{y,) and_7 (y,)] for testing 72 (y;) : & + Y0 =
0,i=1, ..., n LR(yy) is the likelihood-ratio statistic for the Gaussian error model, whilgy,)
is a multivariate Fieller-type statistic based on a generalized Hotelling statistic th ismrrection
for heteroskedasticity and autocorrelation (HAC) has been applied [4adKinlay and Richardson
(1991), Ravikumar, Ray and Savin (2000), and Ray and Savin (RA28§ng any one of these tests,
we can build confidence sets by finding the valueypWhich are not rejected at level. This
requires a distributional theory for the test statistics. Whild-amased cut-off point is available
for LR(y,) in thei.i.d. Gaussian case [see Beaulieu, Dufour and Khalaf (2007) and GibBoss
and Shanken (1989)], we show in a simulation study that usual asymptititalgooints perform
poorly especially for 7 ().

To deal with such difficulties, we apply the maximized Monte Carlo (MMC) testedure [Du-
four (2006)] to obtain finite-samplp-values forLR(y,) and _# (y,) in models with non-Gaussian
and/or nonki.d. errors, as follows: a (simulategh)value function conditional on relevant nuisance
parameters is numerically maximized (with respect to these parameters), andttisesignificant
at levela if the largestp-value is not larger than .6 The parametric bootstrap relates to the MMC
method, in the sense that the maximization step is replaced by a ymigplae estimation, based on
a consistent nuisance parameter estimate. For the GARCH case, such estirnatee unreliable
in high-dimensional models; we show that the MMC method avoids this problem,miitimal
power costs.

To implement this approach efficiently, it is important to characterize the meegaarameters
in the null distributions of the test statistics. We show that the null distributiorotsf bR(y,) and
7 (o) does not depend ddand, so the only nuisance parameters characterize the form of error
distribution: the degree of freedom for Studeérdistributions, the mixing probability and scale-
ratio parameters for normal mixtures, or GARCH parameters. While relatadance results are
available for specific test problems using the multivariate regression likelibattm statistic [see
Dufour and Khalaf (2002) and the references therein], our resnltas@HAC statistic 7 (y,) are
new to the literature and underscore the usefulness of MacKinlay andrdgdn’s (1991) statistic.

Because af-based exact cut-off is available for the Gaussian case, we showéladritfidence
set which invertd R(y,) can be obtained by solving a quadratic inequation. Forirn@h-or non-
Gaussian distributions, we implement a numerical search running the MMC dfetheach choice
for yy. Inverting _# (y,) requires numerical methods even for the Gaussian case. Furtherngore, w
show that all proposed confidence sets provide relevant informatiavhether efficiency is sup-
ported by the data, a property not shared by standard confidenocelsteindeed, our confidence
sets may turn out to be empty, which occurs when all possible valugarefrejected.

We next consider testing efficiency in the BCAPM context. We study likelir@bid and mul-

6This procedure is based on the following fundamental property: whemigiribution of a test statistic depends
on nuisance parameters, the desired levé achieved by comparing the larggstalue (over all nuisance parameters
consistent with the null hypothesis) with



tivariate Fieller-HAC criteria based on minimizing (owgy) the above definetR(y,) and _# (y,)
statistics. We show that the exact distribution of ypiLR(y,)} depends on a reduced number of
nuisance parameters which are functions of l®thnd >. We also generalize Shanken’s (1986)
exact bound test beyond the Gaussian model, and propose a tightel, mhioh involves a nu-
merical search for the tightest cut-off point, based on the MMC method.MME based bound
is also extended to the min{_# (y,)} case. This approach, in conjunction with the above defined
confidence set based oy (y,), provides an interesting alternative to available GMM estimation
methods [including the case recently analyzed by Shanken and Zhot)[200

We present a simulation study to document the properties of the proposestipres relative
to available alternatives. In particular, we contrast problems arising $roail samples with those
caused by fundamentally flawed asymptotic approximations. We next exalfficieney of the
market portfolio for monthly returns on New York Stock Exchange (NY B&ifolios, built from
the University of Chicago Center for Research in Security Prices (FREE5-1995 data base. We
find more support for efficiency under the non-normal or nod: hypothesis. Exact confidence
sets fory considerably differ from asymptotic ones, and the Fieller-HAC confidessts are much
wider than the GARCH corrected likelihood-ratio-based ones.

The paper is organized as follows. Section 2 sets the framework andskscigdentification of
y. In Section 3, we propose finite-sample tests for specific valugsanfd the corresponding exact
confidence set are derived in Section 4. The exact distribution of tHéntloal-ratio efficiency test
statistic is established in Section 5, and bound procedures are prop&setion 6. The simulation
study is reported in Section 7. Our empirical analysis is presented in Sectidfe &onclude in
Section 9.

2. Model and zero-beta identification

Let Ry, i =1,... , n, be the returns om securities in period, andRy; the return on a market
benchmarkt =1, ... , T). Our analysis of the BCAPM model is based on the following standard
multivariate regression setup [Gibbons (1982), Shanken (1986 KMiay (1987)]:

Ri—Rw=a+ (B —1)Rut+ur, i=1...nt=1..,T, (2.1)

whereu; is a random disturbance. The testable implication of the BCAPM on (2.1) is ltbevfiog
one: there is a scalat the return on the zero-beta portfolio, such that

Jp a+y0i=0, 6 =B—-1 i=1..,n forsomeyel (2.2)

wherel is the set of “admissible” values fgr Sincey is unknown 7 is nonlinear. The latter can
be viewed as the union of more restrictive linear hypotheses of the form

H(Yo) i a+VYp0i=0,i=1,...,n, (2.3)

wherey, is specified. This observation underlies the exact inference apppoapbsed here.



2.1. Notation

The above model is a special case of the following multivariate regression:

Y =XB+U (2.4)
whereY = [Y1, ..., Vo] is T xn, X is T xk of rankk, U = [Uy, ... , Up) = V4, ... , Vy]. For

~ ~ ~ ~ /
(21),Y=[Ry, ..., R}, X=[i1, Ru], R=(R1, ..., Rt)’,Ru = (Rv1, ..., Rwt) , B=[a,B],
a= (a1, ...,an),B=(By,...,B,), andit refers to ar -dimensional vector of ones.

Throughout the paper, we use the following notatidhg k) represents the distribution of
when the parameters afB, K), whereK represents parameters not includedifsuch as param-
eters of the error distribution). For any matrix k matrix A, M(A) =1 — A(A’'A)~ A’ and vecA)
is the (nk) x 1 vector obtained by stacking the columnsfobn top of each other. We also use the
following equivalent forms for the model, parameters, and hypothesesidayed:

Y=Y-Rul,=XC+U, (2.5)
whereC=B—-A=[a,B—1n), A=1[01]; (2.6)
A (Yo) : H(y,)C = 0, for y, specified, (2.7)
A (yo) : R(yo)d =0, for y, specified, (2.8)
whereH (yp) = (1, ¥o), R(¥o) =H(¥o) ® In, 8 =vedC'), R(yp)d = [H(VO)C]/7 (2.9)
H(y)C=0< R(y)9 =0, for all y; (2.10)
M . H(y)C=0, forsomeyerl, (2.11)
A . R(y)9 =0, forsomeyerl. (2.12)

Note that (2.7) - (2.8) represent equivalent representatiomﬁz()ffo), and similarly (2.11)-(2.12)
for 7.

2.2. Distributional assumptions

We further assume that we can conditionRy and
Vt:(ult, ceey unt)’:K’W, t=1, ..., T, W=Wy, ... ,Wm)’, (2.13)

whereK is unknown and nonsingulal/ = Wi, ... , Wr|" is independent oK, and the distribution
of W is either fully specified or determined up to an unknown distributional shapaneter.
(2.13) can also be rewritten in matrix formlds=WK.

We first present results which require no further regularity assumptidvs use additional
restrictions, which entail that the distribution\&f belongs to a specific family%y (2, v), where
2 represents a distribution type amd= Q4 a nuisance parameter characterizing the distribution.



In particular, we consider the multivariate norni&ly ), Studentt (%) and normal mixturé %)
distributions:

ii.d

iy, K) DW= Zat/(Zat [K) Y2, Zue SN0, In], Za & XP(K) (2.15)
A Den, T, @) W = b (T0)Za + [1— (1)) Zax, Zae N[O, wl], 0< < 1, (2.16)

whereZy andZz are independent s, andl; () is an indicator random variable independent of
(Zat, Zz) such thatP(li(1m) = 0] = 1 — P[ly(rm) = 1] = . So, in (2.13),v = k under (2.15), and
v = (11, w) under (2.16). HE(WW/) = I, the covariance matrix o is = = K'K, soJ is positive
definite without further restrictions. K is lower triangularK” andK correspond to the Cholesky
factors of2.

Time-dependence may be taken into account by an appropriate speaifichtiee distribution
of W,t=1, ... , T. Since time-varying volatility is prevalent in financial data, we consider the
parametric GARCH structure:

1
Ui = withg, hit = (1— @y — @x) O+ QWA _1 + Phig1 (2.17)

wherew;; are uncorrelated standard normal variables. This process may easdgdrameterized
as in (2.13), wher& is a diagonal matrix with diagonal ternis— ¢;; — (pZi)l/2 g,i=1...,n,
and eacW; follows a univariate stationary GARCH process with unit intercept. Coniiog with
the above notation, we refer to this distributional hypothesiséag Zc, @), whereg is the 21 x 1

VeCtor(@yy, ..., @1, Por, - -, ¢2n)-7

2.3. Weak identification

Even thoughg, and 3; are identifiabley is defined through a nonlinear transformation that may
fail to be well-defined: the ratig = a; /(1 — ;) is not defined or, equivalently, the equatian=
y(1— B;) does not have a unique solution whgn= 1.

In such situations, the distributions of many usual test statistics becomearatasd, so the cor-
responding tests are unreliable and the associated confidence sets invalidicular, asymptotic
standard errors are unreliable measures of uncertainty, and stasyan@totically justified-type
tests and confidence intervals have sizes that may deviate arbitrarily fedrmtiminal levels; see
the literature on weak identification [as reviewed, for example, in Dufod@32 and Stock et al.
(2002)]. Both the finite and large-sample distribution theory of most testtstatesan be affected.

While it is straightforward to see th@ = 1 corresponds to a discontinuity, the analysis below
reveals this is not the whole story. In particular, we study the propertiestohators and test
statistics following data transformations of the folfn= Y A whereA is any nonsingular fixed

"Ideally, a multivariate GARCH structure may be considered it sufficiently large relative tm; see Bauwens,
Laurent and Rombouts (2006) for a recent survey. We adoptYifice our empirical analysis relies on monthly data
with 12 portfolios over 5 year subperiods (ie= 60 andn = 12).



matrix of ordern. On comparing (2.1) to its transformed counterpart, we see that irregudaritie
cannot be safely assumed away, even when obséet@dare not close to one.

2.4, Standard estimators and test statistics

One of the most common inference methods in this context relies on the log-lid@liho

nT T 1 . ,
—= (2m = S In(1z]) - Str[z Ly = XB)'(Y - XB)]. (2.18)

The unrestricted MLE oB and> are:

In[L(Y, B, )] =

B=(X'X)"XY=[a B, 2£=00/T,

whereU =Y —XB, 4= (4, ..., &)’ andB = (By, ..., B,)". If Cis the MLE ofC in (2.5), the
corresponding estimate &f = veqC') is

3 =veqC') (2.19)
whered is defined in (2.6).

2.4.1. Gaussian-based statistics

The likelihood-ratio statistic to test’(y,) where (y,) is the MLE of £ under.#(y,) is:

LRio) =TAW)), Al =1E00)/ 5l = ———F()+1. (2:20)
5(y0) = 5+ TBH(yo) [H (Yo (XX) MH(yo)] H(vo)B, (221)
T—n—1(a+3yy) S (a+ dy,)
F = 2.22
T e v02/6%) 2
I]M:E 5 Rut, aﬁnzli(ﬁMt—ﬁM)za §=B—1n (2.23)
T4 T4

Z (yo) is the Hotelling statistic for testing?’(y,). Even though this statistic may look like a “Wald-
type” statistic, the “covariance matrix” used far-"dy, — namely,(1+ [({iy — Vo)2/64])2 — de-
pends ory, (the tested value of). This characteristic makes it similar to Fieller-type statistics in
univariate linear regressions [see Dufour (1997)]750y,) can be described as a “Fieller-Hotelling-
HAC-type statistic”. We will see below that this feature plays a crucial roledicing distributional
problems associated with weak identification.

The likelihood-ratio criterion to tes#g is

LRs = TIn(Ag) =inf{LR(yy) Vo€l } =LR(Y), (2.24)
NAs = |28l/12].  |Zsl=inf{|Z(vo)l : Vo€ T}, (2.25)



whereZg is the MLE of £ under.s# andy is the unrestricted MLE of; see Shanken (1986). The
log-likelihood for (2.5) is

In[L(Y,C, )] =In[L(Y —Ruip, B—A4,5)] =In[L(Y, B, )] (2.26)

and the likelihood-ratio statistics for testing’(y,) and 2% coincide with LR(y,) and LRs.
Throughout the paper, we treBRg andLR(y,) as quasi likelihood-ratio (QLR) criteria and the
associated MLEs as quasi maximum likelihood (QML) estimators. We denotétimeved value
of these statistics angJ) andLR9)(y,), respectively.

A Wald-type formula for an asymptotic information-matrix-based standacd associated with
y is provided by Campbell et al. (1997, Chapter 5, equation 5.3.81):

o 2
Var(y) = % [1+ (“ZV)] [(1h—B) = Yin—p) . (2.27)

Om
Whereas corrections may be derived for the non-Gaussian casdaoime-Adesi, Gagliardini and
Urga (2004) who study a related asset pricing problem], generdts@suinference in the presence
of identification failure (or weak identification) indicates that a “variancgtineator which does
not depend on the tested valyg — which is the case fo¥ar(y) — cannot lead to valid pivotal
functions, so the associated “asymptotic” confidence sets and testsndearfantally invalid; see
Dufour (1997). Here, for example, it is easy to see that the above farcamnot be valid when
B = 1, and problematic wheff = 1.

2.4.2. Fieller-Hotelling-HAC statistics

7 (yp) may be viewed as a Hotelling-type statistic based on the standardized distneb
a+ dy, and zero, which conveys an asymptotic least-squares [&ourt, Monfort and Trognon
(1985), Goureéroux and Monfort (1995, Ch. 9)] and a GMM interpretationyofThis may be ex-
ploited to allow for serial dependence, for example by using a propentgcied weighting matrix,
as done for example by MacKinlay and Richardson (1991), Ravikumer €000), and Ray and
Savin (2008). This suggests the following statistic:

I (Yo) = TH'R(yo) {R(VO) [(X;Xyl@ In] St [<X4X> _1® In

whereR(y,) is defined in (2.9),

1
R(Vo)/} R(yp)d, (2.28)

! T ~ ~ !/
sT—%t+z( q’>[%+w¢}, W,;T—f 3 (6@0) (- el)',

andU; is thet-th row of U. A crucial feature of # (y,) comes from the fact that the covariance
matrix estimator used fd?(yo)ﬁ depends oy, (the tested value of). Since it is a HAC-modified
version of.# (yy), Z (Y,) can be described as a “Fieller-Hotelling-HAC” statistic f (y,)-HAC”



statistic.

Unders#(y,), 7 (V) follows ax?(n) distribution asymptotically. This result does not require
any assumption on the identificationypfA GMM estimatory of y ,can be obtained by solving the
problem

Se=inf{ 7 (yo) :voel}=_7(). (2.29)

We denote the observed value of these statisticya® and_7 ©(y,), respectively.

3. Identification-robust Monte Carlo tests for y

We will now derive the exact null distribution afR(y,) and _# (y,) unders#(y,), wherey, is
known. We then show how this result can be used to obtain exact Monie aalues. This will
allow us to build confidence sets fgiand yield a way of testing efficiency.

3.1. Distribution of LR(yy) and _Z (y,) under JZ(y,)

Theorems3.1 and3.2 show that the null distribution of bothR(y,) and _# (y,) givenX, is com-
pletely determined b¥ and the distribution o#V givenX. Proofs are given in the Appendix.

Theorem 3.1 DISTRIBUTION OF THE MEAN-VARIANCE CAPM TEST FOR A KNOWN ZERG
BETA RATE. Under(2.1), (2.13) and.7Z(y,), LR(Y,) is distributed like

LR(Yo, W) = T In(|W'M(yo)W| / [W'MW/) (3.1)
whereM (yo) = M (X) +X(X'X)~*H (vo)'[H (Yo) (X'X) ~H (v0)'] "*H (yp) (X'X) 71X,
In thei.i.d. Gaussian case (2.14), we have:
[(T—=1-n)/nj[A(yy) =1 ~F(n, T—1—n); (3.2)

see Dufour and Khalaf (2002). This result was used by Gibbons @%89) in studying efficiency
with an observable risk-free rate. Indeed, testiy y,) is equivalent to testing whether the inter-
cepts are jointly zero in a market model with returns in excegg.of

Theorem 3.2 DISTRIBUTION OF THE FIELLER-HOTELLING-HAC STATISTIC FORY . Under
(2.2), (2.13 and . (y,), the statistic 7 (y,) defined in(2.28) is distributed like

7 (Yor W) = TH(yg) (X'X) "2X'W2(yo, W) WX (X'X) *H (yp), (3.3)
where

N

St

(%) "o e,

)

2(Yo,W) = [H(Vo) <X-|,-X>1®|n




andW{ is the t-th row ofV = M(X)W.

For non-Gaussian distributions compatible with (2.13) [including the GARG (& 17)], The-
orem3.1 shows that the exact distribution of both statistics, although non-standagdeasily be
simulated once, the distribution oW andy, [given by.7Z(y,)| are set. This invariance property
entails that the Monte Carlo (MC) test method can be easily applied, providetistiibution ofW
can be simulated (given a finite number of parameters); see Dufour)(ZBpe&liminating a poten-
tially large number of nuisance parameters, this invariance is also rel@vaaqlying asymptotic
approximations. Of course, tests based giiy,) are asymptotically valid in the usual way under
standard asymptotic assumptions, such as those required by the HACtiooseconsidered by
MacKinlay and Richardson (1991), Ravikumar et al. (2000), and RdySavin (2008).

3.2. Monte Carlo test method

This section explains the MC and MMC methods for implementing hypothesis testd ba a test
statisticS. We also set associated notation, given the following assumptios on

In the context of mode(2.4), consider a null hypothesk, which consists of (possibly nonlin-
ear) restrictions o8, and an associated test statissicWe rejectH, whenS> c. UnderH,, Sis
distributed like a functiors§(n, W) of W and a vector of parametersc = (as well as the known
matrix X), where= describes the restricted parameter space (typically of dimension lower #han th
number of parameters iB andK). Finally, given(2.13), we can simulat&V, oncev has been
specified [e.g., as suggested by one of the assumptions (2.14) - (2.16)]. _

_For notation simplicity, the dependence up6is implicit through the definition 0. Examples
of §(.) include (3.1) and (3.3) in which cagecorresponds tg, which is set by the null hypothesis.
The MC method assesses the rank of the observed vaIBeierﬁoted[denotedS(°>], relative to a
finite numberN of simulated statistics [denote®f?) , ..., SV)] drawn under the null hypothesis.
Given the above general assumptions, we can apply the following algorithm.

Al Given: (i) a value ofv, (ii) N drawsw®, ... WM from the distribution o, (iii) a value
of n, and (iv) the test functio®(n, W), computeS(n, W) leading to the vector
Su(n,v)=[S(n,wW), ..., S(n,wN)]" (3.4)

A2 Build theMC p-value function

NGy [S9; Su(n, v)] +1

Gn [S<O) ; S_—N(r], V)] = ;jgll[qm) [S_(W(D7 n)— S(O)] 7 (3.6)

wherelax] = 1, if x € A, andla[x] = 0, if x ¢ A. Setpn(S 17, v) = pn[SO|Su(n, V).
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A3 If v andn are set byH,, the test which rejectsl, when
Pn(Sn.v)<a (3.7)

is a test withlevel a for H,; if furthermore the distribution o8 is continuous undéfl, and
a(N+1) is an integer [as assumed in the cases considered in this paper], thisstesteha
a: the probability of rejection under the null hypothesis is equat tdor finite T andN. If

v or ) is not set by the null hypothesis, then maximggS? |Su(n, v)] over all the(v, n)
values compatible witlt,, and reject the latter if the maximagb-value is less than or equal
toa. ForanyA C = andE C Qg, let

Pn(Sn, E) =sup{pn(Sin, v):v € E}, (3.8)
ﬁN(S;A7 V):SUP{FA)N(S;”’V)WGAL (39)
Pn(SA E)=sup{pn(Sn,v):n €A v EE}, (3.10)

where, by conventiompn(S A, -) = 0 if Ais empty, andoN (S, -, E) =0 if E is empty. Then
the probability of rejection undétl,. based on either: (ipn(S 1, Q) whenn is set byH,,
(i) pn(S =, v) whenv is set byH,, or (iii) Pn(S =, Q4) when bothv andn are not set by
H,, is itself not larger thamr for finite T andN; see Dufour (2006).

A test for which the probability of rejection under the null hypothesis is ngieiathana is
sometimes described aanservativeaest. We prefer to rely on the more precise and traditional
distinction between kevel-correcttest and aize-correctest. A test idevel-correct fora (or exact
at levela) if the probability of rejection under all distributions compatible with the null Hiyesis
is less than or equalo a (for finite T). In contrast, a test isizecorrect fora (or hasexact size
a) if the supremunof the probability of rejection under all distributions compatible with the null
hypothesis isequalto a (for finite T). It is clear that a size-correct test is level-correct, but the
converse may not hold. Both these definitions account for the common situdtere the rejection
probability under the null hypothesis may depend on nuisance paranstdrius vary over the
null hypothesis. We use the terexactwhen underlying probability statements hold for finite
andN, whether null rejection probabilities are equal to or not larger than thethgpized cut-off.
We follow the same notation in the case of a confidence set. A confidenaitiseikact size - a
implies that the infimum of the set’s coverage probabilities compatible with the aresidnodel
is equal to - a, for finite T andN. In contrast, a confidence set with exact lewémplies that the
set’s coverage probability is greater than or equaHax], for finite T andN. This definition implies
that inverting a size-correct test leads to a size-correct confidehostsle inverting a level-correct
test leads to a level-correct confidence set.

When a Monte Carl@-value is computed given a hypothesized distribution, and where in this
case, the underlying test statistic converges to any distributionHs#ye associated Monte Carlo
test will remain asymptotically valid under any set of weaker assumptions l@twihe statistic
still converges to the same limiting distributiéh The implications for the present paper are as
follows: our tests though exact with the considered distributiond/aemain asymptotically valid
in a semi-parametric context under the usual set of assumptions typicaliyagdor the CAPM to
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hold.

3.3. Monte Carlo tests based o.R(y,) and _Z (yy)

With respect to the algorithm in the previous section, in the caseLRfy,), S
LRO(yy), n = ¥o, and using (3.1)S(n, W) = LR(yp, W"). With Sy(n, v) = LRu(Yo, )
[CR(yo, WD), ..., LR(yo, WN)]", and using thep-value functionpy|.] from (3.5), let

Pn (LR Vo, V) = pn LR (vg)|[LRu (Yo, V)] - (3.11)

As a result of Theorer.1, we have, undeg?’(y,) in conjunction with&y (2, v) and given the
notation from (3.8)-(3.10):

P[Pn(LR; Yo, Vo) < a] = a, whenv = vy, (3.12)
P[Pn(LR; g, Q2) < a] < a, whenv may be unknown. (3.13)

Similarly, in the case of 7(y,), % = #©(y,), n = y,, and using (3.3),5(n, W) =

I (Yo W) With Sy(n, v) = (vo, V) = [Z (Yo, W), ..., 7 (Vo W), let
BN Yo V) = pn 7O (Vo) Ao, V)] - (3.14)
As aresult of Theorer.2 we have, undeg?’(y,) in conjunction with &y (2, v):

PIPn(Z Yo, Vo) < a] =a, whenv = vy, (3.15)
P[An(_7:¥0. Qs) < a] < a, whenv may be unknown. (3.16)

4. Identification-robust confidence sets foly

Under /73, the ratiosa; /(1— (3;), 1, ... , n, are equal. This definition of leads to the classical
problem of inference on ratios from Fieller (1954). The problem heoterly more complex, so
to extend Fieller's arguments, we use the above defined test§(gf).

4.1. Gaussian LR confidence sets

Consider the Gaussian model given by (2.1), (2.13) and (2.14). IndBis andes#(Yy), -7 (Vo)
follows a Fisher distributio (N, T —n—1); see (3.2). Lef, denote the cut-off point for a test
with level a based on th& (n, T —n— 1) distribution. Then

CR(a)={vo €l : F(¥y) <Fa} (4.1)

has level 1- a for y, i.e. the probability thaty be covered byCF,(a) is not smaller than % a.
Indeed,Ply € CF/(a)] = 1—a, that isCF/(a) is size-correct. On noting tha¥ (y,) < Fy can be
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rewritten as

nk
Me (Vo) — T_ina_lNF(Vo) <0, (4.2)
Me (Vo) = (a+8yp)' S 71 (a+3y,) = (55 18) 3+ (265 a)y,+85 ',  (4.3)
iy —Yo)? 1 2[) Ity
NF(VO):l+Mzﬁy(2J_AL{nVO+l+ ‘fg", (4.4)
Om Om Om Om

we see, after a few manipulations, tk,(a) reduces to a simple quadratic inequation:

CFR(a)={ypel :Ay3+By,+C <0}, (4.5)
e 1% B nFo, 1 . Ye_1a nFO! ﬂM
A=8515 (Tnl>6ﬁ, B_Z[c‘SZ a(on1) 6t @O
~2
_Ae-1s nFy Hwm
c=4&s"1a <T—n—1> 1+5§A (4.7)

ForIr = R, the resulting confidence set can take several forms depending onatiseofche
polynomial AyZ + By, +C : (a) a closed interval; (b) the union of two unbounded intervals; (c) the
entire real line; (d) an empty setCase (a) corresponds to a situation whgie well identified,
while (b) and (c) correspond to unbounded confidence sets andtedp=tial or complete) non-
identification.

The possibility of getting an empty confidence set may appear surprising.oBunindsight,
this is quite natural: it means that no valueygfallows.#’(y,) to be acceptable. Sinc#g states
there exists a real scalgrsuch thata; = (1—-;)y, i =1, ... , n, this can be interpreted as a
rejection of 7. Further, underg, the probability thaCF,(a) covers the true valugis 1—a,
and an empty set obviously does not coyeConsequently, the probability th@F,(a) be empty
[CF/(a) = 0] cannot be greater thanunder.s# : P[CF/(a) = 0] < a. The evenCF,(a) =0 is an
exact critical region at levaet for 27 under normality (although its size may be smaller tiagn
When the confidence s€tR(a; v) is not empty, the identity R(y) = inf {LR(yp) : yo € '} entails
thaty must belong t(C)';R(a; v), for the critical value is the same for aj}.

4.2. Fieller-Hotelling-HAC confidence sets

The quadratic confidence set described above relies heavily on thiedtthe same critical poiffy,

can be used to test all valuesygf This occurs under thiei.d. Gaussian distributional assumption,
but not necessarily otherwis@lthough the quadratic confidence set will remain “asymptotically
valid” as long asZ (y,) converges to g?(n) distribution, this cannot provide an exact confidence
set. Consider the M@®-value pn(LR; vy, V) function associated with this statistic, as defined in
(3.11). Since the critical regiopnTLR; g, Vo) < a has sizex for testingy = y, whenvg is known,

8For further discussion, see Dufour and Jasiak (2001), Zivot €1888), Dufour and Taamouti (2005), Kleibergen
(2009), and Mikusheva (2009).
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the set ofy, values for whichpg (Y, Vo) exceeds, i.e.
CyR(a;v)={yo € : pn(LR Yo, Vo) > a1}, (4.8)

is a confidence set with size-la for y. Similarly, whenv is not specified, the tegi (LR; y, Qg) <
a yields:
CR(a; 2)={yoel : Pn(LR v, Qo) > a}, (4.9)

whose level is - a. C/(a; v) or Cy(a; 2) must be drawn by numerical methods. Our empirical
analysis reported below, relies on nested grid searchesyg@edk, for the Student-case (2.15),

and overy, and (7, w) for the normal-mixture case (2.16); for the GARCH case (2.17), we axndu

a grid search ory, where for each candidate value, we run the simulated annealing optimization
algorithm to calculate the maximalvalue from (4.9) over ther2nuisance parameters {n

We have no closed-form description of the structur@b?(a; V) orC{;R(a; 2). While these
can be bounded intervals (this is shown numerically in Sectioﬁiﬁx,a; V) orC';R(a; 2) must be
unbounded with a high probability i is not identifiable or weakly identified [see Dufour (1997)].
An empty confidence set is also possible and provides evidencegha not compatible with the
data. The ever@/R(a; v) =0 [or C;R(a; 2) = 0] is a test with levebr for #g under (2.13).

The Fieller-Hotelling-HAC confidence set we obtain for the GARCH casea&te because
the cut-off point we use when inverting (y,) is adjusted for the parametric form (2.17) via the
maximizedp-value from (4.9). Inverting # (y,) in (2.28) may however be more appropriate. We
thus define using (3.15)-(3.16)

C/ (a;vo) = {yo e : Pn(_7 Vo, vo) > a} (4.10)

which gives a robust confidence set with size d for y. Similarly, whenv is not specified, the test
BN (LR yp, Q2) < a yields

C/ (a;2)={Voel : n( 70, Qz) > a}, (4.11)

a robust confidence set with leveHa. Again, this must be implemented by numerical methods.
Inverting an asymptotic test based gn(y,) can also be considered, relaxing the GARCH restric-
tion. For example, a grid search can be conductegyomhere for each candidate valug (y,) is
referred to they?(n) distribution; this would circumvent the identification problem asymptotically
[as argued e.g. in Stock and Wright (2000)], yet in finite samplesy#ig) approximation may
perform poorly. Indeed, our simulation results reported below illustratesekerity of this prob-
lem. Consequently, we use the MMC method for each candigatee maximize over the model
parameters as well as over

5. Invariance and exact distribution of LRg

In this section, we study the exact distribution of the statldRg, under both the null hypothesis and
the corresponding unrestricted multivariate regression alternative m@deanalysis also provides
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further information (beyond Theorefl) on distribution ofLR(y,). We track and control for the
joint role betasand scale parameters play in identifyipg

Lemma 5.1 MULTIVARIATE SCALE INVARIANCE . The likelihood-ratio statistics L{},) and LRs
defined in(2.24) and (2.20) are invariant to replacingY byY, = YA where A is an arbitrary
nonsingular nx n matrix.

Such transformations can be viewed as the following affine transformatiovis
Y. =YA+RuiL(In—A). (5.1)

Theorem 5.2 EXACT DISTRIBUTION OF BCAPM LR TESTS  Under (2.1) and (2.13), the
distributions of LRy,) and LR; depend or{B, K) only throughB = (B— A)K~1, and

LR(Yp) =T In (\W(yo)’W(yo)\/|W’W|) , LRe=inf{LR(yp) :yo €}, (5.2)
whereA = [0, 1], W = M(X)W,M(y,) is defined as irf{3.1) and
W(yo) = M(yo) (XB+W) = M(yp){iT[a+ yo(B—1n)] K +W}. (5.3)

If, furthermore, the null hypothesi#g holds, then

W(yo) = (Yo— VIM(Yo)i (B — 1n) K™+ M(yp)W (5.4)

and the distribution of LR depends oriB, K) only throughy and (B — 1,)’K~%; in the Gaussian
case(2.14), this distribution involves only one nuisance parameter.

Even thougB andK may involve up to 2+ n? different nuisance parameters [an-2 n(n+
1)/2 parameters, iK is triangular], the latter theorem shows that the number of free parameters
in the distributions olLR(y,) andLRg does not exceedn2 when .7z holds, the number of free
parameters is at moat+ 1. Further, undep?’(y,) [using (5.4)]B is evacuated, entailing Theorem
3.1 Theorenb.2also provides the power function.

6. Exact bound procedures for testing77a

In this section, we propose tests féffg in the presence of nuisance parameters induced by nonlin-
earity and non-Gaussian error distributions. Because our rationaketie&thanken’s (1986) bound
for the Gaussian case, we study first global bounds based on te#f§pf). Second, we describe
more general but computationally more expensive methods based on thigjtechf MMC tests to
obtain tighter bounds.

6.1. Global bound induced by tests o&7(y,)

The results of Section 3 on testilyg= Yy, can be used to derive a global bound on the distribution
of the statistid_Rg. This is done in the following theorem.
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Theorem 6.1 GLOBAL BOUND ON THE NULL DISTRIBUTION OF THEBCAPM TEST. Under the
assumption$2.1), (2.13) and.”/g, we have, for any given € Q,

P[LRs > x| < supP[LR(yo, W) > ], ¥, (6.1)
YOEI_

whereLR(y,, W) is defined in(3.1). Further, in the Gaussian cage.14), we have:

P(T-1-n)(Ag—1)/n>x] <P[F(n,T—1—n) >x], ¥x. (6.2)
To relate this result to available bounds, observe that (6.1) and (6iB) @eend to the follow-
ing multi-beta setups: far=1,...,n,t=1,..., T,
S ~ S
Re=at 3 BjRitu.  bra=y(1-3 By). (6.3)
i= i=
wherelijt, j=1, ...,s arereturns o ben~chmark~s. In~this case, the pounding distributioh R4
obtains as in Theore®.1whereX = [it, Ry, ..., Rs|, Rj = (Rj1, ..., Rjr)’, j=1,...,s andH
is thek-dimensional row vectofl, yy, ..., yp). In the Gaussian casB[LR(y,, W) > x| does not

depend ory,, and the bounding distribution under normalityA$n, T —s—n). Shanken (1986)
suggests the statistic

&= min {T[é‘V('”‘f*'s&’[(ﬂ”12>>§1—1[a—v<:n—fsls>] }
4 1+ (Ry —yls)’Al\_/ll(RM —yis)

(6.4)

whered’is ann-dimensional vector which includes the (unconstrained) intercept esti,nﬁhixean
n x s matrix whose rows include the unconstrained OLS estimatég;ef..., Bis),i=1,...,n
I'«?M andAM include respectively the time-series means and sample covariance matespmording
to the right-hand-side total portfolio returns. Further, the minimum in (6.4)rscat the constrained
MLE y of y, and

)

LR = TIn(1+Q/(T —s—1)). (6.5)

For normal errors(T —s—n)Q/[n(T —s— 1)] can be bounded by tHe(n, T —n— s) distribution.
The latter obtains from Gibbons et al.’'s (1989) joint test of zero intéscaphere returns are ex-
pressed in excess of a known

Independently, Stewart (1997) shows [using Dufour (1989)] umdemal errors, thatT —
s—n)[(|5s/|£]) — 1] /n can be bounded by the(n, T — n — s)distribution. Now, from (2.24)
and (6.5), we see that Shanken and Stewart’s bounds are equialdrtipth results obtain from
Theorem6.lin the special case of normal errors.

When disturbances are non-Gaussian, Thedselentails that the bounding distribution can
easily be simulated. Using the notation we introduced in subsection 3.2 [defindtidhe p-value
function py[.] from (3.5) and the maximizep-values (3.8)-(3.10)] the following algorithm may be
used.

B1 Given a value ob, generateN i.i.d. draws from the distribution oV then, for any givery,,
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apply the (bounding) functiobR(y,, W) from (3.1) to each draw. With reference to Section
3.2, this implies usind-R(y,, W) for S(n, W), which will yield a vectorLRy(yy, v) of N
simulated values of the bounding test statistic.

B2 Compute the M(p-value [denoted thbound MC(BMC) p-value]

BY (LRs; Vo, v) = pu[LRY (LR (o, V)] - 6.6)

In contrast with the Gaussian cag,(LRs; yo, V) may depend ory,; nevertheless, for any

Yo
LRe < LR(yo) = Pn(LR; Yo, V) < PR(LRe: Vo, V). (6.7)

B3 Critical regions that provably satisfy the level constraint can be oddaby maximizing
ﬁH(LRB;yo, v) over the relevant nuisance parameters, leading to the maxinpzedues

PR (LRs; I, v), PN (LRe; Yo, Qz) andpy (LRs; I, Qg).

Theorem 6.2 GLOBAL SIMULATION -BASED BOUND ON THE NULL DISTRIBUTION OF THE
BCAPM TEST STATISTIC Under(2.1), (2.13 and .”g, we have, using the notation {3.8)-
(3.10:

P[PR(LRs;M,v)<a] <a, P[pR(LRes;[, Qy)<a]<a, (6.8)

wherev represents the true distributional shape of W.

These bound tests are closely related to the confidence set-basedpesigrin Section 4: the
null hypothesis is rejected when the confidence setf®emptyi,.e. if no value ofy, can be deemed
acceptable (at levet), either withv specified ow taken as a nuisance parameter. This may be seen
on comparing (4.9) with the probabilities in Theorém SinceLRg = inf{LR(yy) : Yo € I }, this
suggests a relatively easy way of showing ISBHE(G; V) or C)';R(a; 2) is not empty, through the
specificp-value g (LRs; ¥, v) obtained by taking/, = ¥ in (6.6). We shall calpf(LRs; ¥, v) the
QML-BMC pvalue.

Theorem 6.3 RELATION BETWEEN EFFICIENCY TESTS AND ZERGBETA CONFIDENCE SETS
Under (2.1), (2.13) and ., let y be the QML estimator of in (2.25). Then, using the notation
from (3.8)-(3.10):

Pn(LRe; 7, v) > a = pn(LRe; [, v) > a = CR(a;v) #0, Vv € Qg
PR (LRs; ¥, Qo) > a = pn(LRs; Mo, Qz0) > a = C;R(a; 2) # 0,

where GR(a, v) and GR(a; 2) are the sets defined i#.8) and (4.9).

For the Gaussian case, Zhou (1991) and Velu and Zhou (1999) ggd@opotentially tighter
bound applicable to statistics which can be written as ratios of independenaitsriables and
does not seem to extend easily to other classes of distributions. In theewidn, we propose
an approach which yields similarly tighter bounds for non-Gaussian distntzuas well. Finally,
the HAC statistic #/g may be used to obtain alternative identification-robust bound tests following
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the same rationale. The correspondence between such tests and enfijglyncensets entailed
by test inversion also follows from similar arguments. Finite-sample MMC lewgkections are
recommended, given the simulation results in Section 7.

6.2. Tighter bounds

Another approach to testinggg with the statistid_.Rg consists in directly assessing its dependence
on nuisance parameters and adjusting the test accordingly through the riviitiod. Let6 =

Y (B, K) represent the parameter vector upon which the distributidrtRgfactually depends, and
Qg the set of admissible values f8runder.s7g. The dimension 06 may be lower than the number
of parameters iB andK. Define the functiorLRs (68, W) = LRg (¢/(B, K), W) which assigns to
each value of B, K) and the noise matri¥V the following outcome: usin@ and a draw from
the distribution ofW (which may depend om), generate a sample from (2.1)-(2.2), and compute
LRg [as defined in (2.24)] from this sample. This suggests we carLBséf, W) for S(n, W).
Maintaining further notation from Section 3.2 [again, recall in particular ti@ndions of thep-
value functionpy(.] from (3.5) and the maximizeg-values (3.8)-(3.10)] the following algorithm
may be used.

C1 Generatd\ independent replications ¥ and applyLRs (8, W) to each draw, for any value
of 6, leading to a vectotRgn (6, v) of N simulated statistics.

C2 Compute the M(-value
BR (LRe; 6, v) = pu[LRS [LRen(6, v)].

C3 Critical regions that provably satisfy the level constraint can be dddaioy max-
imizing Pe(LRs;6,v) over relevant nuisance parameters leading pR(LRs; Qs, V),
PE(LRs; 6, Q) andp& (LRs; Qg, Qy).

Theorem6.3 guarantees thagi{LRs; ", v) < o = pR(LRs; Qs, v) < a for any givenv. So
it may be useful to check the global bound for significance before tgrtirihe MMC one. Fur-
thermore, it is not always necessary to run the numerical maximization lyimdeMMC to con-
vergence: ifpS(LRg;8,Vv) > a given any relevand (or v), then a non-rejection is confirmed.
We suggest to use the QML estimadleof 6 as start-up value, because this provigasametric
bootstrap-typgor alocal MC (LMC)] p-values:

pR(LRs; V) = PR(LRs; B,v), pR(LRs; Qz) = PE(LRs; 0, Qy). (6.9)

Then pR(LRs;v) > a entails pS(LRs;Qg,v) > a, and pR(LRs; Q») > a entails
P (LRs; Q8, Q) > Q.

Following the same reasoning, a parametric MMC test imposing (2.17) may liedafipthe
HAC statistics_# (y,) and _#g, as an attempt to correct their size for the GARCH alternative of
interest. We investigate the size-corrected power associated with thesestatiSection 7.
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Weak identification o/ implies that the data is weakly informative on the parameter and thus on
the related specification. This means that the data may not provide suffid@mation on whether
g should be refuted or not. Whanis weakly identified, tests fagzg will suggest accepting the
underlying pricing restrictions. We thus recommend to interpret testgZpin conjunction with
associated confidence sets which will be unbounded whemveakly identified and will provide a
much more complete statistical analysis.

6.3. Two-stage bound confidence procedures

To deal with the fact that the distribution @ may involve an unknown parameterc Q4, we
suggested above to maximize the relevavalues overQ ;. We next consider restricting the max-
imization overv to a set which is empirically relevant, as in Beaulieu et al. (2007). This leads to
two basic steps: (i) an exact confidence set with leveld; is built for v, and (ii) the MCp-values
(presented above) are maximized over all values iof the latter confidence set and are referred to
level o, so that the global test level & = a1+ 2. In our empirical application, we usex/2.

Let %, (a1) = %v(a1; Y) be a confidence set with leveHa for v. Then, unde?’(y,), we have
PPN (LRe; Yo, Gv(01)) < a2] < a1+ a2 while, underszg :

P[P (LRe: [, 6y (1)) < az] < a1+ 0z, P[BR (LRs; Qg, 6y (1)) < az] < a1+ 0.
(6.10)
Note also that fopﬁ (LRs; 2B, %y (0a1)) < az not to hold the following condition is sufficient:

PR (LRe; 8. € (a1)) > a2. (6.11)

To build a confidence sets for, we invert a test (of levedr;) for the specification underlying
(2.13) wherev = vq for knownvyg; this avoids the need to use regularity assumptiong.drhe test
we invert is the three-stage MC goodness-of-fit test introduced inDw@oal. (2003), which uses
Mardia’s (1970) well known multivariate skewness and kurtosis meag8k and KU below]:

CSK(vp) = 1—min{pn (ESK(vo); Vo), Pn (EKU(vo); vo)} (6.12)
ESK(vo) = |[SK—SK(vo)|, EKU(vo) = |KU —KU(vy)| (6.13)
SKe LSS d, kU= Ly 6.14
IR WOTRE 020

whered; are the elements of the mattil(U'U /T)~20’, SK(vo) andKU (vg) are simulation-based
estimates of the expected SK and KU given (2.13) pfieiSK(vo)] and g|[EKU(vo)] are p-values,
obtained by MC methods under (2.13). The test’s three stages [summagip®g bre motivated
by the following [see Dufour et al. (2003) for proofs and more detailgdrahms].

Let di (v) refer to the elements of the mati((W'\W/T)~ W’ with W = M(X)W and recall
thatU = M(X)U = M(X)WK = WK. Then under assumption (2.13) [including in particular the
distributions from (2.14)-(2.16)], SK and KU depend on the data onlydyiazv) and thus may
easily be simulated given draws from the distributiondf The three stages of the test use this
result, as follows.
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D1

D2

D3.

Stage |, to obtaiSK(vo) andKU (vg): for vg given, drawNo samples from the hypothesized
distribution ofW; then, applyds (.) to each draw, replacingd; in (6.14) bydj (v), compute
the corresponding measures of skewness and kurtosis, and takesthgeavThe remaining
two stages condition on these estimates. Refeé8Kévy) andKU(vo) so obtained as the
reference simulated momefiRSM].

Stage I, to derive CSHo): first obtainpy (ESK(vo); vo) and pn (EKU(vp); Vo), using the
observed statistics ardy [wherea (N; + 1) is an integer] draws from the hypothesized dis-
tribution of W (independently from stage 1), as in the algorithm A1-A3 from Section 32 an
using the same RSM for the observed and the simulated values of SK arffd Réfer to
theN simulated SK and KU from step Al as the reference simulated s&&S.[Applying
(6.12) gives the observed value of the test statistic, GGKP).

Stage lll, to derive a M(-values for CSKvp): independently of the previous RSM and
BSS, generathl [wherea (N + 1) is an integer] additionali.d. realizations ofV. Applying

di (.) to each draw, and replacimfy in (6.14) byd; (v) compute the corresponding measures
of excess skewness and kurtosis [using the RSM]. On comparing édokse to the RSS,
compute MCp-values: in other words, repeat step D2 replacing the observed staligtics
those last simulated. Thegevalues provide a vectd€SKy(vo) of N replications of the
combined statistic, leading in turn fi (CSK(vo); Vo) = pn[CSK(vo)@|CSKn(vo)].

The confidence set for corresponds to the values of which are not rejected at level,
using the lattemp-value. For the GARCH case, pre-estimating thex2l vector ¢ is infeasible
with 5 or even 10 year sub-samples of monthly data. Nevertheless, the siageMMC is valid
despite this limitation. Interestingly, the simulation study we report next sugtedtpower costs
are unimportant even with relatively small samples.

7.

Simulation study

We now present a small simulation study to assess the performance of fus@damethods. The
design is calibrated to match our empirical analysis (see Section 8) whichaeliasnthly returns
of 12 portfolios of NYSE firms over 1927-1995. We consider model (@H8reRy,t=1, ..., T,
are the returns on the market portfolio from the aforementioned data avéagh5 and 10 year
subperiods, as well as the whole sample. We thusniakd 2 andT = 60,120 and 828. The coeffi-
cients of (2.1) including are set to their QML estimates (restricted ungéy over the conformable
sample period). From the QML regression, we also retain the estimatedcevaance matrix, to
generate model shocks; formally, we compute the corresponding emyiticaésky factor (de-
notedK) and use it foK in (2.13). Test sizes witk = |, are also analyzed to illustrate the effects
of portfolio repacking.

We consider normal and Studeargrrors (withk = 8, in accordance with the kurtosis observed
in the empirical application), so the random vectdést = 1,..., T, in (2.13) are generated fol-
lowing (2.14) and (2.15) respectively. The MC tests are applied imposithgganring information

9With respect to the notation in A1-A3, disregaydsince the statistics considered here are invariaBtaodK.
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on Kk, which allows us to document the cost of estimating this parameter. \Whertonsidered
unknown, MMC p-values are calculated over the intervak4 < 13 to keep execution time man-
ageable (a wider range is allowed for the empirical application in Section 8)al¥é consider the
case of GARCH errors (2.17), withy; = ¢, andgy = @5, i =1, ..., n(the coefficients are the same
across equations). This restriction is motivated by execution time, but it ieckla Section 8. We
use the diagonal elementsiK’ to scale the intercept, yet we also consider the case vdterel,
i=1,...,n. Samples are simulated witlp,, ®,) = (.15,.80). These parameters are treated, in
turn, as known and as unknown quantities. In view of the low dimension afulsance parameter
space in this case, whémp,, @,) is treated as unknowm-value maximization is achieved through
a coarse grid search (for the purpose of this simulation). g-kalue function does not appear to
be very sensitive to the value 6§, ¢,), and the results presented below indicate this is sufficient
for controlling test level in the relevant cases. A more thorough optimizatibiowgever used in
Section 8.

The results of the simulation are summarized in tables 1 - 3. These tables eegarical
rejection rates for various tests o#’(y,) with nominal size 5%. These rejection rates deter-
mine the coverage properties of confidence sets derived from the teisise we focus on esti-
mating y, ##g is imposed for both the size and power studies. We compare the following tests:
(1) a Wald-type test which rejecis= y, wheny, falls outside the Wald-type confidence interval
[y—1.96x AsySHY), y+ 1.96x AsySHY)|, using the QML estimatoy, an asymptotic standard
error [AsySEY), based on (2.27)], and a normal limiting distribution; (2) the MC and MMC tests
based on the QLR test statisti®(y,) defined in Theoren3.1, with MC p-values fori.i.d. nor-
mal or Student-errors (with known or unknowr), Gaussian GARCH with known or unknown
(®1,9,), as well asp; = @, = 0 (i.e, ignoring the GARCH dependence even when it is present
in the simulated process); (3) tests based on the HAC Wald-type stafiStig) in (2.28), using a
x2(n) critical value, MC with known(¢;, ®,), and MMC where(@,, @,) is taken as unknown.

In the size study (Table 1), is calibrated to its QML counterpart from the data sgf +
—0.000089 forT = 60, y, = .004960 forT = 120, y, = .005957 forT = 828]. In the power study
(tables 2 - 3), we focus on thHé case; samples are drawn wigtset to its QML estimate, any,
is set to the latter value stepx ™", whereg!™" = [min{G?}]%/2, andG? are the diagonal terms
of KK’ (with variousstepvalues).N = 99 is used for MC testdN = 999 is used in the empirical
application). In each experiment, the number of simulations is 1000. We usgd4 for the HAC
correction.

Our results can be summarized as follows. The asympitatic or robust procedures are very
unreliable from the viewpoint of controlling level. Whereas we observeigrapfrequencies of
type | errors over 70% and sometimes 90% Witk 60, we still see empirical rejections near 55%
with T = 828. The results also show that the empirical size of the HAC-based testsiffetted by
K, though a formal proof of its invariance is not available. This observasitilwwever compatible
with the fact that its size improves with larger samples: while the level of the Walkltest shows
no improvement (around 55%) even with= 828 and normal errors, the size of thé(y,) statistic
drops from 95% withT = 60 to 12% withT = 828. The likelihood-ratio and robust MC and MMC
tests achieve level control; in the GARCH case, the MC likelihood-ratio testheacorrect size
even when GARCH dependence is not accounted for.
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Table 1. Tests on zero-beta rate: empirical size

n=12 T=60 T =120 T =828
K K K

W Statistic p—value l12 K I12 K l12 K
Normal | Wald-type NI[O,1] .709 .196 | .633 .096 | .578 .050
LR(yy) MC .057 .057 | .048 .048| .041 .041
Studentt | Wald-type N[O,1] 714 218 | .645 .106| .587 .055
LR(yp) MC: k known .053 .053| .046 .046| .043 .043
MMC: k unknown | .043 .043| .035 .035|.031 .031
GARCH | Wald-type N[O,1] 676 .200| .628 .086| .579 .047
LR(yp) MC: @, =¢,=0 .059 .059| .048 .048| .046 .046
MC: ¢,, @, known .064 .064 | .043 .043| .050 .028
MMC: @, ¢, unknown | .054 .054| .032 .032| .028 .050
7 (Yo) X2(12) 954 954 | 686 .686| .127 .127
MC: ¢4, ¢, known .049 .049| .045 .045| .049 .040
MMC: ¢,, @, unknown| .040 .040 | .034 .034 | .040 .049

Note — The table reports the empirical rejection rates of various test&¥or,) with nominal level 5%. The values gf,
tested areyy = —0.000089 forT = 60, yy = .004960 forT = 120, y, = .005957 forT = 828. The design is calibrated
to match our empirical analysis (see Section 8). The tests compareegdodidkving. (1) A Wald-type test which rejects
Y = Yo Wheny, falls outside the Wald-type confidence interjfal- 1.96 x AsySHY), y+ 1.96 x AsySHY)], using the
QML estimatory with asymptotic standard errdAsySHY)] based on (2.27), and a normal limiting distribution. (2)
MC and MMC tests based drR(y;) in (2.20), with MC p-values fori.i.d. normal and Studeriterrors (with known or
unknownk), Gaussian GARCH with known or unknowpy, ¢,), as well asp; = ¢, = 0 (i.e., ignoring the GARCH
dependence even when it is present in the simulated process). {8)o@sed on the HAC Wald-type statistj€ () in
(2.28), using g2 (n) critical value, MC with knowrn(@;, @,), and MMC where(@;, @,) is taken as unknown. In thig.d.
cases, the errors are generated using (2.13) Migiet to eitherl1» or K, which corresponds to the Cholesky factor of
the least-squares error covariance estimate from the empirical datdondbe simulation design. In the GARCH case,
samples are generated with conditional variance as in (2.17) Ksamds» for K.
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Table 2. Tests on zero-beta rate: empirical power
Gaussian and Student designs

n=12 T=60 T =120 T =828
W Statistic p-value Step Power Step Powern Step Power
Normal | LR(y,) | MC: ¢, =¢,=0 | 50 .151 | 50 .226 | .20 .129
75 315 | .75 529 | .30 .313
10 544 | 1.0 .83 | 50 .814
20 981 | 15 999 | .75 .998
Studentt | LR(yp) MC: k known 50 134 | 50 .181 | .20 .109

MMC: k unknown 126 .158 .080
MC: K known 75 264 | .75 428 | .30 .237
MMC: k unknown .239 .384 .182
MC: k known 1.0 494 | 1.0 .709 | 50 .660
MMC: k unknown .440 673 .605
MC: k known 2.0 939 | 15 997 | .75 .966
MMC: k unknown .925 .997 .960

Note — The table reports the empirical rejection rates of various test&foy,) with nominal level 5%. The values
of y, tested are:yy = —0.000089 forT = 60, yy = .004960 forT = 120, y, = .005957 forT = 828. The sampling
design conforms with the size study, for thecase. Samples are drawn wigtcalibrated to its QML counterpart from
the 1991-95 subsample; values fgrare set to the latter valuestepx ™", whereg™" = [min{G2}]%/2, andG? are

the diagonal terms dfK’. See Table 1 for further details on the design and tests applied.

In view of the poor size performance of the asymptotic tests, the power &adyes on proce-
dures whose level appears to be under control. Overall, the MMCatimmnes not too costly from
the power viewpoint, with both Studeh&tnd GARCH errors. In the latter case, the likelihood-ratio-
type test uncorrected for GARCH effects outperforms all the other té8ten GARCH corrections
are performed via MMC, the likelihood-ratio-type test performs generadtyeb than the 7 (y,)
test.

8. Empirical analysis

In this section, we asses¥g as defined in (2.2) in the context of (2.1) under the distributional
assumptions (2.15)-(2.16), as well as the Gaussian GARCH in (2.17)s&eal monthly returns
over the period going from January 1926 to December 1995, obtaioed@RSP. The data studied
involve 12 portfolios of NYSE firms grouped by standard two-digit industrliassification (SIC).
The sectors studied include: (1) petroleum; (2) finance and real e@amnsumer durables; (4)
basic industries; (5) food and tobacco; (6) construction; (7) capitatlg; (8) transportation; (9)
utilities; (10) textile and trade; (11) services; (12) leisure; for details er&liC codes, see Beaulieu
et al. (2007). For each month, the industry portfolios include the firms factwthe return, the
price per common share and the number of shares outstanding areecebgr@RSP. Furthermore,
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portfolios are value-weighted in each month. We measure the market returalle-weighted
NYSE returns, and the real risk-free rate by the one month Treasumatglinet of inflation, both
available from CRSP. All MC tests were applied with= 999 and MMCp-values are obtained
using the simulated annealing algorithm.

Our QML-based BCAPM test results are summarized in Table 4. Non-@ayssalues are the
largest MCp-values over the error distribution parameters [respectivelsnd (1T, w) for (2.15)-
(2.16)] within the specified 97.5% confidence sets; the latter are reportathi@ 5. In the GARCH
case (2.17)p-values are the largest M@values over all@;;, ¢,;). Given a 5% level test, the bench-
mark is.05 for p., normal LMC, MMC and GARCHp-values, while the Studemtand normal mix-
ture p-values should be compared.@®5 (to ensure that the test has lex@d). Non-rejections by
LMC MC p-values are conclusive (though rejections are not); rejections basexrk @onservative
bound reported under the heading BND are conclusive under nornradityrejections based on the
QML bound in the non-Gaussian case (reported under the heading 8Ll that the confidence
set foryis not empty; however, since the MMg&value is based on the tightest bound, this evidence
does not necessarily imply non-rejection .

The empirical results presented in Table 4 show that the asymptotic test ahtissian-
based bound test yield the same decision at level 5%, although the fpryadues are much lower.
The non-normap-values exceed the Gaussian-bapedhlue, enough to change the test decision.
For instance, at the 5% significance level, we find seven rejections ofuthbypothesis for the
asymptoticy?(11) test, seven for the M@-values under normality and with normal GARCH, and
five (relying on the MMCp-value) under the Studehtand normal mixture distributions.

Focusing on Studeritand normal mixture distributions with parameters not rejected by proper
GF tests, we see that mean-variance efficiency test results can cledattie rto the availabl& -
based bound. The power advantages of the MMC procedure are idstog the results of the
1966-70 subperiod where the QMai-value exceeds.3% for the Student-and normal mixture
distributions, whereas the MM@-value signals a rejection.

The confidence sets for distributional parameters are reported in Taltettse mixture case,
the confidence region is summarized as follows for presentation easeveavihg confidence set
for w corresponding to five different values af

In Table 6, we present: (i) the average real market return as well as/érage real risk-free
rate over each subperiod, (ii) the QML estimateydfienotedy) and 95% confidence sets for this
parameter, using respectively the asymptotic standard errors (2.2i€r(ime heading Wald-type),
and the likelihood-ratio-type tests with.d. Gaussiant(k) and normal mixturé, w) errors, plus
Gaussian GARCH errors (lower panéf).The values ofy in the Fieller-type confidence set are
not rejected by the test defined in Theor8r to test.s# (y,). Rejection decisions are based on
the largest MCp-values over allk and (1T, w) respectively; we did not restrict maximization to
the confidence set for these parameters here. As expected in view.#fthest results, the exact
confidence sets are empty for several subperiods. The usefulhéss asymptotic confidence

10Note that some values dfare high. Nonetheless, comparing the average real market retutinofee subperiods
with our estimate of/ reveal that these high occurrences/afre consistent with subperiods during which the estimated
zero-beta rate is higher than the market portfolio return. This is an illugtrafifinding, ex post, a linear relationship
between risk and return with a negative slope. Furthermore, reruoningnalysis using 10-year subperiods leadg to
estimates below the benchmark average return.
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intervals is obviously questionable here. Other results which deserve rotdhe empty sets for
1956-60 subperiod; these sets correspond to the case where tlenefficound test is significant
(at 5%)11

To illustrate the differences between the asymptotic confidence set asdveeimext check
whether the average real risk-free rate is contained in the confidetse Sor many subperiods,
like 1966-70, the evidence produced by the asymptotic and MC Fieller-typfdence intervals
is similar. There are nonetheless cases where the set estimates do nottleaddme decision.
For instance, for 1941-45 and 1971-75, the average risk-freésratet included in the asymptotic
confidence interval, while it is covered by our MMC confidence setss@lage cases where, using
the asymptotic confidence interval, the hypothesis r; is rejected, whereas exact confidence
sets indicate it should not be rejected. Conversely, in 1986-90, the &styergonfidence interval
includes the average risk-free rate, whereas our confidence satmaty.

In Table 7, we report the# (y,) counterparts of the above QML-based tests (columns 2 and
3) as well as point and set estimatesydtolumns 1 and 4). Column (2) reports the values of our
proposed]-test-type minimum # (y,) statistic. In column (3), MMC refers to the maximal MC
p-value [over all ,;, @5)] for this statistic, assuming the GARCH specification (2.17), and the
level is 5%; alternatively, an asymptot@(12) critical value (2103 for a 5% level) can be used. In
column (1), we report the GMM-type point estimate (dendtedhe associated set estimate which
inverts the_# (y,) MC Gaussian GARCH based test is reported in column (4).

We first note that, on using the asymptotic critical value#ay,) test would reject the model
in all subperiods at level 5%. In contrast, the GARCH-MNdValue is less than 5% only in the
1986-90 subperiod. In view of our simulation results from Section 7, thesdts illustrate the
serious implications of asymptotic test size distortions. Recall that the likeliretambased MC
and MMC (Gaussian and non-Gaussian, with and without GARCH) testd tegemodel at the 5%
level in at least three other sub-periods: 1946-50, 1950-55, 6960-his reflects the test relative
power, as illustrated in Section 7. Turning to the estimateg, afe note that the 7 (y,) based
MMC confidence sets are substantially wider than the likelihood-ratio-bameterparts, only one
confidence set is empty (in the 1986-1990 subperiods, in which case thed mould be rejected),
and the set is unbounded in the 1990-95 subperiod. Had we relied osyingtticx?(12) cut-off
to invert the_# (y,) test, all confidence sets would be empty. Again, these observations lingup w
our simulation results.

The above procedures applied to the full data yields empty confidenceisiats the exact
GARCH corrected likelihood-ratio and? (y,) criteria; the confidence interval using (2.27) is
[.0007,.0088. Since our subperiod analysis suggests that temporally unstable, one must be
careful in interpreting such results. On using a Bonferroni argumtbiatt @ccounts for time-
varying parameters) based on the minimum (over subperiods) GARGHEeted p-value which
is.003< .05/12, the model can be safely rejected at level 5%, over the full sample.

11This can be checked by referring to Table 4: although the reported rahgimalues in this table are performed over
the confidence set far and (T, w), we have checked that the global maxirpalalue leads to the same decision here.
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9. Conclusion

This paper proposes exact mean-variance efficiency tests wherrdhleeta (or risk-free) rate is not
observable, which raises identification difficulties. Proposed methodslawet to this problem as
well as to portfolio repacking, and allow for heavy-tailed return distributiomgarticular, a useful
invariance result for MacKinlay and Richardson’s (1991) HAC statistehimwn analytically. We
also derive exact confidence sets for the zero-betayra®¢hile available Wald-type intervals are
unreliable and lead to substantially different inference concempirmgir confidence sets are valid
in finite samples without assuming identification, and are empty by constructidficitecy is
rejected.

We report a simulation study which illustrates the properties of our progmseédures. Our
results allow to disentangle small-sample problems from asymptotic failures afisimgweak
identification. We also examine efficiency of the market portfolio for monthiyrres on NYSE
CRSP portfolios. We find that efficiency is less rejected with non-norm&imaptions. Exact
confidence sets fardiffer importantly from asymptotic ones, and likelihood-ratio-based conéielen
sets are tighter than their Wald counterparts. All confidence sets ndessdlseiggest thatis not
stable over time.

These results provide the motivation to extend our method to more genexal fiacdels, as
discussed by Campbell et al. (1997, Chapter 6) and Shanken andZb@{). These models raise
the same statistical issues as the BCAPM, except that their definitional garameon-scalar.
In this case, Fieller-type methods are clearly more challenging and raigbywbeoretical and
empirical research questions.

A. Appendix: Proofs

PROOF OF THEOREM 3.1  Under (2.13) and.#(y,), we have: TZ = UU =
K'WM(X)WK, T5(y,) = K'W'M(y,)WK. Then, undec#(y,),

(o)l _ [KWMWK| K| WMy WI[K| _ [WM(yoW|
5T KWMOOWK] (K WM OW[K] ~ WM (X)W]’

AYo) =
henceP[LR(y,) > X = P[TIn(|W'M(yg)W|/ WM (X)W|) > x], ¥x. O
PROOF OFTHEOREM3.2  For this model,

U=MXU=MXWK=WK, W=MXW.

If we denote byJ; andW, thet-th rows ofU andW, respectively, this means tHag = K\, for all
t. Then,

(%20 (% @0 ) = (X @KW (% @KW ) = (%@ KA (X oW K)
= XX_; @ KWW_ K = (Ik@K') (% @W) (X—j @W_}) (Ik@K)
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W _? Z ®Ut ®Utfj),a St Z%,t+JZl<qu> [WLT‘FWJ'-,T} )

we see that

1 2 " PN
Wr=(k@K) Y1 (Ik®K), L‘UJT_? > (% DW) (Xi-j @ W),
=71

Yt + Y= (koK) [ B+ F 1| (koK)

St = (Ik@K') Y1 (Ik®K)+§1<qaj> (lk®@K") |:¢J]T +¢}j/7T} (Ik®K) = (Ik@K') St (Ik®K),

S :%,T‘f‘i (qu> B+ 9]

=

On replacingSt with (k@ K’) St (Ik @ K), we get:

XX\ 7t XX\ 1 XX\t XX\ 7t
Furthermore, sinc&(y,) = (1, ¥p) ® In = H(Yp) ® Inand H(y,)" is a k-dimensional vector in
H(Yo) 1 R(yp)d =C'H(yp)' = 0, we see that:

%)[(XTX) oK
so _Z (y,) can be rewritten as
,{R [ ) <X;X>_l®|n
{ > ! éT!(X.;_X)l(X)K

= TH(y )ég(v)‘lé (Yo)' = TH(yo)CK 1K 2(yo) 1K' (K') *C'H (o)’

'H
= TH(y)CK 2 2(yo,W) "L (K') " EH (yp)

St

¥ = TRy <XT ®@In| St
(

~1
R(Vo)l} R(Vo)1§

% -1
XX\ 71
T
Yo

) (Yo)
-1
T9'R(yy) { R(yp) R(VO)’} R(Yo)d
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where
2(vo) = [H(VO) <X;X> 71® K'| S [(x-;-x>lH(V0)/® K

Under the null hypothesid (y,)C = 0, we have:

H(v6)C = H(yp) (X'X) X' [XC+U] = H(yo)C + H (yo) (X'X) XU = H (o) (X'X) *X'WK,

ST [(X;X>1H(vo)’®r<
!H(Vo) <X.;_X>l® (K')lK’] S [<X.;_X>1H(yo)’®|<|<1]

- [H(vc;)(x}x)l@ln St [(X;X)leo)’@ln

where we take into account the fact thty,)’ is a column vector, hence

K—l

— / -1
2(yo.W) (K)™ [H(Vo) (XTX) DK’

J (Vo) = TH(y) (X)) XWKK12(yp, W)~ (K') T KWX(X'X) " H (o)’

= T H(yo) (X'X) X'WL2(yo,W) WX (X'X) "H(yo)"-

PrROOF OFLEMMA 5.1 The Gaussian log-likelihood function for model (2.5) is

In[L(Y,C, )] = —%[n(zm +In(|1Z])] - %tr[fl(\? —XC)'(Y —XC)] = In[L(Y, B, 2)].

SettingZ(C) = (Y — XC)'(Y — XC), for any given value o€, In[L(Y,C, £)] is maximized by
taking> = >(C) yielding the concentrated log-likelihood
~ o~ nT T =~
In[L(Y,C, Z)e = —=-[(2m +1] — 5 In(|2(C)]). (A.1)

The Gaussian MLE of thus minimizes 2 (C)| with respect tcC. Let us denote b (Y) the un-
restricted MLE ofC so obtained, and b(Y; y,) andCg(Y) the restricted estimators subject to
A (y,) and. /% respectively. Suppose thdtis replaced by, = Y AwhereA is a nonsingulan x n
matrix. We need to show thaR, (y,) = LR(y,) andLRs. = LRg, whereLR,(y,) andLRs. repre-
sent the corresponding test statistics based on the transformed datairgpliois transformation,
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|5(C)| becomes:

15.(C)| = \%(\?* —XC.)' (Y. —XC)| = \%A’(\?—XC*A_l)’(\?—XC*A‘l)A]
= |A’AH%(\?—XC)’(\?—XC)\:|A’A||5(C)| (A.2)

where C = C,A™L. Then |£(C,)| is minimized by C.(Y.) = C(Y)A and |5.(C.(Y.))| =
IAA|Z(C(Y)). On observing thaH (y;)C = 0 <= H(y,)CA = 0 <= H(y,)C. = 0 for anyyy,
the restricted estimators &under%(yo) and.” are transformed in the same wz&(Y Yo) =
C(Y; yo)A and C.z(Y,) ACB( )A. This entails thatZ, (C.(Y.; o)) = [AA||Z(C(Y; yo))| and
2. (Ca(Y.))| = |AA|12(Ca(Y))], so that

. B ri (é< o>)r SCYive)| &
< ri (é* <Y>>| £Ce(Y))| -
o = ECM)  1EE)) =/ (A-4)

Finally, in view of (2.20) and (2.26), we ha¥&R,(y,) = T In[A.(yo)] = TIn[A(y,)] = LR(y,) and
LRs, = TIn(Ag,) =TIn(A) = LRs. O

PROOF OF THEOREM 5.2  Consider a transformation of the for¥h = YK~ or, equivalently,
Y, =YK 24+ Ryi,(I — K™1). Using (2.1) and(2.13), we then have:

Y, = (XB+WK)K IRy (I —K™1) =XBK 1+ Ryi,(1 —K 1) +w
— (178 + RuBK 4+ Rurh(l —K 1) +W
Rulh+ (178 +Ru(B—1n) K 1+W
= Ruih+X(B—A)K14+W =Ry, +XB+W (A.5)
whereB = (B—A)K ! andA = [0, 1,]'. Using Lemma5.1, LR(y,) andLRg can be viewed as
functions ofY,, and depend o(B, K) only throughB = (B — A)K~. Under.7, the nuisance pa-

rameter only involvey and( — 1,)’K~1. Now the distribution oL R(y,) andLRg can be explicitly
characterized by using (A.3) - (A.4) and observing that

ZC Y Vo)) | W(yo)W(yo)]

~ _ 0 _ ) W\
x 5. (é*B(Y*))| inf {|Z. ( (Y Vo))’ Vo€l . % .

where W(y,) = M(yo) (Y. — F”eM: ) :J\Z(yo)(XB_—F W) = M(yp){l1Ta +_F”<M(ﬁ — 1)K+
W} = M(Yo){[17 (& + yo(B = 1n)) + (Rv — VoI T)(B — 1) ]K™H + W} = M(yo) {17 (a+ vo(B -
(n)' )K=t 4+W}andW = M(X)W. Under.7 wherea= —y(B — 1n), W(yo) = (Yo — Y)M(Yo)iT(B —
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(n)K™1+M(yp)W. The theorem then follows on observing tHaR(y,) = T In[A(y)] and
LRs = T In(Ag). Further information can be drawn from the singular value decompositid of
Letr be the rank oB. SinceB is a 2x n matrix, we have & r < 2 and we can write:

B=PDQ, D=[D,0,, D=diag(A}?A}?), (A.6)

whereD is a 2x n matrix,A; andA» are the two largest eigenvaluesliSB_(where/\ 1>A2>0),

Q = [Q1, Q] is an orthogonah x n matrix whose columns are eigenvectorsBiB, Q1 is a 2x r
matrix which contains eigenvectors associated W|th the non-zero eiges\aflB&B, P = [PL, P

is a 2x 2 orthogonal matrix such thd = BQlD andD; is a diagonal matrix which contains
the non-zero eigenvalues 8fB, settingP = P, andD; =D if r =2, andP =P, if r = 0; see
Harville (1997, Theorem 21.12.1). Using Lemi®4 and Theorenb.2, LR(y,) andLRg may then
be reexpressed as:

LR(Vo) =T In (W(yo)W(yo)|/WWI),  LRg =inf{LR(yo) : o€ T}, (A7)
W=WQ=MXW, W=WQ W(yy)=W(y)Q=M(yp)(XPD+W),  (A8)

PD = [PI5, 0] andPD has at most 3 free coefficientd {s orthogonal). Underg,
W(yo) = M()iT |(vo— ) ('9) 26| + M(vo)W
6=Q (K (B-1m), d=0/(¢'¢)"".

Define® = [¢, @] as an orthogonal matrix such thét® = @@’ =1, so

/ 79 ¢ 1 0 -
qJ(D:[@’dT 5/5]=[0 |n—1}7 ¢e=[1 0 - 0]. (A.9)

Then as in (A.7)LR(y,) andLRg may again be expressed undég as:

LR(p) = T In (|Wk(yp)'W V(¥ o)l/MeWk|[), LRs=inf{LR(yo):yo€l}, (A.10)
We =Wo = M(X)We, Ws =W, (A.11)
Wa(Yo) =W (yo) @ = M(Yo) 1705+ M(yo)We, (A.12)

whereds = (vo—V) (9'9)*¢'® = (y,—y) (¢’¢)?[ 1 0 --- 0 ]whichinvolves at mostone
free coefficient. WhehV is non- Gau53|an the distributionsIdR(y,) andLRg may be mquenced
by B throughQ in W. Under the Gaussian assumption (2.14), the ron&/ @frei.i.d. N(O, 1), s

that LR(y,) andLRg follow distributions which depend o(B, K) only throughPD. Under,%%,
since the rows of\g arei.i.d. N(O, I), this distribution involves only one nuisance parameter, in
accordance with the result from Zhou (1991, Theorem 1), deriveditiih a different method. [

PROOF OFTHEOREMG6.1 778 = Uy, (Y,). SinceLRg = inf{LR(yy) : Yo € I }, we haveLRg <
LR(yp), for any y,, henceP[LRg > x| < Pg k) [LR(yo) > x|, V¥x, for eachy, and for any(B, K)
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compatible with77(y,). Furthermore, unde#?g, there is a value of, such that the distribution of
LR(yp) is given by Theoren3.1, which entails (6.1). The result for the Gaussian special case then
follows upon using (3.2). O

PROOF OF THEOREM 6.2 The result follows from (6.7), (3.12), and the inequalities
PR(LRs; Y, v) < PN(LRs; [, v) andpy(LRe; y, v) < PR(LRs; Y, Q) < PR(LRe; T, Qg). O

PROOF OF THEOREM 6.3 When v is specified by (6.6), (2.25) and (3.11), we

have: pY(LRe;¥,v) = pu[LRY [CRu(, v)] = pn[LR© \LRN (7, v)] = pn(LR 7, v), hence
sup{Pn(LR Y, V) s Vo €T < a = Pn(LR Y, v) < a :> PR (LRs; ¥, v) < a; on noting that
sup{Pn(LR Yo, V) © Vo € I'} < a means thatC/R(a, v) is empty, py(LRs; ¥, v) > a =
sup{Pn (LR Yo, V) 1 Yo € I} > a = CyR(a, v) # 0. Forv unknown,

PR(LRe; 7, Q) = sup{P(LRe: . vo) : vo € 25} = sup{pn[LRg’ [[Ru (¥, vo)] : vo € 4},
= sup{pn[LRY () |CRu(, vo)] : Vo € Qg } = sup{pn(LR;J. V) 1 Vo € Qo },
hence suppn(LR;yo, Vo) i Vo € T, Vo € Qg} < a = sup{Pn(LR;Y, Vo) : Vo € Qy} < a =

ﬁN(LRB v, Q) <a ande(LRB;i/, Qg)>a=sup{Pn(LR Yy, Vo) Yo €T, Vo€ Qy} >0 =
C/R(a; 2) #0. O
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Table 3. Tests on zero-beta rate: empirical power
Gaussian GARCH design

n=12 T =60 T=120 T =828
Statistic p-value Step Power Step Powern Step Power
LR(yp) MC: ¢, =¢,=0 50 112 | 50 .203 | .20 .195
MC: @, ¢, known 113 .204 .198
MMC: @4, ¢, unknown .106 170 .168
(Vo) | MMC: ¢, ¢, known .088 155 .208
MMC: @4, ¢, unknown .078 133 .183
LR(yp) MC: ¢, =¢,=0 75 247 | 75 449 | 30 465
MC: @y, ¢, known .248 452 AT71
MMC: @4, ¢, unknown 213 411 425
(Vo) | MMC: ¢, ¢, known 77 316 442
MMC: @4, ¢, unknown .158 276 411
LR(yp) MC: 9, =¢,=0 1.0 447 | 10 753 | .50 .945
MC: @, ¢, known 441 .753 .950
MMC: @4, ¢, unknown .395 .709 .937
Z (Vo) MC: ¢y, ¢, known .300 .552 .934
MMC: @4, ¢, unknown .269 .505 .920
LR(yp) MC, ¢, =¢,=0 20 913 | 15 973 | .75 10
MC: @, ¢, known 915 .970 1.0
MMC: @4, ¢, unknown .892 .962 1.0
Z (Vo) MMC: ¢, ¢, known .719 .856 10
MMC: @, ¢, unknown .664 931 1.0

Note — The values of; tested arey, = —0.000089 forT = 60, y; = .004960 forT = 120, yy = .005957 forT = 828.
Numbers reported are empirical rejection rates for various tes#’ f,) with nominal size 5%. The sampling design
conforms with the size study, for tHé case; errors are generated with conditional variance as in (2.17%) KsiSee
Table 1 for a complete description of the designs and tests applied. Saangldsawn withy calibrated to its QML

counterpart from the 1991-95 subsample; values/aare set to the latter valuesfepx?fimi"

whereg"" = [min{G?}]%/2, and&? are the diagonal terms &K'

(for variousstepvalues)
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Table 4. QML-based tests of BCAPM

Sample LRs Peo Normal GARCH
LMC MMC BND BND

1927-30 | 1610 .137| .269 .308 .366 .340
1931-35 | 1409 .228| .344 381 .432 451
1936—-40 | 1536 .167| .257 .284 .345 .355
1941-45 | 1862 .068| .148 .163 .203 213
1946-50 | 3269 .001| .005 .006 .007 .006
1951-55 | 37.04 .000| .003 .004 .004 .003
1956-60 | 26.10 .006| .027 .031 .042 .039
1961-65 | 2921 .002| .011 .016 .020 .015
1966—-70 | 2745 .004| .016 .018 .026 .029
1971-75 | 1681 .113| .213 .224 .292 .294
1976-80 | 25.76  .007| .027 .031 .040 .042
1981-85 | 1498 .183| .316 .335 .387 404
1986—-90 | 3541 .000| .003 .004 .004 .005
1991-95 | 1641 .127| .219 .253 .310 .320
Studentt Normal mixture
LMC MMC BND | LMC MMC BND

1927-30 | 272 316 .360 | .279 .313 .381
1931-35 | .359 399 468 | .342 .387 452
1936-40 | .282 .308 .372 | .265 .302 .357
1941-45 | 147 169 .210 | .150 .165 211
1946-50 | .007 .007 .010 | .007 .007 .008
1951-55 | .003 .005 .005 | .003 .003 .003
1956-60 | .030 .040 .052 | .028 .035 .045
1961-65 | .013 .017 .023 | .014 .021 .024
1966—-70 | .020 .025 .032 | .018 .023 .028
1971-75 | 217 .248 .300 | .206 .238 .292
1976-80 | .026 .035 .039 | .026 .034 .042
1981-85 | .323 .399 405 | .318 .339 406
1986-90 | .004 .005 .005 | .004 .004 .005
1991-95 | 226 .263 .325 | .226 .261 319

Note —LRg is the statistic in (2.24). Remaining numbers are associgealues. p« is based orx?(n—1). All other
non-Gaussiap-values are the largest M@values over the shape paramateavithin the specified confidence setsf k

orv = (1, w); refer to Table 5]. LMC is the bootstrgpvalue in (6.11) and MMC is the maximatvalue in (6.10) (refer
to Section 6.2). BND is the bound (6.2) for the Gaussian case ar@NtiteBMChbound from Theorerfi.3otherwise; the
GARCH BND is the largesQML-BMC over ¢;;, @5 [from (2.17)]. Returns for the months of January and for October
1987 are excluded. Given a 5% level, the cut-off0S for p., the normal LMC, MMC and the GARCH-values; for
the Student-and mixtures, the cut-off is .02f-values which lead to significant tests with this benchmark are in bold.
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Table 5. Confidence sets for intervening parameters

Mixture (11, w), confidence set fow t(K)

@) 2) 3 4 ®) (6)

Sample m=0.1 n=02 =03 m=04 mn=05 K

1927—30 >18 16-28 16-—-25 16-25 16-26|3-12
1931-35|21-100 19-30 19-27 19-27 21-30| 3-8
1966—-40| 15-35 15-23 14-21 14-20 14-21|4-25
1941-45| 13-35 13-21 13-19 13-18 13-19 >5
1946-50| 14-35 13-22 13-20 13-19 13-19|5-37
1951-55| 14-35 14-22 13-20 13-19 13-20|5-34
1956-60| 1.3—-28 12-20 12-19 12-18 12-18 >5
1961-65| 1.0-22 10-16 10-15 10-15 10-15 >7
1966-70| 1.3—-30 13-20 13-19 13-18 12-19 >5
1971-75| 15-35 15-22 14-20 14-19 14-20|4-24
1976-80| 16—-40 15-25 15-22 15-22 15-23|4-19
1981-85| 14-35 14-21 13-20 13-19 14-20|5-33
1986-90| 11-30 11-20 11-18 10-17 11-18 >5
1991-95| 10-19 10-15 10-14 10-13 10-13| >19

Note — Numbers in columns (1)-(5) represent a confidence set éopdahameters$m, w) [respectively, the probability

of mixing and the ratio of scales] of the multivariate mixtures-of-normedredistribution. Column (6) presents the
confidence set fok, the degrees-of-freedom parameter of the multivariate Studemor distribution. See Section 6 for
details on the construction of these confidence sets: the valugs af) or k (respectively) in this set are not rejected
by theCSKtest (6.12) [see Dufour et al. (2003)] under multivariate mixtureStadentt errors (respectively). Note that
the maximum of thep-value occurs in the closed interval far Returns for the month of January and October 1987 are
excluded from the data set.
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Table 6. QML-based point and set estimates for the zero-beta portfagio ra

Sample Ru re y Wald-type
1927—-30 .0045 .0045 .0047 [—.0037,.0130
1931-35 .0103 .0025 —.0130 [—.0301,.0039
192640 .0031 —.0006 —.0069 [—.0192,.0055
194145 .0097 —.0042 .0117 [.0037,.0199
1946—-50 .0021 —.0051 —.0219 [—.0189, —.007(
1951-55 .0145 .0001 .0024 [—.0015,.0064
1956- 60 .0086 .0002 .0156 [.0109, .0202
1961-65 .0080 .0014 .0571 [.0398, .0744
1966— 70 .0008 .0004 .0169 [.0096, .0242
1971-75 —.0061 —.0010 .0150 [.0030, .0270
1976—80 .0056 —.0012 —.0096 [—.0169, —.0024
1981-85 .0081 .0037 .0197 [.0125,.0268
1986—90 .0088 .0020 .0053 [—.0024,.0131
1991-95 .0104 .0011 .0010 [—.0130,.0067

95% Confidence set, Fieller-type

Sample Normal errors Studentterrors | Mixture errors GARCH
1927—30 | [-.0133,.0227 | [—.0143,.0229 | [-.0141,.0227 [—.0125.020
1931-35 | [-.0509, .022F5 | [-.0520,.0225 | [-.0157,.0227 | [-.0517.0217
1926—40 | [—.0341,.0187 | [-.0350,.0190 | [-.0349,.0817 | [-.030Q.0175
194145 | [—.0045,.0275 | [-.0048,.0287 | [—.0045,.0283 | [-.0025.0275
1946—-50 0 0 0 0
1951-55 0 0 0 0
1956— 60 0 [.0149, .0161 0 0
196165 0 0 0 0
1966— 70 0 0 0 0
1971-75 | [—.0069,.0454 | [—.0081,.0489 | [—.0069,.053] | [—.005Q.045(Q
1976—80 0 0 0 0
1981-85| [.0059,.0371 [.0051, .0374 [.0051, .0387 [.0075.035(Q
1986— 90 0 0 0 0
199195 | [-.0285,.0147 | [-.0303,.0154 | [-.0325,.0147 | [-.0275.0125

Note —Ry is the average real market portfolio return for each subperipds the real average risk-free rate for each
subperiod;y is the QML estimate of; the remaining columns report 95% confidence sets for this paranustag,
respectively, the asymptotic standard errors (2.27)1[96x AsySHY)], the inverted test based &fR(y,) from Theorem
3.1, and the MC Gaussiap-value, the MMCp-value imposing multivariate(k ) errors and mixture-of-normalst, w)
errors, and the MMC GARCHb-value. See Section 4 for details on the construction of these confidetse don-
Gaussiarp-values are the largest M@values over the shape parametei® (77, w). The GARCHp-value is the largest
MC p-value overgy;, @, [from (2.17)]. Returns for the months of January and October H8%xcluded from the data
set.
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Table 7._7 (y,) based inference on the zero-beta portfolio rate

) (2 3 (4)
sample | y= argrvin/(yo) rr;in/(yo) BND 95% Confidence set, MMC
0 0
1927—-30 .0090 7129 .650 [—.0195,.0235
1931-35 —.0045 7106 .541 [—.0240,.0250
1926—- 40 —.0045 5452 .620 [—.0355,.055(0
194145 .0415 16326 .143 [—.0455,.0670
1946—- 50 .0000 13376 121 [—.0105,.0075
1951-55 .0075 10493 .250 [.0000, .0120
1956—- 60 .0195 11018 .280 [—.0385,.0415
1961-65 .0370 14961 .142 [-.0295,—.0150U[.0250,.0670
1966— 70 .0090 16854 .081 [.0045,.0135
1971-75 .0060 6106 .623 [—.0180, .0067
1976— 80 .0060 17209 .061 [—.0225,.0135
1981-85 .0195 12141 201 [.0105,.0385
1986— 90 .0030 18438 .030 0
1991 95 .0100 5360 .841 {<.0075 U {>.0310}

Note — _# (y,) is the HAC statistic in (2.28) is the minimum distance estimator from (2.29). Column (3) provides a
bound MCp-value simulated & and maximized ovep,;, ¢,; [from (2.17)]. Column (4) provides the confidence set for
y which inverts the inverted test based gh(y,) and the MMC GARCHp-valug again, this is the largest M@-value
over @, @5 [from (2.17)]. Returns for the months of January and October H8#&xcluded from the data set. Given a
5% level, the cut-off of the BNDp-value is.05; p-values which lead to significant tests with this benchmark are in bold.
Note that the confidence set which inver#(y,) based on the asymptoti@(12) cut-off is empty for all sub-periods.
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