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ABSTRACT

We propose exact simulation-based procedures for: (i) testing mean-variance efficiency when the
zero-beta rate is unknown; (ii) building confidence intervals for the zero-beta rate. On observ-
ing that this parameter may be weakly identified, we propose likelihood-ratio-type tests as well
as Fieller-type procedures based on a Hotelling-HAC statistic, which are robust to weak identi-
fication and allow for non-Gaussian distributions including parametric GARCHstructures. The
Fieller-Hotelling-HAC procedure also accounts (asymptotically) for general forms of heteroskedas-
ticity and autocorrelation. We propose confidence sets for the zero-betarate based on “inverting”
exact tests for this parameter; for both procedures proposed, these sets can be interpreted as mul-
tivariate extensions of the classic Fieller method for inference on ratios. The exact distribution of
likelihood-ratio-type statistics for testing efficiency is studied under both the null and the alternative
hypotheses. The relevant nuisance parameter structure is established and finite-sample bound pro-
cedures are proposed, which extend and improve available Gaussian-specific bounds. Finite-sample
distributional invariance results are also demonstrated analytically for the HAC statistic proposed
by MacKinlay and Richardson (1991). We study invariance to portfolio repacking for the tests and
confidence sets proposed. The statistical properties of the proposed methods are analyzed through
a Monte Carlo study and compared with alternative available methods. Empiricalresults on NYSE
returns show that exact confidence sets are very different from asymptotic ones, and allowing for
non-Gaussian distributions affects inference results. Simulation and empirical evidence suggests
that likelihood-ratio-type statistics - withp-values corrected using the Maximized Monte Carlo test
method - are generally preferable to their multivariate Fieller-Hotelling-HAC counterparts from the
viewpoints of size control and power.

Key words: capital asset pricing model; CAPM; Black; mean-variance efficiency; non-normality;
weak identification; Fieller; multivariate linear regression; uniform linear hypothesis; exact test;
Monte Carlo test; bootstrap; nuisance parameters; GARCH; portfolio repacking.
Journal of Economic Literature classification: C3; C12; C33; C15; G1; G12; G14.
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1. Introduction

One of the most important extensions of the Capital Asset Pricing Model (CAPM) consists in allow-
ing for the absence of a risk-free asset. From a theoretical viewpoint, this can be due to restrictions
on borrowing [Black (1972)] or an investor’s “riskless” borrowing rate that exceeds the Treasury
bill rate [Brennan (1971)]. In this case, portfolio mean-variance efficiency is defined using the ex-
pected return in excess of the zero-beta portfolio. The latter is however unobservable which leads
to considerable empirical difficulties.

Indeed, there are two basic approaches to estimating and assessing this version of the CAPM
(denoted below as BCAPM). The first one uses a “two-pass” approach that may be traced back
to Black, Jensen and Scholes (1972) and Fama and MacBeth (1973):betasare first estimated from
time series regressions for each security, and then the zero-beta rate is estimated by a cross-sectional
regression on thesebetas. This raises errors-in-variables problems that affect statistical inference in
both finite and large samples.1 The second approach – which originates in the work of Jensen (1968)
– avoids this problem by using a multivariate linear regression as the basic statistical framework.2

In this paper, we focus on the latter approach and consider two basic problems: (1) testing portfolio
efficiency; (2) building a reliable confidence set for the zero-beta rate.

For clarity, letRit , i = 1, . . . , n, be the returns onn securities in periodt, andR̃Mt the return on
a market benchmark fort = 1, ... , T, and consider then equations(i = 1, . . . , n) associated with
the time series regressions ofRit on a constant and̃RMt , where the individual-equation disturbances
are heteroskedastic and contemporaneously cross-correlated; letΣ = K′K refer to the error scale (or
variance/covariance) matrix. If the intercepts from thesen equations (thealphas) are denotedai ,
and the coefficients on the benchmark regressor (thebetas) are denotedβ i , i = 1, . . . , n, then the
BCAPM equilibrium relations imply the following: there is a scalarγ, the return on the zero-beta
portfolio, such thatai −γ(1−β i) = 0, i = 1, . . . , n. Our aim consists in assessing these constraints
(denoted below asHB) as well as estimatingγ.

The above cited literature provides analytical formulae for Gaussian likelihood-ratio statistics,
the maximum likelihood estimator (MLE) ofγ (denoted below aŝγ), and for a conformable asymp-
totic variance estimator [denotedVar(γ̂)]. It is however difficult to find reliable critical points in this
context. While Gibbons (1982) used an asymptoticχ2 critical value for the likelihood-ratio statistic,
subsequent authors found this could lead to serious over-rejections, so various finite-sample correc-
tions – such as bounds – have been suggested; see Shanken (1985, 1986, 1996), Stewart (1997),
Zhou (1991, 1995), and Velu and Zhou (1999). These corrections depend crucially on normality,
which may be inappropriate for financial data [see Fama (1965), Richardson and Smith (1993),
Dufour, Khalaf and Beaulieu (2003), and Beaulieu, Dufour and Khalaf (2005, 2007, 2009, 2010)].
Furthermore, evidence on the properties of the confidence interval based onVar(γ̂) is unavailable.
Despite the simplicity of the above framework, discrepancies between asymptotic and finite-sample

1See Litzenberger and Ramaswamy (1979), Banz (1981), Roll (1985), Chen, Roll and Ross (1986), Shanken (1992),
Kim (1995), Shanken and Zhou (2007), Lewellen, Nagel and Shanken (2009), Kan, Robotti and Shanken (2012), and
Kleibergen (2009).

2For other work based on the multivariate regression approach to CAPM analysis, see Gibbons (1982), Jobson and
Korkie (1982), Kandel (1984, 1986), Amsler and Schmidt (1985),Shanken (1985, 1986, 1996), Kandel and Stambaugh
(1989), Zhou (1991), Shanken (1992), Fama and French (1993), Chou (2000), Fama and French (2004) and Perold (2004).
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distributions are not surprising. Indeed, three difficulties deserve notice.
(1) Dimensionality: asn increases, the dimension of the scale matrixΣ grows rapidly and available
degrees-of-freedom decrease conformably.3 Even in linear or standard setups where the relevant
asymptotic distributions may be free ofΣ , this matrix can still affect the distributions in finite
samples. Furthermore, positive definite estimates ofΣ require a largeT relative ton, so portfolios
rather than securities are often used in practice.
(2) Portfolio repacking[see Kandel and Stambaugh (1989)]: to preserve meaningful pricing re-

lations when portfolios are used, transformations of the return vectorRt = (R1t , ... , Rnt)
′ into

R∗
t = ARt whereA is ann×n invertible matrix such thatAιn = ιn andιn is ann-dimensional vector

of ones, should ideally not affect inference.
(3) Identification: as β i → 1, γ becomes weakly identified. Weak identification (WI) strongly

affects the distributions of estimators and test statistics, leading to unreliable inference even asymp-
totically.4 This should not be taken lightly: reportedbetasare often close to one [see e.g. Fama
and MacBeth (1973)]. Further, even if estimatedbetasare not close to one, irregularities associated
with WI are not at all precluded [in view of (1) and (2) above]. Indeed, in the regression ofR∗

t
[from (2)] on a constant and̃RMt , with interceptsa∗i and slopesβ ∗

i , ai − γ(1−β i) = 0, i = 1, . . . , n
⇔ a∗i − γ(1−β ∗

i ) = 0, i = 1, . . . , n, for anyγ andA. Portfolio repacking altersbetasalong with
scale yet preserves the definition ofγ, leading to identification problems asβ ∗

i → 1. So thebetas
and scale parameters play a role in identifyingγ.

Our aim in this paper consists in providing inference methods that are robust to dimensionality
and identification problems, whose outcomes are invariant to portfolio repacking. We first consider
the problem of estimatingγ. We show by simulation that available procedures provide poor cov-
erage. So we propose exact confidence sets based on “inverting” exact tests for specific values of
γ, i.e. the set of values not rejected by these tests. This method is a generalization of the classical
procedure proposed by Fieller (1954) to estimate parameter ratios.5

To introduce the Fieller-type method in its simplest form with reference to the problem at hand,
suppose (for illustrative purposes) that we aim at estimatingγ from the univariate regression of the
return of thei-th security(Rit ) on a constant and̃RMt , so thatγ = −ai/δ i whereδ i = (β i −1). Let
âi and δ̂ i denote the OLS estimates from this regression, with estimated variances and covariance
Var(âi), Var(δ̂ i) andCov(âi , δ̂ i). For each possible valueγ0 of the ratio, consider thet-statistic
ti (γ0) = (âi + γ0δ̂ i)/[Var(âi)+ δ 2

0Var(δ̂ i)+ 2δ 0Cov(âi , δ̂ i)]
1/2 for testingHi(γ0) : ai + γ0δ i = 0.

Then, we obtain a confidence set with level 1−α for γ by finding the set ofγ0 values which are not
rejected at levelα usingti (γ0) and a standard (normal or Student-t) two-tailed critical valuezα/2.
This means that we collect allγ0 values such that|ti (γ0)| ≤ zα/2 or alternatively such that(âi +

γ0δ̂ i)
2 ≤ z2

α/2(Var(âi)+ γ2
0Var(δ̂ i)+ 2γ0Cov(âi , δ̂ i)), leading to a second degree inequality inγ0.

3See Shanken (1996), Campbell, Lo and MacKinlay (1997), Dufour and Khalaf (2002), Beaulieu, Dufour and Khalaf
(2005, 2007, 2009, 2010), Sentana (2009), and the references therein.

4See,e.g. Dufour (1997, 2003), Staiger and Stock (1997), Wang and Zivot (1998), Zivot, Startz and Nelson (1998),
Dufour and Jasiak (2001), Kleibergen (2002, 2005, 2009), Stock,Wright and Yogo (2002), Moreira (2003), Dufour and
Taamouti (2005, 2007) and Andrews, Moreira and Stock (2006).

5For the ratio of the means of two normal variables with equal variances, Fieller gave a solution that avoids non-
regularities arising from a close-to-zero denominator. Extensions to univariate regressions or to several ratios with equal
denominators can be found in Zerbe (1978), Dufour (1997), Bolduc, Khalaf and Yelou (2010).
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The resulting confidence set has level 1−α irrespective whetherδ i is zero or not. In this paper, we
generalize this method to account for the multivariate setup whereγ appears, allowing for Gaussian
and non-Gaussian error distributions, as well as conditional heteroskedasticity. Empirically, we
focus on multivariate Student-t and normal mixture distributions, as well as Gaussian GARCH.

To do so, we consider two statistics [denotedLR(γ0) andJ (γ0)] for testingH (γ0) : ai +γ0δ i =
0, i = 1, . . . , n. LR(γ0) is the likelihood-ratio statistic for the Gaussian error model, whileJ (γ0)
is a multivariate Fieller-type statistic based on a generalized Hotelling statistic to which a correction
for heteroskedasticity and autocorrelation (HAC) has been applied [as inMacKinlay and Richardson
(1991), Ravikumar, Ray and Savin (2000), and Ray and Savin (2008)]. Using any one of these tests,
we can build confidence sets by finding the values ofγ0 which are not rejected at levelα. This
requires a distributional theory for the test statistics. While anF-based cut-off point is available
for LR(γ0) in the i.i.d. Gaussian case [see Beaulieu, Dufour and Khalaf (2007) and Gibbons, Ross
and Shanken (1989)], we show in a simulation study that usual asymptotic critical points perform
poorly especially forJ (γ0).

To deal with such difficulties, we apply the maximized Monte Carlo (MMC) test procedure [Du-
four (2006)] to obtain finite-samplep-values forLR(γ0) andJ (γ0) in models with non-Gaussian
and/or non-i.i.d. errors, as follows: a (simulated)p-value function conditional on relevant nuisance
parameters is numerically maximized (with respect to these parameters), and thetest is significant
at levelα if the largestp-value is not larger thanα .6 The parametric bootstrap relates to the MMC
method, in the sense that the maximization step is replaced by a uniquep-value estimation, based on
a consistent nuisance parameter estimate. For the GARCH case, such estimates may be unreliable
in high-dimensional models; we show that the MMC method avoids this problem, withminimal
power costs.

To implement this approach efficiently, it is important to characterize the nuisance parameters
in the null distributions of the test statistics. We show that the null distribution of both LR(γ0) and
J (γ0) does not depend onB andΣ , so the only nuisance parameters characterize the form of error
distribution: the degree of freedom for Student-t distributions, the mixing probability and scale-
ratio parameters for normal mixtures, or GARCH parameters. While related invariance results are
available for specific test problems using the multivariate regression likelihood ratio statistic [see
Dufour and Khalaf (2002) and the references therein], our results on the HAC statisticJ (γ0) are
new to the literature and underscore the usefulness of MacKinlay and Richardson’s (1991) statistic.

Because anF-based exact cut-off is available for the Gaussian case, we show that the confidence
set which invertsLR(γ0) can be obtained by solving a quadratic inequation. For non-i.i.d. or non-
Gaussian distributions, we implement a numerical search running the MMC method for each choice
for γ0. InvertingJ (γ0) requires numerical methods even for the Gaussian case. Furthermore, we
show that all proposed confidence sets provide relevant information onwhether efficiency is sup-
ported by the data, a property not shared by standard confidence intervals. Indeed, our confidence
sets may turn out to be empty, which occurs when all possible values ofγ are rejected.

We next consider testing efficiency in the BCAPM context. We study likelihood-ratio and mul-

6This procedure is based on the following fundamental property: when the distribution of a test statistic depends
on nuisance parameters, the desired levelα is achieved by comparing the largestp-value (over all nuisance parameters
consistent with the null hypothesis) withα .
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tivariate Fieller-HAC criteria based on minimizing (overγ0) the above definedLR(γ0) andJ (γ0)
statistics. We show that the exact distribution of minγ0

{LR(γ0)} depends on a reduced number of
nuisance parameters which are functions of bothB andΣ . We also generalize Shanken’s (1986)
exact bound test beyond the Gaussian model, and propose a tighter bound, which involves a nu-
merical search for the tightest cut-off point, based on the MMC method. TheMMC based bound
is also extended to the minγ0

{J (γ0)} case. This approach, in conjunction with the above defined
confidence set based onJ (γ0), provides an interesting alternative to available GMM estimation
methods [including the case recently analyzed by Shanken and Zhou (2007)].

We present a simulation study to document the properties of the proposed procedures relative
to available alternatives. In particular, we contrast problems arising fromsmall samples with those
caused by fundamentally flawed asymptotic approximations. We next examine efficiency of the
market portfolio for monthly returns on New York Stock Exchange (NYSE)portfolios, built from
the University of Chicago Center for Research in Security Prices (CRSP) 1926-1995 data base. We
find more support for efficiency under the non-normal or non-i.i.d. hypothesis. Exact confidence
sets forγ considerably differ from asymptotic ones, and the Fieller-HAC confidence sets are much
wider than the GARCH corrected likelihood-ratio-based ones.

The paper is organized as follows. Section 2 sets the framework and discusses identification of
γ. In Section 3, we propose finite-sample tests for specific values ofγ, and the corresponding exact
confidence set are derived in Section 4. The exact distribution of the likelihood-ratio efficiency test
statistic is established in Section 5, and bound procedures are proposed inSection 6. The simulation
study is reported in Section 7. Our empirical analysis is presented in Section 8. We conclude in
Section 9.

2. Model and zero-beta identification

Let Rit , i = 1, . . . , n, be the returns onn securities in periodt, andR̃Mt the return on a market
benchmark(t = 1, ... , T). Our analysis of the BCAPM model is based on the following standard
multivariate regression setup [Gibbons (1982), Shanken (1986), MacKinlay (1987)]:

Rit − R̃Mt = ai +(β i −1) R̃Mt +uit , i = 1, . . . , n, t = 1, . . . , T, (2.1)

whereuit is a random disturbance. The testable implication of the BCAPM on (2.1) is the following
one: there is a scalarγ, the return on the zero-beta portfolio, such that

HB : ai + γδ i = 0, δ i = β i −1, i = 1, . . . , n, for someγ ∈ Γ , (2.2)

whereΓ is the set of “admissible” values forγ. Sinceγ is unknown,HB is nonlinear. The latter can
be viewed as the union of more restrictive linear hypotheses of the form

H (γ0) : ai + γ0δ i = 0, i = 1, . . . , n, (2.3)

whereγ0 is specified. This observation underlies the exact inference approachproposed here.
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2.1. Notation

The above model is a special case of the following multivariate regression:

Y = XB+U (2.4)

whereY = [Y1, ... , Yn] is T × n, X is T × k of rank k, U = [U1, . . . , Un] = [V1, . . . , VT ]′. For
(2.1),Y = [R1, ... , Rn] , X =

[
ιT , R̃M

]
, Ri = (Ri1, ... , RiT )′ , R̃M =

(
R̃M1, ... , R̃MT

)′
, B = [a, β ]′,

a = (a1, . . . , an)
′, β = (β 1, . . . , β n)

′, andιT refers to aT-dimensional vector of ones.
Throughout the paper, we use the following notation.P(B,K) represents the distribution ofY

when the parameters are(B, K), whereK represents parameters not included inB (such as param-
eters of the error distribution). For any matrixn× k matrix A, M(A) = I −A(A′A)−A′ and vec(A)
is the(nk)×1 vector obtained by stacking the columns ofA on top of each other. We also use the
following equivalent forms for the model, parameters, and hypotheses considered:

Ỹ = Y− R̃M ι ′n = XC+U , (2.5)

whereC = B−∆ = [a, β − ιn]
′, ∆ = [0, ιn]

′ ; (2.6)

H̃ (γ0) : H(γ0)C = 0, for γ0 specified, (2.7)

H̃ (γ0) : R(γ0)ϑ = 0, for γ0 specified, (2.8)

whereH(γ0) = (1, γ0), R(γ0) = H(γ0)⊗ In , ϑ = vec(C′) , R(γ0)ϑ = [H(γ0)C]
′
, (2.9)

H(γ)C = 0⇔ R(γ)ϑ = 0, for all γ ; (2.10)

H̃B : H(γ)C = 0, for someγ ∈ Γ , (2.11)

H̃B : R(γ)ϑ = 0, for someγ ∈ Γ . (2.12)

Note that (2.7) - (2.8) represent equivalent representations ofH̃ (γ0), and similarly (2.11) - (2.12)
for H̃B.

2.2. Distributional assumptions

We further assume that we can condition onR̃M and

Vt = (u1t , . . . , unt)
′ = K′Wt , t = 1, . . . , T , Wt = (W1t , . . . , Wnt)

′, (2.13)

whereK is unknown and nonsingular,W = [W1, . . . , WT ]′ is independent ofX, and the distribution
of W is either fully specified or determined up to an unknown distributional shape parameterν .
(2.13) can also be rewritten in matrix form asU = WK.

We first present results which require no further regularity assumptions. We use additional
restrictions, which entail that the distribution ofW belongs to a specific familyHW(D , ν), where
D represents a distribution type andν ∈ ΩD a nuisance parameter characterizing the distribution.

5



In particular, we consider the multivariate normal(DN), Student-t (Dt) and normal mixture(Dm)
distributions:

HW(DN) : Wt
i.i.d
∼ N

[
0, In

]
, (2.14)

HW(Dt , κ) : Wt = Z1t/(Z2t/κ)1/2 , Z1t
i.i.d
∼ N

[
0, In

]
, Z2t

i.i.d
∼ χ2(κ) , (2.15)

HW(Dm, π, ω) : Wt = It(π)Z1t +[1− It(π)]Z3t , Z3t
i.i.d
∼ N

[
0, ωIn

]
, 0 < π < 1, (2.16)

whereZ2t andZ3t are independent ofZ1t , andIt(π) is an indicator random variable independent of(
Z1t , Z3t

)
such thatP[It(π) = 0] = 1−P[It(π) = 1] = π. So, in (2.13),ν = κ under (2.15), and

ν = (π, ω) under (2.16). IfE(WtW′
t ) = In, the covariance matrix ofVt is Σ = K

′
K, soΣ is positive

definite without further restrictions. IfK
′
is lower triangular,K

′
andK correspond to the Cholesky

factors ofΣ .
Time-dependence may be taken into account by an appropriate specification of the distribution

of Wt , t = 1, . . . , T . Since time-varying volatility is prevalent in financial data, we consider the
parametric GARCH structure:

uit = wit h
1
2
it , hit = (1−φ1i −φ2i)σ2

i +φ1iw
2
i,t−1 +φ2ihi,t−1 , (2.17)

wherewit are uncorrelated standard normal variables. This process may easily bereparameterized
as in (2.13), whereK is a diagonal matrix with diagonal terms(1−φ1i −φ2i)

1/2 σ i , i = 1, . . . , n,
and eachWit follows a univariate stationary GARCH process with unit intercept. Conforming with
the above notation, we refer to this distributional hypothesis asHW(DG, φ), whereφ is the 2n×1
vector(φ11, . . . , φ1n,φ21, . . . , φ2n).

7

2.3. Weak identification

Even thoughai andβ i are identifiable,γ is defined through a nonlinear transformation that may
fail to be well-defined: the ratioγ = ai/(1−β i) is not defined or, equivalently, the equationai =
γ(1−β i) does not have a unique solution whenβ i = 1.

In such situations, the distributions of many usual test statistics become non-standard, so the cor-
responding tests are unreliable and the associated confidence sets invalid. In particular, asymptotic
standard errors are unreliable measures of uncertainty, and standardasymptotically justifiedt-type
tests and confidence intervals have sizes that may deviate arbitrarily from their nominal levels; see
the literature on weak identification [as reviewed, for example, in Dufour (2003) and Stock et al.
(2002)]. Both the finite and large-sample distribution theory of most test statistics can be affected.

While it is straightforward to see thatβ i = 1 corresponds to a discontinuity, the analysis below
reveals this is not the whole story. In particular, we study the properties ofestimators and test
statistics following data transformations of the form̃Y∗ = ỸA, whereA is any nonsingular fixed

7Ideally, a multivariate GARCH structure may be considered ifT is sufficiently large relative ton; see Bauwens,
Laurent and Rombouts (2006) for a recent survey. We adopt (2.17) since our empirical analysis relies on monthly data
with 12 portfolios over 5 year subperiods (i.e.T = 60 andn = 12).
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matrix of ordern. On comparing (2.1) to its transformed counterpart, we see that irregularities
cannot be safely assumed away, even when observedbetasare not close to one.

2.4. Standard estimators and test statistics

One of the most common inference methods in this context relies on the log-likelihood

ln[L(Y, B, Σ)] = −
nT
2

(2π)−
T
2

ln(|Σ |)−
1
2

tr[Σ−1(Y−XB)′(Y−XB)] . (2.18)

The unrestricted MLE ofB andΣ are:

B̂ = (X′X)−1X′Y = [â, β̂ ]′, Σ̂ = Û ′Û/T ,

whereÛ = Y−XB̂, â = (â1, ... , ân)
′ andβ̂ = (β̂ 1, ... , β̂ n)

′. If Ĉ is the MLE ofC in (2.5), the
corresponding estimate ofϑ = vec(C′) is

ϑ̂ = vec(Ĉ′) (2.19)

whereϑ is defined in (2.6).

2.4.1. Gaussian-based statistics

The likelihood-ratio statistic to testH (γ0) whereΣ̂(γ0) is the MLE ofΣ underH (γ0) is:

LR(γ0) = T ln[Λ(γ0)], Λ(γ0) = |Σ̂(γ0)|/|Σ̂ | =
n

T −n−1
F (γ0)+1, (2.20)

Σ̂(γ0) = Σ̂ +
1
T

B̂′H(γ0)
′
[
H(γ0)(X

′X)−1H(γ0)
′
]−1

H(γ0)B̂, (2.21)

F (γ0) =
T −n−1

n

(
â+ δ̂ γ0

)′Σ̂−1
(
â+ δ̂ γ0

)

1+
[
(µ̂M − γ0)

2/σ̂2
M

] , (2.22)

µ̂M =
1
T

T

∑
t=1

R̃Mt , σ̂2
M =

1
T

T

∑
t=1

(R̃Mt − µ̂M)2, δ̂ = β̂ − ιn. (2.23)

F (γ0) is the Hotelling statistic for testingH (γ0). Even though this statistic may look like a “Wald-
type” statistic, the “covariance matrix” used for ˆa+ δ̂ γ0 – namely,(1+[(µ̂M − γ0)

2/σ̂2
M])Σ̂ – de-

pends onγ0 (the tested value ofγ). This characteristic makes it similar to Fieller-type statistics in
univariate linear regressions [see Dufour (1997)], soF (γ0) can be described as a “Fieller-Hotelling-
HAC-type statistic”. We will see below that this feature plays a crucial role in avoiding distributional
problems associated with weak identification.

The likelihood-ratio criterion to testHB is

LRB = T ln(ΛB) = inf {LR(γ0) : γ0 ∈ Γ } = LR(γ̂) , (2.24)

ΛB = |Σ̂B|/|Σ̂ | , |Σ̂B| = inf {|Σ̂(γ0)| : γ0 ∈ Γ } , (2.25)
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whereΣ̂B is the MLE ofΣ underHB andγ̂ is the unrestricted MLE ofγ; see Shanken (1986). The
log-likelihood for (2.5) is

ln
[
L̃(Ỹ, C, Σ)

]
= ln

[
L(Y− R̃M ι ′n, B−∆ , Σ)

]
= ln[L(Y, B, Σ)] (2.26)

and the likelihood-ratio statistics for testingH̃ (γ0) and H̃B coincide with LR(γ0) and LRB.
Throughout the paper, we treatLRB andLR(γ0) as quasi likelihood-ratio (QLR) criteria and the
associated MLEs as quasi maximum likelihood (QML) estimators. We denote the observed value
of these statistics asLR(0)

B andLR(0)(γ0), respectively.
A Wald-type formula for an asymptotic information-matrix-based standard error associated with

γ̂ is provided by Campbell et al. (1997, Chapter 5, equation 5.3.81):

Var(γ̂) =
1
T

[
1+

(µ̂M − γ)2

σ̂2
M

]
[(ιn−β )′Σ−1(ιn−β )]−1 . (2.27)

Whereas corrections may be derived for the non-Gaussian case [as inBarone-Adesi, Gagliardini and
Urga (2004) who study a related asset pricing problem], general results on inference in the presence
of identification failure (or weak identification) indicates that a “variance” estimator which does
not depend on the tested valueγ0 – which is the case forVar(γ̂) – cannot lead to valid pivotal
functions, so the associated “asymptotic” confidence sets and tests are fundamentally invalid; see
Dufour (1997). Here, for example, it is easy to see that the above formula cannot be valid when
β = ιn, and problematic whenβ ⋍ ιn.

2.4.2. Fieller-Hotelling-HAC statistics

F (γ0) may be viewed as a Hotelling-type statistic based on the standardized distance between
â+ δ̂ γ0 and zero, which conveys an asymptotic least-squares [Gouriéroux, Monfort and Trognon
(1985), Gouríeroux and Monfort (1995, Ch. 9)] and a GMM interpretation ofγ̂. This may be ex-
ploited to allow for serial dependence, for example by using a properly corrected weighting matrix,
as done for example by MacKinlay and Richardson (1991), Ravikumar etal. (2000), and Ray and
Savin (2008). This suggests the following statistic:

J (γ0) = T ϑ̂ ′
R(γ0)

′

{
R(γ0)

[(
X′X
T

)−1

⊗ In

]
ST

[(
X′X
T

)−1

⊗ In

]
R(γ0)

′

}−1

R(γ0)ϑ̂ , (2.28)

whereR(γ0) is defined in (2.9),

ST = Ψ0,t +
q

∑
j=1

(
q− j

q

)[
Ψj,T +Ψ

′

j,T

]
, Ψj,T =

1
T

T
∑

t= j+1

(
Xt ⊗Ût

)(
Xt− j ⊗Ût− j

)′
,

andÛ
′

t is thet-th row of Û . A crucial feature ofJ (γ0) comes from the fact that the covariance
matrix estimator used forR(γ0)ϑ̂ depends onγ0 (the tested value ofγ). Since it is a HAC-modified
version ofF (γ0), J (γ0) can be described as a “Fieller-Hotelling-HAC” statistic or “F (γ0)-HAC”
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statistic.
UnderH (γ0), J (γ0) follows aχ2(n) distribution asymptotically. This result does not require

any assumption on the identification ofγ. A GMM estimatorγ̃ of γ ,can be obtained by solving the
problem

JB = inf {J (γ0) : γ0 ∈ Γ } = J (γ̃) . (2.29)

We denote the observed value of these statistics asJ
(0)
B andJ (0)(γ0), respectively.

3. Identification-robust Monte Carlo tests for γ

We will now derive the exact null distribution ofLR(γ0) andJ (γ0) underH (γ0), whereγ0 is
known. We then show how this result can be used to obtain exact Monte Carlo p-values. This will
allow us to build confidence sets forγ and yield a way of testing efficiency.

3.1. Distribution of LR(γ0) and J (γ0) under H (γ0)

Theorems3.1 and3.2 show that the null distribution of bothLR(γ0) andJ (γ0) givenX, is com-
pletely determined byX and the distribution ofW givenX. Proofs are given in the Appendix.

Theorem 3.1 DISTRIBUTION OF THE MEAN-VARIANCE CAPM TEST FOR A KNOWN ZERO-
BETA RATE. Under(2.1), (2.13) andH (γ0), LR(γ0) is distributed like

LR(γ0, W) = T ln(
∣∣W′M̄(γ0)W

∣∣/
∣∣W′MW

∣∣) (3.1)

whereM̄(γ0) = M (X)+X(X′X)−1H(γ0)
′[H(γ0)(X

′X)−1H(γ0)
′]−1H(γ0)(X

′X)−1X′.

In the i.i.d. Gaussian case (2.14), we have:

[(T −1−n)/n][Λ(γ0)−1] ∼ F(n, T −1−n) ; (3.2)

see Dufour and Khalaf (2002). This result was used by Gibbons et al.(1989) in studying efficiency
with an observable risk-free rate. Indeed, testingH (γ0) is equivalent to testing whether the inter-
cepts are jointly zero in a market model with returns in excess ofγ0.

Theorem 3.2 DISTRIBUTION OF THE FIELLER-HOTELLING-HAC STATISTIC FOR γ . Under
(2.1), (2.13) andH (γ0), the statisticJ (γ0) defined in(2.28) is distributed like

J̄ (γ0, W) = TH(γ0)(X
′X)−1X′WQ̄(γ0,W)−1W′X(X′X)−1H(γ0)

′, (3.3)

where

Q̄(γ0,W) =

[
H(γ0)

(
X′X
T

)−1

⊗ In

]
ŜT

[(
X′X
T

)−1

H(γ0)
′⊗ In

]
,
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ŜT = Ψ̂0,T +
q

∑
j=1

(
q− j

q

)[
Ψ̂j,T +Ψ̂

′

j,T

]
, Ψ̂j,T =

1
T

T

∑
t= j+1

(
Xt ⊗Ŵt

)(
Xt− j ⊗Ŵt− j

)′
,

andŴ
′

t is the t-th row ofŴ = M(X)W.

For non-Gaussian distributions compatible with (2.13) [including the GARCH case (2.17)], The-
orem3.1 shows that the exact distribution of both statistics, although non-standard,may easily be
simulated onceX, the distribution ofW andγ0 [given byH (γ0)] are set. This invariance property
entails that the Monte Carlo (MC) test method can be easily applied, provided the distribution ofW
can be simulated (given a finite number of parameters); see Dufour (2006). By eliminating a poten-
tially large number of nuisance parameters, this invariance is also relevant for applying asymptotic
approximations. Of course, tests based onJ (γ0) are asymptotically valid in the usual way under
standard asymptotic assumptions, such as those required by the HAC corrections considered by
MacKinlay and Richardson (1991), Ravikumar et al. (2000), and Ray and Savin (2008).

3.2. Monte Carlo test method

This section explains the MC and MMC methods for implementing hypothesis tests based on a test
statisticS. We also set associated notation, given the following assumptions onS.

In the context of model(2.4), consider a null hypothesisH∗ which consists of (possibly nonlin-
ear) restrictions onB, and an associated test statisticS. We rejectH∗ whenS≥ c. UnderH∗, S is
distributed like a function̄S(η , W) of W and a vector of parametersη ∈ Ξ (as well as the known
matrix X), whereΞ describes the restricted parameter space (typically of dimension lower than the
number of parameters inB andK). Finally, given(2.13), we can simulateW, onceν has been
specified [e.g., as suggested by one of the assumptions (2.14) - (2.16)].

For notation simplicity, the dependence uponX is implicit through the definition of̄S. Examples
of S̄(.) include (3.1) and (3.3) in which caseη corresponds toγ0 which is set by the null hypothesis.
The MC method assesses the rank of the observed value ofSdenoted

[
denotedS(0)

]
, relative to a

finite numberN of simulated statistics [denotedS(1) , . . . , S(N)] drawn under the null hypothesis.
Given the above general assumptions, we can apply the following algorithm.

A1 Given: (i) a value ofν , (ii) N drawsW(1), . . . , W(N) from the distribution ofW, (iii) a value
of η , and (iv) the test function̄S(η , W), computeS̄(η , W) leading to the vector

S̄N(η , ν) =
[
S̄
(
η , W(1)

)
, . . . , S̄

(
η , W(N)

)]′
. (3.4)

A2 Build theMC p-value function

pN[S(0)
∣∣S̄N(η , ν)] =

NGN
[
S(0) ; S̄N(η , ν)

]
+1

N+1
, (3.5)

GN
[
S(0) ; S̄N(η , ν)

]
=

1
N

N
∑
j=1

I[0,∞)

[
S̄(W( j), η)−S(0)

]
, (3.6)

whereIA[x] = 1, if x∈ A, andIA[x] = 0, if x /∈ A. Setp̂N(S;η , ν) = pN[S(0)
∣∣S̄N(η , ν)].
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A3 If ν andη are set byH∗, the test which rejectsH∗ when

p̂N(S;η , ν) ≤ α (3.7)

is a test withlevelα for H∗; if furthermore the distribution ofS is continuous underH∗ and
α(N + 1) is an integer [as assumed in the cases considered in this paper], this test has size
α : the probability of rejection under the null hypothesis is equal toα, for finite T andN. If
ν or η is not set by the null hypothesis, then maximizepN[S(0)

∣∣S̄N(η , ν)] over all the(ν , η)
values compatible withH∗, and reject the latter if the maximalp-value is less than or equal
to α . For anyA⊆ Ξ andE ⊆ ΩD , let

p̂N(S;η , E) = sup{p̂N(S;η , ν) : ν ∈ E} , (3.8)

p̂N(S;A, ν) = sup{p̂N(S;η, ν) : η ∈ A} , (3.9)

p̂N(S;A, E) = sup{p̂N(S;η, ν) : η ∈ A, ν ∈ E} , (3.10)

where, by convention, ˆpN(S;A, ·) = 0 if A is empty, and ˆpN(S; · , E) = 0 if E is empty. Then
the probability of rejection underH∗ based on either: (i) ˆpN(S;η , ΩD) whenη is set byH∗,
(ii) p̂N(S;Ξ , ν) whenν is set byH∗, or (iii) p̂N(S;Ξ , ΩD) when bothν andη are not set by
H∗, is itself not larger thanα for finite T andN; see Dufour (2006).

A test for which the probability of rejection under the null hypothesis is not larger thanα is
sometimes described as aconservativetest. We prefer to rely on the more precise and traditional
distinction between alevel-correcttest and asize-correcttest. A test islevel-correct forα (or exact
at levelα) if the probability of rejection under all distributions compatible with the null hypothesis
is less than or equalto α (for finite T). In contrast, a test issize-correct forα (or hasexact size
α) if the supremumof the probability of rejection under all distributions compatible with the null
hypothesis isequal to α (for finite T). It is clear that a size-correct test is level-correct, but the
converse may not hold. Both these definitions account for the common situationwhere the rejection
probability under the null hypothesis may depend on nuisance parameters,and thus vary over the
null hypothesis. We use the termexactwhen underlying probability statements hold for finiteT
andN, whether null rejection probabilities are equal to or not larger than the hypothesized cut-off.
We follow the same notation in the case of a confidence set. A confidence setwith exact size 1−α
implies that the infimum of the set’s coverage probabilities compatible with the considered model
is equal to 1−α, for finite T andN. In contrast, a confidence set with exact levelα implies that the
set’s coverage probability is greater than or equal to 1−α , for finiteT andN. This definition implies
that inverting a size-correct test leads to a size-correct confidence set, while inverting a level-correct
test leads to a level-correct confidence set.

When a Monte Carlop-value is computed given a hypothesized distribution, and where in this
case, the underlying test statistic converges to any distribution (sayF̄) the associated Monte Carlo
test will remain asymptotically valid under any set of weaker assumptions for which the statistic
still converges to the same limiting distribution̄F . The implications for the present paper are as
follows: our tests though exact with the considered distributions onW remain asymptotically valid
in a semi-parametric context under the usual set of assumptions typically required for the CAPM to
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hold.

3.3. Monte Carlo tests based onLR(γ0) and J (γ0)

With respect to the algorithm in the previous section, in the case ofLR(γ0), S(0) ≡
LR(0)(γ0), η ≡ γ0, and using (3.1),̄S

(
η , W(i)

)
= LR

(
γ0, W(i)

)
. With S̄N(η , ν) = LRN(γ0, ν) =[

LR
(
γ0, W(1)

)
, . . . , LR

(
γ0, W(N)

)]′
, and using thep-value functionpN[.] from (3.5), let

p̂N(LR;γ0, ν) ≡ pN
[
LR(0)(γ0)

∣∣LRN(γ0, ν)
]
. (3.11)

As a result of Theorem3.1, we have, underH (γ0) in conjunction withHW(D , ν) and given the
notation from (3.8)-(3.10):

P
[
p̂N(LR;γ0, ν0) ≤ α

]
= α , whenν = ν0, (3.12)

P
[
p̂N(LR;γ0, ΩD) ≤ α

]
≤ α , whenν may be unknown. (3.13)

Similarly, in the case ofJ (γ0), S(0) ≡ J (0)(γ0), η ≡ γ0, and using (3.3),S̄
(
η , W(i)

)
=

J̄
(
γ0, W(i)

)
. With S̄N(η , ν) = (γ0, ν) =

[
J̄

(
γ0, W(1)

)
, . . . , J̄

(
γ0, W(N)

)]′
, let

p̂N(J ;γ0, ν) ≡ pN
[
J (0)(γ0)

∣∣J̄N(γ0, ν)
]
. (3.14)

As a result of Theorem3.2, we have, underH (γ0) in conjunction withHW(D , ν):

P
[
p̂N(J ;γ0, ν0) ≤ α

]
= α , whenν = ν0, (3.15)

P
[
p̂N(J ;γ0,ΩD ) ≤ α

]
≤ α , whenν may be unknown. (3.16)

4. Identification-robust confidence sets forγ

UnderHB, the ratiosai/(1−β i) , 1, . . . , n, are equal. This definition ofγ leads to the classical
problem of inference on ratios from Fieller (1954). The problem here isclearly more complex, so
to extend Fieller’s arguments, we use the above defined tests ofH (γ0).

4.1. Gaussian LR confidence sets

Consider the Gaussian model given by (2.1), (2.13) and (2.14). In this case, underH0(γ0), F (γ0)
follows a Fisher distributionF (n,T −n−1) ; see (3.2). LetFα denote the cut-off point for a test
with level α based on theF (n,T −n−1) distribution. Then

CFγ(α) = {γ0 ∈ Γ : F (γ0) ≤ Fα} (4.1)

has level 1−α for γ, i.e. the probability thatγ be covered byCFγ(α) is not smaller than 1−α.
Indeed,P[γ ∈CFγ(α)] = 1−α, that isCFγ(α) is size-correct. On noting thatF (γ0) ≤ Fα can be
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rewritten as

MF(γ0)−
nFα

T −n−1
NF(γ0) ≤ 0, (4.2)

MF(γ0) =
(
â+ δ̂ γ0

)′Σ̂−1(â+ δ̂ γ0

)
=

(
δ̂
′
Σ̂−1δ̂

)
γ2

0 +
(
2δ̂

′
Σ̂−1â

)
γ0 + â′Σ̂−1â, (4.3)

NF(γ0) = 1+
(µ̂M − γ0)

2

σ̂2
M

=
1

σ̂2
M

γ2
0−

2µ̂m

σ̂2
M

γ0 +1+
µ̂2

M

σ̂2
M

, (4.4)

we see, after a few manipulations, thatCFγ(α) reduces to a simple quadratic inequation:

CFγ(α) = {γ0 ∈ Γ : Aγ2
0 +Bγ0 +C≤ 0} , (4.5)

A = δ̂
′
Σ̂−1δ̂ −

(
nFα

T −n−1

)
1

σ̂2
M

, B = 2

[
δ̂
′
Σ̂−1â+

(
nFα

T −n−1

)
µ̂M

σ̂2
M

]
, (4.6)

C = â′Σ̂−1â−

(
nFα

T −n−1

)[
1+

µ̂2
M

σ̂2
M

]
. (4.7)

For Γ = R, the resulting confidence set can take several forms depending on the roots of the
polynomialAγ2

0 +Bγ0 +C : (a) a closed interval; (b) the union of two unbounded intervals; (c) the
entire real line; (d) an empty set.8 Case (a) corresponds to a situation whereγ is well identified,
while (b) and (c) correspond to unbounded confidence sets and indicate (partial or complete) non-
identification.

The possibility of getting an empty confidence set may appear surprising. But, on hindsight,
this is quite natural: it means that no value ofγ0 allowsH (γ0) to be acceptable. SinceHB states
there exists a real scalarγ such thatai = (1− β i)γ , i = 1, . . . , n, this can be interpreted as a
rejection ofHB. Further, underHB, the probability thatCFγ(α) covers the true valueγ is 1−α,
and an empty set obviously does not coverγ. Consequently, the probability thatCFγ(α) be empty
[CFγ(α) = /0] cannot be greater thanα underHB : P[CFγ(α) = /0]≤ α. The eventCFγ(α) = /0 is an
exact critical region at levelα for HB under normality (although its size may be smaller thanα).
When the confidence setCLR

γ (α; ν) is not empty, the identityLR(γ̂) = inf {LR(γ0) : γ0 ∈ Γ } entails
that γ̂ must belong toCLR

γ (α; ν), for the critical value is the same for allγ0.

4.2. Fieller-Hotelling-HAC confidence sets

The quadratic confidence set described above relies heavily on the fact that the same critical pointFα
can be used to test all values ofγ0. This occurs under thei.i.d. Gaussian distributional assumption,
but not necessarily otherwise. Although the quadratic confidence set will remain “asymptotically
valid” as long asF (γ0) converges to aχ2(n) distribution, this cannot provide an exact confidence
set. Consider the MCp-value p̂N(LR;γ0, ν) function associated with this statistic, as defined in
(3.11). Since the critical region ˆpN(LR;γ0, ν0)≤ α has sizeα for testingγ = γ0 whenν0 is known,

8For further discussion, see Dufour and Jasiak (2001), Zivot et al.(1998), Dufour and Taamouti (2005), Kleibergen
(2009), and Mikusheva (2009).
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the set ofγ0 values for which ˆpN(γ0, ν0) exceedsα , i.e.

CLR
γ (α; ν) =

{
γ0 ∈ Γ : p̂N(LR;γ0, ν0) > α

}
, (4.8)

is a confidence set with size 1−α for γ. Similarly, whenν is not specified, the test ˆpN(LR;γ0, ΩD)≤
α yields:

CLR
γ (α; D) =

{
γ0 ∈ Γ : p̂N(LR;γ0, ΩD) > α

}
, (4.9)

whose level is 1−α. Cγ(α; ν) or Cγ(α; D) must be drawn by numerical methods. Our empirical
analysis reported below, relies on nested grid searches, overγ0 andκ, for the Student-t case (2.15),
and overγ0 and (π, ω) for the normal-mixture case (2.16); for the GARCH case (2.17), we conduct
a grid search onγ0 where for each candidate value, we run the simulated annealing optimization
algorithm to calculate the maximalp-value from (4.9) over the 2n nuisance parameters inφ .

We have no closed-form description of the structure ofCLR
γ (α; ν) or CLR

γ (α; D). While these
can be bounded intervals (this is shown numerically in Section 8),CLR

γ (α; ν) orCLR
γ (α; D) must be

unbounded with a high probability ifγ is not identifiable or weakly identified [see Dufour (1997)].
An empty confidence set is also possible and provides evidence thatHB is not compatible with the
data. The eventCLR

γ (α; ν) = /0 [or CLR
γ (α; D) = /0] is a test with levelα for HB under (2.13).

The Fieller-Hotelling-HAC confidence set we obtain for the GARCH case is exact, because
the cut-off point we use when invertingF (γ0) is adjusted for the parametric form (2.17) via the
maximizedp-value from (4.9). InvertingJ (γ0) in (2.28) may however be more appropriate. We
thus define using (3.15)-(3.16)

CJ
γ (α; ν0) =

{
γ0 ∈ Γ : p̂N(J ;γ0, ν0) > α

}
, (4.10)

which gives a robust confidence set with size 1−α for γ. Similarly, whenν is not specified, the test
p̂N(LR;γ0, ΩD) ≤ α yields

CJ
γ (α; D) =

{
γ0 ∈ Γ : p̂N(J ;γ0, ΩD) > α

}
, (4.11)

a robust confidence set with level 1−α. Again, this must be implemented by numerical methods.
Inverting an asymptotic test based onJ (γ0) can also be considered, relaxing the GARCH restric-
tion. For example, a grid search can be conducted onγ0 where for each candidate value,J (γ0) is
referred to theχ2(n) distribution; this would circumvent the identification problem asymptotically
[as argued e.g. in Stock and Wright (2000)], yet in finite samples, theχ2(n) approximation may
perform poorly. Indeed, our simulation results reported below illustrate theseverity of this prob-
lem. Consequently, we use the MMC method for each candidateγ0: we maximize over the model
parameters as well as overφ .

5. Invariance and exact distribution of LRB

In this section, we study the exact distribution of the statisticLRB, under both the null hypothesis and
the corresponding unrestricted multivariate regression alternative model.Our analysis also provides
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further information (beyond Theorem3.1) on distribution ofLR(γ0). We track and control for the
joint rolebetasand scale parameters play in identifyingγ.

Lemma 5.1 MULTIVARIATE SCALE INVARIANCE . The likelihood-ratio statistics LR(γ0) and LRB

defined in(2.24) and (2.20) are invariant to replacingỸ byỸ∗ = ỸA, where A is an arbitrary
nonsingular n×n matrix.

Such transformations can be viewed as the following affine transformationsonY :

Y∗ = YA+ R̃M ι ′n(In−A). (5.1)

Theorem 5.2 EXACT DISTRIBUTION OF BCAPM LR TESTS. Under (2.1) and (2.13), the
distributions of LR(γ0) and LRB depend on(B, K) only throughB̄ = (B−∆)K−1, and

LR(γ0) = T ln
(
|Ŵ(γ0)

′Ŵ(γ0)|/|Ŵ
′Ŵ|

)
, LRB = inf {LR(γ0) : γ0 ∈ Γ } , (5.2)

where∆ = [0, ιn]
′, Ŵ = M(X)W,M̄(γ0) is defined as in(3.1) and

Ŵ(γ0) = M̄(γ0)(XB̄+W) = M̄(γ0){ιT [a+ γ0(β − ιn)]
′K−1 +W}. (5.3)

If, furthermore, the null hypothesisHB holds, then

Ŵ(γ0) = (γ0− γ)M̄(γ0)ιT(β − ιn)
′K−1 + M̄(γ0)W (5.4)

and the distribution of LRB depends on(B, K) only throughγ and (β − ιn)
′K−1; in the Gaussian

case(2.14), this distribution involves only one nuisance parameter.

Even thoughB andK may involve up to 2n+ n2 different nuisance parameters [or 2n+ n(n+
1)/2 parameters, ifK is triangular], the latter theorem shows that the number of free parameters
in the distributions ofLR(γ0) andLRB does not exceed 2n; whenHB holds, the number of free
parameters is at mostn+1. Further, underH (γ0) [using (5.4)]B̄ is evacuated, entailing Theorem
3.1. Theorem5.2also provides the power function.

6. Exact bound procedures for testingHB

In this section, we propose tests forHB in the presence of nuisance parameters induced by nonlin-
earity and non-Gaussian error distributions. Because our rationale leads to Shanken’s (1986) bound
for the Gaussian case, we study first global bounds based on tests ofH (γ0). Second, we describe
more general but computationally more expensive methods based on the technique of MMC tests to
obtain tighter bounds.

6.1. Global bound induced by tests ofH (γ0)

The results of Section 3 on testingγ = γ0 can be used to derive a global bound on the distribution
of the statisticLRB. This is done in the following theorem.
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Theorem 6.1 GLOBAL BOUND ON THE NULL DISTRIBUTION OF THE BCAPM TEST. Under the
assumptions(2.1), (2.13) andHB, we have, for any givenν ∈ ΩD ,

P
[
LRB ≥ x

]
≤ sup

γ0∈Γ
P
[
LR(γ0, W) ≥ x

]
, ∀x, (6.1)

whereLR(γ0, W) is defined in(3.1). Further, in the Gaussian case(2.14), we have:

P
[
(T −1−n)(ΛB −1)/n≥ x

]
≤ P[F(n, T −1−n) ≥ x] , ∀x. (6.2)

To relate this result to available bounds, observe that (6.1) and (6.2) easily extend to the follow-
ing multi-beta setups: fori = 1, . . . , n, t = 1, . . . , T,

Rit = ai +
s
∑
j=1

β i j R̃jt +uit , HB : ai = γ
(

1−
s
∑
j=1

β i j

)
, (6.3)

whereR̃jt , j = 1, ... ,s, are returns ons benchmarks. In this case, the bounding distribution ofLRB

obtains as in Theorem6.1whereX = [ιT , R̃1, ... , R̃s] , R̃j = (R̃j1, ... , R̃jT )′, j = 1, . . . , s, andH
is thek-dimensional row vector(1, γ0, . . . , γ0). In the Gaussian case,P

[
LR(γ0, W) ≥ x

]
does not

depend onγ0, and the bounding distribution under normality isF(n, T − s−n). Shanken (1986)
suggests the statistic

Q̂ = min
γ

{
T

[
â− γ(ιn− β̂ ιs)

]′[(
T/(T −2)

)
Σ̂

]−1[
â− γ(ιn− β̂ ιs)

]

1+(R̄M − γιs)′∆̂−1
M (R̄M − γιs)

}
(6.4)

whereâ is ann-dimensional vector which includes the (unconstrained) intercept estimates, β̂ is an
n× s matrix whose rows include the unconstrained OLS estimates of(β i1, . . . , β is), i = 1, . . . , n,
R̄M and∆̂M include respectively the time-series means and sample covariance matrix corresponding
to the right-hand-side total portfolio returns. Further, the minimum in (6.4) occurs at the constrained
MLE γ̂ of γ, and

LRB = T ln(1+ Q̂/(T −s−1)). (6.5)

For normal errors,(T −s−n)Q̂/[n(T −s−1)] can be bounded by theF(n, T −n−s)distribution.
The latter obtains from Gibbons et al.’s (1989) joint test of zero intercepts, where returns are ex-
pressed in excess of a knownγ.

Independently, Stewart (1997) shows [using Dufour (1989)] under normal errors, that(T −
s− n)

[(
|Σ̂B|/|Σ̂ |

)
− 1

]
/n can be bounded by theF(n, T − n− s)distribution. Now, from (2.24)

and (6.5), we see that Shanken and Stewart’s bounds are equivalent,and both results obtain from
Theorem6.1 in the special case of normal errors.

When disturbances are non-Gaussian, Theorem6.1 entails that the bounding distribution can
easily be simulated. Using the notation we introduced in subsection 3.2 [definitions of thep-value
function pN[.] from (3.5) and the maximizedp-values (3.8)-(3.10)] the following algorithm may be
used.

B1 Given a value ofν , generateN i.i.d. draws from the distribution ofW then, for any givenγ0,
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apply the (bounding) functionLR(γ0, W) from (3.1) to each draw. With reference to Section
3.2, this implies usingLR(γ0, W) for S̄(η , W), which will yield a vectorLRN(γ0, ν) of N
simulated values of the bounding test statistic.

B2 Compute the MCp-value [denoted thebound MC(BMC) p-value]

p̂U
N(LRB;γ0, ν) ≡ pN[LR(0)

B

∣∣LRN(γ0, ν)] . (6.6)

In contrast with the Gaussian case, ˆpU
N(LRB;γ0, ν) may depend onγ0; nevertheless, for any

γ0,
LRB ≤ LR(γ0) ⇒ p̂N(LR;γ0, ν) ≤ p̂U

N(LRB;γ0, ν). (6.7)

B3 Critical regions that provably satisfy the level constraint can be obtained by maximizing
p̂U

N(LRB;γ0, ν) over the relevant nuisance parameters, leading to the maximizedp-values
p̂U

N(LRB;Γ , ν), p̂U
N(LRB;γ0, ΩD) and p̂U

N(LRB;Γ , ΩD).

Theorem 6.2 GLOBAL SIMULATION -BASED BOUND ON THE NULL DISTRIBUTION OF THE

BCAPM TEST STATISTIC. Under (2.1), (2.13) and HB, we have, using the notation in(3.8)-
(3.10):

P
[
p̂U

N(LRB;Γ , ν) ≤ α
]
≤ α , P

[
p̂U

N(LRB;Γ , ΩD) ≤ α
]
≤ α , (6.8)

whereν represents the true distributional shape of W.

These bound tests are closely related to the confidence set-based test proposed in Section 4: the
null hypothesis is rejected when the confidence set forγ is empty,i.e. if no value ofγ0 can be deemed
acceptable (at levelα), either withν specified orν taken as a nuisance parameter. This may be seen
on comparing (4.9) with the probabilities in Theorem6.2. SinceLRB = inf {LR(γ0) : γ0 ∈ Γ } , this
suggests a relatively easy way of showing thatCLR

γ (α; ν) or CLR
γ (α; D) is not empty, through the

specificp-value p̂U
N(LRB; γ̂, ν) obtained by takingγ0 = γ̂ in (6.6). We shall call ˆpU

N(LRB; γ̂, ν) the
QML-BMC p-value.

Theorem 6.3 RELATION BETWEEN EFFICIENCY TESTS AND ZERO-BETA CONFIDENCE SETS.
Under (2.1), (2.13) andHB, let γ̂ be the QML estimator ofγ in (2.25). Then, using the notation
from (3.8)-(3.10):

p̂U
N(LRB; γ̂, ν) > α ⇒ p̂N(LRB;Γ , ν) > α ⇒CLR

γ (α; ν) 6= /0, ∀ν ∈ ΩD ,

p̂U
N(LRB; γ̂, ΩD) > α ⇒ p̂N(LRB;Γ0, ΩD 0) > α ⇒CLR

γ (α; D) 6= /0,

where CLR
γ (α, ν) and CLR

γ (α; D) are the sets defined in(4.8) and(4.9).

For the Gaussian case, Zhou (1991) and Velu and Zhou (1999) proposed a potentially tighter
bound applicable to statistics which can be written as ratios of independent Wishart variables and
does not seem to extend easily to other classes of distributions. In the nextsection, we propose
an approach which yields similarly tighter bounds for non-Gaussian distributions as well. Finally,
the HAC statisticJB may be used to obtain alternative identification-robust bound tests following
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the same rationale. The correspondence between such tests and empty confidence sets entailed
by test inversion also follows from similar arguments. Finite-sample MMC level corrections are
recommended, given the simulation results in Section 7.

6.2. Tighter bounds

Another approach to testingHB with the statisticLRB consists in directly assessing its dependence
on nuisance parameters and adjusting the test accordingly through the MMCmethod. Letθ =
ψ(B, K) represent the parameter vector upon which the distribution ofLRB actually depends, and
ΩB the set of admissible values forθ underHB. The dimension ofθ may be lower than the number
of parameters inB andK. Define the functionLRB(θ , W) = LRB

(
ψ(B, K), W

)
which assigns to

each value of(B, K) and the noise matrixW the following outcome: usingθ and a draw from
the distribution ofW (which may depend onν), generate a sample from (2.1)-(2.2), and compute
LRB [as defined in (2.24)] from this sample. This suggests we can useLRB(θ , W) for S̄(η , W).
Maintaining further notation from Section 3.2 [again, recall in particular the definitions of thep-
value functionpN[.] from (3.5) and the maximizedp-values (3.8)-(3.10)] the following algorithm
may be used.

C1 GenerateN independent replications ofW and applyLRB(θ , W) to each draw, for any value
of θ , leading to a vectorLRBN(θ , ν) of N simulated statistics.

C2 Compute the MCp-value

p̂B
N(LRB;θ , ν) = pN

[
LR(0)

B

∣∣LRBN(θ , ν)
]
.

C3 Critical regions that provably satisfy the level constraint can be obtained by max-
imizing p̂B

N(LRB;θ , ν) over relevant nuisance parameters leading to ˆpB
N(LRB;ΩB, ν),

p̂B
N(LRB;θ , ΩD) and p̂B

N(LRB;ΩB, ΩD).

Theorem6.3 guarantees that ˆpU
N(LRB;Γ , ν) ≤ α ⇒ p̂B

N(LRB;ΩB, ν) ≤ α for any givenν . So
it may be useful to check the global bound for significance before turning to the MMC one. Fur-
thermore, it is not always necessary to run the numerical maximization underlying MMC to con-
vergence: if ˆpB

N(LRB;θ , ν) > α given any relevantθ (or ν), then a non-rejection is confirmed.
We suggest to use the QML estimateθ̂ of θ as start-up value, because this providesparametric
bootstrap-type[or a local MC (LMC)] p-values:

pb
N(LRB;ν) = p̂B

N(LRB; θ̂ , ν) , pb
N(LRB; ΩD) = p̂B

N(LRB; θ̂ , ΩD) . (6.9)

Then pb
N(LRB;ν) > α entails p̂B

N(LRB;ΩB, ν) > α, and pb
N(LRB; ΩD) > α entails

p̂B
N(LRB;ΩB, ΩD) > α.

Following the same reasoning, a parametric MMC test imposing (2.17) may be applied to the
HAC statisticsJ (γ0) andJB, as an attempt to correct their size for the GARCH alternative of
interest. We investigate the size-corrected power associated with these statistics in Section 7.
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Weak identification ofγ implies that the data is weakly informative on the parameter and thus on
the related specification. This means that the data may not provide sufficientinformation on whether
HB should be refuted or not. Whenγ is weakly identified, tests forHB will suggest accepting the
underlying pricing restrictions. We thus recommend to interpret tests forHB in conjunction with
associated confidence sets which will be unbounded whenγ is weakly identified and will provide a
much more complete statistical analysis.

6.3. Two-stage bound confidence procedures

To deal with the fact that the distribution ofW may involve an unknown parameterν ∈ ΩD , we
suggested above to maximize the relevantp-values overΩD . We next consider restricting the max-
imization overν to a set which is empirically relevant, as in Beaulieu et al. (2007). This leads to
two basic steps: (i) an exact confidence set with level 1−α1 is built for ν , and (ii) the MCp-values
(presented above) are maximized over all values ofν in the latter confidence set and are referred to
level α2, so that the global test level isα = α1 + α2. In our empirical application, we usedα/2.
Let Cν(α1) = Cν(α1; Y) be a confidence set with level 1−α1 for ν . Then, underH (γ0), we have
P
[
p̂U

N (LRB;γ0, Cν(α1)) ≤ α2
]
≤ α1 +α2 while, underHB :

P
[
p̂U

N (LRB;Γ , Cν(α1)) ≤ α2
]
≤ α1 +α2 , P

[
p̂B

N (LRB;ΩB, Cν(α1)) ≤ α2
]
≤ α1 +α2 .

(6.10)
Note also that for ˆpB

N (LRB;ΩB, Cν(α1)) ≤ α2 not to hold, the following condition is sufficient:

p̂B
N(LRB; θ̂ , Cν(α1)) > α2. (6.11)

To build a confidence sets forν , we invert a test (of levelα1) for the specification underlying
(2.13) whereν = ν0 for knownν0; this avoids the need to use regularity assumptions onν . The test
we invert is the three-stage MC goodness-of-fit test introduced in Dufour et al. (2003), which uses
Mardia’s (1970) well known multivariate skewness and kurtosis measures [SK and KU below]:

CSK(ν0) = 1−min{p̂N (ESK(ν0);ν0) , p̂N (EKU(ν0);ν0)} (6.12)

ESK(ν0) =
∣∣SK−SK(ν0)

∣∣ , EKU(ν0) =
∣∣KU−KU(ν0)

∣∣ (6.13)

SK =
1

T2

T

∑
t=1

T

∑
i=1

d̂3
ii , KU =

1
T

T

∑
t=1

d̂2
tt , (6.14)

whered̂it are the elements of the matrix̂U(Û ′Û/T)−1Û ′, SK(ν0) andKU(ν0) are simulation-based
estimates of the expected SK and KU given (2.13) and ˆp[ESK(ν0)] and p̂[EKU(ν0)] arep-values,
obtained by MC methods under (2.13). The test’s three stages [summarized below] are motivated
by the following [see Dufour et al. (2003) for proofs and more detailed algorithms].

Let d̄it (ν) refer to the elements of the matrix̂W(Ŵ′Ŵ/T)−1Ŵ′ with Ŵ = M(X)W and recall
that Û = M(X)U = M(X)WK = ŴK. Then under assumption (2.13) [including in particular the
distributions from (2.14)-(2.16)], SK and KU depend on the data only viad̄it (ν) and thus may
easily be simulated given draws from the distribution ofW. The three stages of the test use this
result, as follows.
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D1 Stage I, to obtainSK(ν0) andKU(ν0): for ν0 given, drawN0 samples from the hypothesized
distribution ofW; then, applyd̄it (.) to each draw, replacinĝdit in (6.14) byd̄it (ν), compute
the corresponding measures of skewness and kurtosis, and take the average. The remaining
two stages condition on these estimates. Refer toSK(ν0) andKU(ν0) so obtained as the
reference simulated moments[RSM].

D2 Stage II, to derive CSK(ν0): first obtainp̂N (ESK(ν0);ν0) and p̂N (EKU(ν0);ν0), using the
observed statistics andN1 [whereα(N1 +1) is an integer] draws from the hypothesized dis-
tribution ofW (independently from stage I), as in the algorithm A1-A3 from Section 3.2 and
using the same RSM for the observed and the simulated values of SK and KU.9 Refer to
theN simulated SK and KU from step A1 as the reference simulated series [RSS]. Applying
(6.12) gives the observed value of the test statistic, CSK(ν0)

(0).

D3. Stage III, to derive a MCp-values for CSK(ν0): independently of the previous RSM and
BSS, generateN [whereα(N+1) is an integer] additionali.i.d. realizations ofW. Applying
d̄it (.) to each draw, and replacinĝdit in (6.14) byd̄it (ν) compute the corresponding measures
of excess skewness and kurtosis [using the RSM]. On comparing each of these to the RSS,
compute MCp-values: in other words, repeat step D2 replacing the observed statisticsby
those last simulated. Thesep-values provide a vectorCSKN(ν0) of N replications of the
combined statistic, leading in turn to ˆpN(CSK(ν0); ν0) = pN

[
CSK(ν0)

(0)
∣∣CSKN(ν0)

]
.

The confidence set forν corresponds to the values ofν0 which are not rejected at levelα1,
using the latterp-value. For the GARCH case, pre-estimating the 2n× 1 vectorφ is infeasible
with 5 or even 10 year sub-samples of monthly data. Nevertheless, the singlestage MMC is valid
despite this limitation. Interestingly, the simulation study we report next suggeststhat power costs
are unimportant even with relatively small samples.

7. Simulation study

We now present a small simulation study to assess the performance of the proposed methods. The
design is calibrated to match our empirical analysis (see Section 8) which relieson monthly returns
of 12 portfolios of NYSE firms over 1927-1995. We consider model (2.1)whereR̃Mt , t = 1, . . . , T,
are the returns on the market portfolio from the aforementioned data over the last 5 and 10 year
subperiods, as well as the whole sample. We thus taken = 12 andT = 60,120 and 828. The coeffi-
cients of (2.1) includingγ are set to their QML estimates (restricted underHB over the conformable
sample period). From the QML regression, we also retain the estimated errorcovariance matrix, to
generate model shocks; formally, we compute the corresponding empiricalCholesky factor (de-
notedK̂) and use it forK in (2.13). Test sizes withK = I12 are also analyzed to illustrate the effects
of portfolio repacking.

We consider normal and Studentt-errors (withκ = 8, in accordance with the kurtosis observed
in the empirical application), so the random vectorsWt , t = 1, . . . , T, in (2.13) are generated fol-
lowing (2.14) and (2.15) respectively. The MC tests are applied imposing and ignoring information

9With respect to the notation in A1-A3, disregardη since the statistics considered here are invariant toB andK.
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on κ, which allows us to document the cost of estimating this parameter. Whenκ is considered
unknown, MMCp-values are calculated over the interval 4≤ κ ≤ 13 to keep execution time man-
ageable (a wider range is allowed for the empirical application in Section 8). We also consider the
case of GARCH errors (2.17), withφ1i = φ1 andφ2i = φ2, i = 1, . . . , n (the coefficients are the same
across equations). This restriction is motivated by execution time, but it is relaxed in Section 8. We
use the diagonal elements ofK̂K̂′ to scale the intercept, yet we also consider the case whereσ2

i = 1,
i = 1, . . . , n. Samples are simulated with(φ1,φ2) = (.15, .80). These parameters are treated, in
turn, as known and as unknown quantities. In view of the low dimension of thenuisance parameter
space in this case, when(φ1,φ2) is treated as unknown,p-value maximization is achieved through
a coarse grid search (for the purpose of this simulation). Thep-value function does not appear to
be very sensitive to the value of(φ1,φ2), and the results presented below indicate this is sufficient
for controlling test level in the relevant cases. A more thorough optimization ishowever used in
Section 8.

The results of the simulation are summarized in tables 1 - 3. These tables reportempirical
rejection rates for various tests ofH (γ0) with nominal size 5%. These rejection rates deter-
mine the coverage properties of confidence sets derived from the tests.Since we focus on esti-
mating γ, HB is imposed for both the size and power studies. We compare the following tests:
(1) a Wald-type test which rejectsγ = γ0 whenγ0 falls outside the Wald-type confidence interval
[γ̂ −1.96×AsySE(γ̂), γ̂ + 1.96× AsySE(γ̂)], using the QML estimator̂γ, an asymptotic standard
error [AsySE(γ̂), based on (2.27)], and a normal limiting distribution; (2) the MC and MMC tests
based on the QLR test statisticLR(γ0) defined in Theorem3.1, with MC p-values fori.i.d. nor-
mal or Student-t errors (with known or unknownκ), Gaussian GARCH with known or unknown
(φ1,φ2), as well asφ1 = φ2 = 0 (i.e., ignoring the GARCH dependence even when it is present
in the simulated process); (3) tests based on the HAC Wald-type statisticJ (γ0) in (2.28), using a
χ2(n) critical value, MC with known(φ1,φ2), and MMC where(φ1,φ2) is taken as unknown.

In the size study (Table 1),γ0 is calibrated to its QML counterpart from the data set [γ0 =
−0.000089 forT = 60,γ0 = .004960 forT = 120,γ0 = .005957 forT = 828]. In the power study
(tables 2 - 3), we focus on thêK case; samples are drawn withγ set to its QML estimate, andγ0

is set to the latter value +step×σ̂min
i , whereσ̂min

i = [min{σ̂2
i }]

1/2, andσ̂2
i are the diagonal terms

of K̂K̂′ (with variousstepvalues).N = 99 is used for MC tests (N = 999 is used in the empirical
application). In each experiment, the number of simulations is 1000. We use 12lags for the HAC
correction.

Our results can be summarized as follows. The asymptotici.i.d. or robust procedures are very
unreliable from the viewpoint of controlling level. Whereas we observe empirical frequencies of
type I errors over 70% and sometimes 90% withT = 60, we still see empirical rejections near 55%
with T = 828. The results also show that the empirical size of the HAC-based tests is not affected by
K, though a formal proof of its invariance is not available. This observationis however compatible
with the fact that its size improves with larger samples: while the level of the Wald-type test shows
no improvement (around 55%) even withT = 828 and normal errors, the size of theJ (γ0) statistic
drops from 95% withT = 60 to 12% withT = 828. The likelihood-ratio and robust MC and MMC
tests achieve level control; in the GARCH case, the MC likelihood-ratio test has the correct size
even when GARCH dependence is not accounted for.

21



Table 1. Tests on zero-beta rate: empirical size

n = 12 T = 60 T = 120 T = 828
K K K

W Statistic p-value I12 K̂ I12 K̂ I12 K̂
Normal Wald-type N[0,1] .709 .196 .633 .096 .578 .050

LR(γ0) MC .057 .057 .048 .048 .041 .041
Student-t Wald-type N[0,1] .714 .218 .645 .106 .587 .055

LR(γ0) MC: κ known .053 .053 .046 .046 .043 .043
MMC: κ unknown .043 .043 .035 .035 .031 .031

GARCH Wald-type N[0,1] .676 .200 .628 .086 .579 .047
LR(γ0) MC: φ1 = φ2 = 0 .059 .059 .048 .048 .046 .046

MC: φ1,φ2 known .064 .064 .043 .043 .050 .028
MMC: φ1,φ2 unknown .054 .054 .032 .032 .028 .050

J (γ0) χ2(12) .954 .954 .686 .686 .127 .127
MC: φ1,φ2 known .049 .049 .045 .045 .049 .040

MMC: φ1,φ2 unknown .040 .040 .034 .034 .040 .049

Note – The table reports the empirical rejection rates of various tests forH (γ0) with nominal level 5%. The values ofγ0

tested are:γ0 = −0.000089 forT = 60, γ0 = .004960 forT = 120,γ0 = .005957 forT = 828. The design is calibrated

to match our empirical analysis (see Section 8). The tests compared are the following. (1) A Wald-type test which rejects

γ = γ0 whenγ0 falls outside the Wald-type confidence interval[γ̂ −1.96×AsySE(γ̂), γ̂ + 1.96×AsySE(γ̂)], using the

QML estimatorγ̂ with asymptotic standard error[AsySE(γ̂)] based on (2.27), and a normal limiting distribution. (2)

MC and MMC tests based onLR(γ0) in (2.20), with MCp-values fori.i.d. normal and Student-t errors (with known or

unknownκ), Gaussian GARCH with known or unknown(φ1,φ2), as well asφ1 = φ2 = 0 (i.e., ignoring the GARCH

dependence even when it is present in the simulated process). (3) Tests based on the HAC Wald-type statisticJ (γ0) in

(2.28), using aχ2(n) critical value, MC with known(φ1,φ2), and MMC where(φ1,φ2) is taken as unknown. In thei.i.d.

cases, the errors are generated using (2.13) withK set to eitherI12 or K̂, which corresponds to the Cholesky factor of

the least-squares error covariance estimate from the empirical data used for the simulation design. In the GARCH case,

samples are generated with conditional variance as in (2.17) usingK̂ or I12 for K.
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Table 2. Tests on zero-beta rate: empirical power
Gaussian and Student designs

n = 12 T = 60 T = 120 T = 828
W Statistic p-value Step Power Step Power Step Power

Normal LR(γ0) MC: φ1 = φ2 = 0 .50 .151 .50 .226 .20 .129
.75 .315 .75 .529 .30 .313
1.0 .544 1.0 .835 .50 .814
2.0 .981 1.5 .999 .75 .998

Student-t LR(γ0) MC: κ known .50 .134 .50 .181 .20 .109
MMC: κ unknown .126 .158 .080

MC: κ known .75 .264 .75 .428 .30 .237
MMC: κ unknown .239 .384 .182

MC: κ known 1.0 .494 1.0 .709 .50 .660
MMC: κ unknown .440 .673 .605

MC: κ known 2.0 .939 1.5 .997 .75 .966
MMC: κ unknown .925 .997 .960

Note – The table reports the empirical rejection rates of various tests forH (γ0) with nominal level 5%. The values

of γ0 tested are:γ0 = −0.000089 forT = 60, γ0 = .004960 forT = 120, γ0 = .005957 forT = 828. The sampling

design conforms with the size study, for theK̂ case. Samples are drawn withγ calibrated to its QML counterpart from

the 1991-95 subsample; values forγ0 are set to the latter value +step×σ̂min
i , whereσ̂min

i = [min{σ̂2
i }]

1/2, andσ̂2
i are

the diagonal terms of̂KK̂′. See Table 1 for further details on the design and tests applied.

In view of the poor size performance of the asymptotic tests, the power studyfocuses on proce-
dures whose level appears to be under control. Overall, the MMC correction is not too costly from
the power viewpoint, with both Student-t and GARCH errors. In the latter case, the likelihood-ratio-
type test uncorrected for GARCH effects outperforms all the other tests.When GARCH corrections
are performed via MMC, the likelihood-ratio-type test performs generally better than theJ (γ0)
test.

8. Empirical analysis

In this section, we assessHB as defined in (2.2) in the context of (2.1) under the distributional
assumptions (2.15)-(2.16), as well as the Gaussian GARCH in (2.17). We use real monthly returns
over the period going from January 1926 to December 1995, obtained from CRSP. The data studied
involve 12 portfolios of NYSE firms grouped by standard two-digit industrialclassification (SIC).
The sectors studied include: (1) petroleum; (2) finance and real estate;(3) consumer durables; (4)
basic industries; (5) food and tobacco; (6) construction; (7) capital goods; (8) transportation; (9)
utilities; (10) textile and trade; (11) services; (12) leisure; for details on the SIC codes, see Beaulieu
et al. (2007). For each month, the industry portfolios include the firms for which the return, the
price per common share and the number of shares outstanding are recorded by CRSP. Furthermore,
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portfolios are value-weighted in each month. We measure the market return by value-weighted
NYSE returns, and the real risk-free rate by the one month Treasury billrate net of inflation, both
available from CRSP. All MC tests were applied withN = 999 and MMCp-values are obtained
using the simulated annealing algorithm.

Our QML-based BCAPM test results are summarized in Table 4. Non-Gaussian p-values are the
largest MCp-values over the error distribution parameters [respectively:κ and(π, ω) for (2.15)-
(2.16)] within the specified 97.5% confidence sets; the latter are reported inTable 5. In the GARCH
case (2.17),p-values are the largest MCp-values over all (φ1i ,φ2i). Given a 5% level test, the bench-
mark is.05 for p∞, normal LMC, MMC and GARCHp-values, while the Student-t and normal mix-
ture p-values should be compared to.025 (to ensure that the test has level.05). Non-rejections by
LMC MC p-values are conclusive (though rejections are not); rejections based on the conservative
bound reported under the heading BND are conclusive under normality;non-rejections based on the
QML bound in the non-Gaussian case (reported under the heading BND)signal that the confidence
set forγ is not empty; however, since the MMCp-value is based on the tightest bound, this evidence
does not necessarily imply non-rejection ofHB.

The empirical results presented in Table 4 show that the asymptotic test and theGaussian-
based bound test yield the same decision at level 5%, although the formerp-values are much lower.
The non-normalp-values exceed the Gaussian-basedp-value, enough to change the test decision.
For instance, at the 5% significance level, we find seven rejections of the null hypothesis for the
asymptoticχ2(11) test, seven for the MCp-values under normality and with normal GARCH, and
five (relying on the MMCp-value) under the Student-t and normal mixture distributions.

Focusing on Student-t and normal mixture distributions with parameters not rejected by proper
GF tests, we see that mean-variance efficiency test results can change relative to the availableF-
based bound. The power advantages of the MMC procedure are illustrated by the results of the
1966-70 subperiod where the QMLp-value exceeds 2.5% for the Student-t and normal mixture
distributions, whereas the MMCp-value signals a rejection.

The confidence sets for distributional parameters are reported in Table 5. In the mixture case,
the confidence region is summarized as follows for presentation ease: we give the confidence set
for ω corresponding to five different values ofπ.

In Table 6, we present: (i) the average real market return as well as theaverage real risk-free
rate over each subperiod, (ii) the QML estimate ofγ (denotedγ̂) and 95% confidence sets for this
parameter, using respectively the asymptotic standard errors (2.27) (under the heading Wald-type),
and the likelihood-ratio-type tests withi.i.d. Gaussian,t(κ) and normal mixture(π, ω) errors, plus
Gaussian GARCH errors (lower panel).10 The values ofγ in the Fieller-type confidence set are
not rejected by the test defined in Theorem3.1 to testH (γ0). Rejection decisions are based on
the largest MCp-values over allκ and (π, ω) respectively; we did not restrict maximization to
the confidence set for these parameters here. As expected in view of theHB test results, the exact
confidence sets are empty for several subperiods. The usefulness of the asymptotic confidence

10Note that some values ofγ̂ are high. Nonetheless, comparing the average real market return for those subperiods
with our estimate ofγ reveal that these high occurrences ofγ are consistent with subperiods during which the estimated
zero-beta rate is higher than the market portfolio return. This is an illustration of finding, ex post, a linear relationship
between risk and return with a negative slope. Furthermore, rerunningour analysis using 10-year subperiods leads toγ
estimates below the benchmark average return.
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intervals is obviously questionable here. Other results which deserve notice are the empty sets for
1956-60 subperiod; these sets correspond to the case where the efficiency bound test is significant
(at 5%).11

To illustrate the differences between the asymptotic confidence set and ours, we next check
whether the average real risk-free rate is contained in the confidence sets. For many subperiods,
like 1966-70, the evidence produced by the asymptotic and MC Fieller-type confidence intervals
is similar. There are nonetheless cases where the set estimates do not lead tothe same decision.
For instance, for 1941-45 and 1971-75, the average risk-free rateis not included in the asymptotic
confidence interval, while it is covered by our MMC confidence sets. These are cases where, using
the asymptotic confidence interval, the hypothesisγ = r f is rejected, whereas exact confidence
sets indicate it should not be rejected. Conversely, in 1986-90, the asymptotic confidence interval
includes the average risk-free rate, whereas our confidence sets are empty.

In Table 7, we report theJ (γ0) counterparts of the above QML-based tests (columns 2 and
3) as well as point and set estimates ofγ (columns 1 and 4). Column (2) reports the values of our
proposedJ-test-type minimumJ (γ0) statistic. In column (3), MMC refers to the maximal MC
p-value [over all (φ1i ,φ2i)] for this statistic, assuming the GARCH specification (2.17), and the
level is 5%; alternatively, an asymptoticχ2(12) critical value (21.03 for a 5% level) can be used. In
column (1), we report the GMM-type point estimate (denotedγ̃); the associated set estimate which
inverts theJ (γ0) MC Gaussian GARCH based test is reported in column (4).

We first note that, on using the asymptotic critical value, aJ (γ0) test would reject the model
in all subperiods at level 5%. In contrast, the GARCH-MMCp-value is less than 5% only in the
1986-90 subperiod. In view of our simulation results from Section 7, theseresults illustrate the
serious implications of asymptotic test size distortions. Recall that the likelihood-ratio-based MC
and MMC (Gaussian and non-Gaussian, with and without GARCH) tests reject the model at the 5%
level in at least three other sub-periods: 1946-50, 1950-55, 1960-65. This reflects the test relative
power, as illustrated in Section 7. Turning to the estimates ofγ, we note that theJ (γ0) based
MMC confidence sets are substantially wider than the likelihood-ratio-basedcounterparts, only one
confidence set is empty (in the 1986-1990 subperiods, in which case the model would be rejected),
and the set is unbounded in the 1990-95 subperiod. Had we relied on the asymptoticχ2(12) cut-off
to invert theJ (γ0) test, all confidence sets would be empty. Again, these observations line up with
our simulation results.

The above procedures applied to the full data yields empty confidence setsusing the exact
GARCH corrected likelihood-ratio andJ (γ0) criteria; the confidence interval using (2.27) is
[.0007, .0088]. Since our subperiod analysis suggests thatγ is temporally unstable, one must be
careful in interpreting such results. On using a Bonferroni argument (that accounts for time-
varying parameters) based on the minimum (over subperiods) GARCH-correctedp-value which
is .003< .05/12, the model can be safely rejected at level 5%, over the full sample.

11This can be checked by referring to Table 4: although the reported maximal p-values in this table are performed over
the confidence set forκ and(π,ω), we have checked that the global maximalp-value leads to the same decision here.
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9. Conclusion

This paper proposes exact mean-variance efficiency tests when the zero-beta (or risk-free) rate is not
observable, which raises identification difficulties. Proposed methods arerobust to this problem as
well as to portfolio repacking, and allow for heavy-tailed return distributions. In particular, a useful
invariance result for MacKinlay and Richardson’s (1991) HAC statistic isshown analytically. We
also derive exact confidence sets for the zero-beta rateγ. While available Wald-type intervals are
unreliable and lead to substantially different inference concerningγ, our confidence sets are valid
in finite samples without assuming identification, and are empty by construction if efficiency is
rejected.

We report a simulation study which illustrates the properties of our proposedprocedures. Our
results allow to disentangle small-sample problems from asymptotic failures arisingfrom weak
identification. We also examine efficiency of the market portfolio for monthly returns on NYSE
CRSP portfolios. We find that efficiency is less rejected with non-normal assumptions. Exact
confidence sets forγ differ importantly from asymptotic ones, and likelihood-ratio-based confidence
sets are tighter than their Wald counterparts. All confidence sets nevertheless suggest thatγ is not
stable over time.

These results provide the motivation to extend our method to more general factor models, as
discussed by Campbell et al. (1997, Chapter 6) and Shanken and Zhou(2007). These models raise
the same statistical issues as the BCAPM, except that their definitional parameter is non-scalar.
In this case, Fieller-type methods are clearly more challenging and raise worthy theoretical and
empirical research questions.

A. Appendix: Proofs

PROOF OF THEOREM 3.1 Under (2.13) and H (γ0), we have: TΣ̂ = Û ′Û =
K

′
W′M (X)WK , TΣ̂(γ0) = K

′
W′M̄(γ0)WK. Then, underH (γ0),

Λ(γ0) =
|Σ̂(γ0)|

|Σ̂ |
=

|K
′
W′M̄(γ0)WK|

|K ′W′M (X)WK|
=

|K
′
| |W′M̄(γ0)W| |K|

|K ′ | |W′M (X)W| |K|
=

|W′M̄(γ0)W|

|W′M (X)W|
,

henceP[LR(γ0) ≥ x] = P[T ln(|W′M̄(γ0)W|/ |W′M (X)W|) ≥ x] , ∀x.

PROOF OFTHEOREM 3.2 For this model,

Û = M(X)U = M(X)WK = ŴK, Ŵ = M(X)W .

If we denote byÛ
′

t andŴ
′

t thet-th rows ofÛ andŴ, respectively, this means thatÛt = K′Ŵt , for all
t. Then,

(
Xt ⊗Ût

)(
Xt− j ⊗Ût− j

)′
=

(
Xt ⊗K′Ŵt

)(
Xt− j ⊗K′Ŵt− j

)′
=

(
Xt ⊗K′Ŵt

)(
X′

t− j ⊗Ŵ
′

t− jK
)

= XtX
′
t− j ⊗K′ŴtŴ

′

t− jK =
(
Ik⊗K′

)(
Xt ⊗Ŵt

)(
Xt− j ⊗Ŵt− j

)′
(Ik⊗K)
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for j ≥ 0, . . . . Setting

Ψj,T =
1
T

T

∑
t= j+1

(
Xt ⊗Ût

)(
Xt− j ⊗Ût− j

)′
, ST = Ψ0,t +

q

∑
j=1

(
q− j

q

)[
Ψj,T +Ψ

′

j,T

]
,

we see that

Ψj,T =
(
Ik⊗K′

)
Ψ̂j,T (Ik⊗K) , Ψ̂j,T =

1
T

T

∑
t= j+1

(
Xt ⊗Ŵt

)(
Xt− j ⊗Ŵt− j

)′
,

Ψj,T +Ψ
′

j,T =
(
Ik⊗K′

)[
Ψ̂j,T +Ψ̂

′

j,T

]
(Ik⊗K) ,

ST =
(
Ik⊗K′

)
Ψ̂0,T (Ik⊗K)+

q

∑
j=1

(
q− j

q

)(
Ik⊗K′

)[
Ψ̂j,T +Ψ̂

′

j,T

]
(Ik⊗K) =

(
Ik⊗K′

)
ŜT (Ik⊗K) ,

ŜT = Ψ̂0,T +
q

∑
j=1

(
q− j

q

)[
Ψ̂j,T +Ψ̂

′

j,T

]
.

On replacingST with (Ik⊗K′) ŜT (Ik⊗K), we get:
[(

X′X
T

)−1

⊗ In

]
ST

[(
X′X
T

)−1

⊗ In

]
=

[(
X′X
T

)−1

⊗K′

]
ŜT

[(
X′X
T

)−1

⊗K

]
.

Furthermore, sinceR(γ0) = (1, γ0) ⊗ In = H(γ0) ⊗ Inand H(γ0)
′ is a k-dimensional vector in

H̃ (γ0) : R(γ0)ϑ = C′H(γ0)
′ = 0, we see that:

R(γ0)ϑ̂ = Ĉ′H(γ0)
′ ,

R(γ0)

[(
X′X
T

)−1

⊗K′

]
= (H(γ0)⊗ In)

[(
X′X
T

)−1

⊗K′

]
= H(γ0)

(
X′X
T

)−1

⊗K′ ,

soJ (γ0) can be rewritten as

J (γ0) = T ϑ̂ ′
R(γ0)

′

{
R(γ0)

[(
X′X
T

)−1

⊗ In

]
ST

[(
X′X
T

)−1

⊗ In

]
R(γ0)

′

}−1

R(γ0)ϑ̂

= T ϑ̂ ′
R(γ0)

′

{
R(γ0)

[(
X′X
T

)−1

⊗K′

]
ŜT

[(
X′X
T

)−1

⊗K

]
R(γ0)

′

}−1

R(γ0)ϑ̂

= T H(γ0)ĈQ(γ0)
−1Ĉ′H(γ0)

′ = TH(γ0)ĈK−1KQ(γ0)
−1K

′ (
K′

)−1
Ĉ′H(γ0)

′

= T H(γ0)ĈK−1Q̄(γ0,W)−1(
K′

)−1
Ĉ′H(γ0)

′
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where

Q(γ0) =

[
H(γ0)

(
X′X
T

)−1

⊗K′

]
ŜT

[(
X′X
T

)−1

H(γ0)
′⊗K

]
, Q̄(γ0,W) =

(
K′

)−1
Q(γ0)K

−1 .

Under the null hypothesisH(γ0)C = 0, we have:

H(γ0)Ĉ = H(γ0)(X
′X)−1X′ [XC+U ] = H(γ0)C+H(γ0)(X

′X)−1X′U = H(γ0)(X
′X)−1X′WK,

Q̄(γ0,W) =
(
K′

)−1

[
H(γ0)

(
X′X
T

)−1

⊗K′

]
ŜT

[(
X′X
T

)−1

H(γ0)
′⊗K

]
K−1

=

[
H(γ0)

(
X′X
T

)−1

⊗
(
K′

)−1
K′

]
ŜT

[(
X′X
T

)−1

H(γ0)
′⊗KK−1

]

=

[
H(γ0)

(
X′X
T

)−1

⊗ In

]
ŜT

[(
X′X
T

)−1

H(γ0)
′⊗ In

]

where we take into account the fact thatH(γ0)
′ is a column vector, hence

J (γ0) = T H(γ0)(X
′X)−1X′WKK−1Q̄(γ0,W)−1(

K′
)−1

K
′
W′X(X′X)−1H(γ0)

′

= T H(γ0)(X
′X)−1X′WQ̄(γ0,W)−1W′X(X′X)−1H(γ0)

′.

PROOF OFLEMMA 5.1 The Gaussian log-likelihood function for model (2.5) is

ln[L̃(Ỹ, C, Σ)] = −
T
2

[n(2π)+ ln(|Σ |)]−
1
2

tr[Σ−1(Ỹ−XC)′(Ỹ−XC)] = ln[L(Y, B, Σ)] .

SettingΣ̃(C) ≡ 1
T (Ỹ−XC)′(Ỹ−XC), for any given value ofC, ln[L̃(Ỹ, C, Σ)] is maximized by

takingΣ = Σ̃(C) yielding the concentrated log-likelihood

ln[L̃(Ỹ, C, Σ)c = −
nT
2

[(2π)+1]−
T
2

ln(|Σ̃(C)|) . (A.1)

The Gaussian MLE ofC thus minimizes|Σ̃(C)| with respect toC. Let us denote bŷC(Y) the un-
restricted MLE ofC so obtained, and bŷC(Y; γ0) andĈB(Y) the restricted estimators subject to
H̃ (γ0) andH̃B respectively. Suppose thatỸ is replaced bỹY∗ = ỸAwhereA is a nonsingularn×n
matrix. We need to show thatLR∗(γ0) = LR(γ0) andLRB∗ = LRB, whereLR∗(γ0) andLRB∗ repre-
sent the corresponding test statistics based on the transformed data. Following this transformation,
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|Σ̃(C)| becomes:

|Σ̃∗(C∗)| =
∣∣ 1
T

(Ỹ∗−XC∗)
′(Ỹ∗−XC∗)

∣∣ =
∣∣ 1
T

A′(Ỹ−XC∗A
−1)′(Ỹ−XC∗A

−1)A
∣∣

= |A′A|
∣∣ 1
T

(Ỹ−XC)′(Ỹ−XC)
∣∣ = |A′A| |Σ̃(C)| (A.2)

where C = C∗A−1. Then |Σ̃(C∗)| is minimized by Ĉ∗(Y∗) = Ĉ(Y)A and |Σ̃∗

(
Ĉ∗(Y∗)

)
| =

|A′A||Σ̃
(
Ĉ(Y)

)
. On observing thatH(γ0)C = 0 ⇐⇒ H(γ0)CA = 0 ⇐⇒ H(γ0)C∗ = 0 for anyγ0,

the restricted estimators ofC underH̃ (γ0) andH̃B are transformed in the same way:Ĉ∗(Y∗; γ0) =
Ĉ(Y; γ0)A and Ĉ∗B(Y∗) = ĈB(Y)A. This entails that|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)
| = |A′A| |Σ̃

(
Ĉ(Y; γ0)

)
| and

|Σ̃∗

(
Ĉ∗B(Y∗)

)
| = |A′A| |Σ̃

(
ĈB(Y)

)
|, so that

Λ̃∗(γ0) =
|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)
|

|Σ̃∗

(
Ĉ∗(Y∗)

)
|

=
|Σ̃

(
Ĉ(Y; γ0)

)
|

|Σ̃
(
Ĉ(Y)

)
|

= Λ̃(γ0) , (A.3)

Λ̃B∗ =
|Σ̃∗

(
Ĉ∗B(Y∗)

)
|

|Σ̃∗

(
Ĉ∗(Y∗)

)
|

=
|Σ̃

(
ĈB(Y)

)
|

|Σ̃
(
Ĉ(Y)

)
|

= Λ̃B . (A.4)

Finally, in view of (2.20) and (2.26), we haveLR∗(γ0) = T ln[Λ̃∗(γ0)] = T ln[Λ̃(γ0)] = LR(γ0)and
LRB∗ = T ln(Λ̃B∗) = T ln(Λ̃) = LRB .

PROOF OF THEOREM 5.2 Consider a transformation of the form̃Y∗ = ỸK−1 or, equivalently,
Y∗ = YK−1 + R̃M ι ′n(I −K−1). Using(2.1) and(2.13), we then have:

Y∗ = (XB+WK)K−1 + R̃M ι ′n(I −K−1) = XBK−1 + R̃M ι ′n(I −K−1)+W

= (ιTa′ + R̃Mβ ′)K−1 + R̃M ι ′n(I −K−1)+W

= R̃M ι ′n +[ιTa′ + R̃M(β − ιn)
′]K−1 +W

= R̃M ι ′n +X(B−∆)K−1 +W = R̃M ι ′n +XB̄+W (A.5)

whereB̄ = (B−∆)K−1 and ∆ = [0, ιn]
′. Using Lemma5.1, LR(γ0) and LRB can be viewed as

functions ofY∗, and depend on(B, K) only throughB̄ = (B−∆)K−1. UnderHB, the nuisance pa-
rameter only involvesγ and(β − ιn)

′K−1. Now the distribution ofLR(γ0) andLRB can be explicitly
characterized by using (A.3) - (A.4) and observing that

Λ̃(γ0) =
|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)
|

|Σ̃∗

(
Ĉ∗(Y∗)

)
|

=
|Ŵ(γ0)

′Ŵ(γ0)|

|Ŵ′Ŵ|
,

Λ̃B =
|Σ̃∗

(
Ĉ∗B(Y∗)

)
|

|Σ̃∗

(
Ĉ∗(Y∗)

)
|

=
inf {|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)
| : γ0 ∈ Γ }

|Σ̃∗

(
Ĉ∗(Y∗)

)
|

= inf {Λ̃(γ0) : γ0 ∈ Γ } ,

where Ŵ(γ0) = M̄(γ0)(Y∗ − R̃M ι ′n) = M̄(γ0)(XB̄ + W) = M̄(γ0){[ιTa′ + R̃M(β − ιn)
′]K−1 +

W} = M̄(γ0){
[
ιT

(
a′ + γ0(β − ιn)

′
)
+ (R̃M − γ0ιT)(β − ιn)

′
]
K−1 +W} = M̄(γ0){ιT

(
a+ γ0(β −

ιn)
′
)
K−1+W}andŴ = M(X)W. UnderHB wherea=−γ(β −ιn),Ŵ(γ0) = (γ0−γ)M̄(γ0)ιT(β −
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ιn)
′K−1 + M̄(γ0)W . The theorem then follows on observing thatLR(γ0) = T ln[Λ̃(γ0)] and

LRB = T ln(Λ̃B). Further information can be drawn from the singular value decomposition ofB̄.
Let r be the rank ofB̄. SinceB̄ is a 2×n matrix, we have 0≤ r ≤ 2 and we can write:

B̄ = PDQ′ , D = [D̄,0] , D̄ = diag
(
λ 1/2

1 , λ 1/2
2

)
, (A.6)

whereD is a 2×n matrix, λ 1 andλ 2 are the two largest eigenvalues ofB̄′B̄ (whereλ 1 ≥ λ 2 ≥ 0),
Q = [Q1, Q2] is an orthogonaln×n matrix whose columns are eigenvectors ofB̄′B̄, Q1 is a 2× r
matrix which contains eigenvectors associated with the non-zero eigenvalues of B̄′B̄, P = [P1, P2]
is a 2×2 orthogonal matrix such thatP1 = B̄Q1D−1

1 andD1 is a diagonal matrix which contains
the non-zero eigenvalues of̄B′B̄, settingP = P1 and D1 = D̄ if r = 2, and P = P2 if r = 0; see
Harville (1997, Theorem 21.12.1). Using Lemma5.1and Theorem5.2, LR(γ0) andLRB may then
be reexpressed as:

LR(γ0) = T ln
(
|W̃(γ0)

′W̃(γ0)|/|W̃
′W̃|

)
, LRB = inf {LR(γ0) : γ0 ∈ Γ } , (A.7)

W̃ = ŴQ= M(X)W̄, W̄ = WQ, W̃(γ0) = Ŵ(γ0)Q = M̄(γ0)(XPD+W̄), (A.8)

PD = [PD̄, 0] andPD̄ has at most 3 free coefficients (P is orthogonal). UnderHB,

W̃(γ0) = M̄(γ0)ιT

[
(γ0− γ)

(
ϕ ′ϕ

)1/2 ϕ̄ ′
]
+ M̄(γ0)W̄,

ϕ = Q′
(
K−1)′ (β − ιn), ϕ̄ = ϕ/

(
ϕ ′ϕ

)1/2
.

DefineΦ =
[
ϕ̄,Φ̄

]
as an orthogonal matrix such thatΦ ′Φ = ΦΦ ′ = In, so

Φ ′Φ =

[
ϕ̄ ′ϕ̄ ϕ̄ ′Φ̄
Φ̄ ′ϕ̄ Φ̄ ′Φ̄

]
=

[
1 0
0 In−1

]
, ϕ̄ ′Φ =

[
1 0 · · · 0

]
. (A.9)

Then as in (A.7),LR(γ0) andLRB may again be expressed underHB as:

LR(γ0) = T ln
(
|W̃B(γ0)

′W̃B(γ0)|/|W̃
′
BW̃B|

)
, LRB = inf {LR(γ0) : γ0 ∈ Γ } , (A.10)

W̃B = W̃Φ̄ = M(X)W̄B, W̄B = W̄Φ , (A.11)

W̃B(γ0) = W̃(γ0)Φ̄ = M̄(γ0)ιTϕ ′
B + M̄(γ0)W̄B, (A.12)

whereϕ ′
B = (γ0−γ)(ϕ ′ϕ)1/2 ϕ̄ ′Φ = (γ0−γ)(ϕ ′ϕ)1/2[

1 0 · · · 0
]

which involves at most one
free coefficient. WhenW is non-Gaussian, the distributions ofLR(γ0) andLRB may be influenced
by B̄ throughQ in W̄. Under the Gaussian assumption (2.14), the rows ofW̄ arei.i.d. N(0, In), so
that LR(γ0) andLRB follow distributions which depend on(B, K) only throughPD̄. UnderHB,
since the rows ofW̄B are i.i.d. N(0, In), this distribution involves only one nuisance parameter, in
accordance with the result from Zhou (1991, Theorem 1), derived through a different method.

PROOF OFTHEOREM6.1 HB = ∪γ0
H (γ0) . SinceLRB = inf {LR(γ0) : γ0 ∈Γ }, we haveLRB ≤

LR(γ0), for any γ0, henceP[LRB ≥ x] ≤ P(B,K)

[
LR(γ0) ≥ x

]
, ∀x, for eachγ0 and for any(B, K)
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compatible withH (γ0). Furthermore, underHB, there is a value ofγ0 such that the distribution of
LR(γ0) is given by Theorem3.1, which entails (6.1). The result for the Gaussian special case then
follows upon using (3.2).

PROOF OF THEOREM 6.2 The result follows from (6.7), (3.12), and the inequalities
p̂U

N(LRB;γ, ν) ≤ p̂U
N(LRB;Γ , ν) and p̂U

N(LRB;γ, ν) ≤ p̂U
N(LRB;γ, ΩD) ≤ p̂U

N(LRB;Γ , ΩD).

PROOF OF THEOREM 6.3 When ν is specified, by (6.6), (2.25) and (3.11), we
have: p̂U

N(LRB; γ̂, ν) ≡ pN[LR(0)
B

∣∣LRN(γ̂, ν)] = pN[LR(0)(γ̂)
∣∣LRN(γ̂, ν)] = p̂N(LR; γ̂, ν) , hence

sup{p̂N(LR;γ0, ν) : γ0 ∈ Γ } ≤ α ⇒ p̂N(LR; γ̂, ν) ≤ α ⇒ p̂U
N(LRB; γ̂, ν) ≤ α ; on noting that

sup{p̂N(LR;γ0, ν) : γ0 ∈ Γ } ≤ α means thatCLR
γ (α, ν) is empty, p̂U

N(LRB; γ̂, ν) > α ⇒

sup{p̂N(LR;γ0, ν) : γ0 ∈ Γ } > α ⇒CLR
γ (α, ν) 6= /0. Forν unknown,

p̂U
N(LRB; γ̂, ΩD) = sup{p̂U

N(LRB; γ̂, ν0) : ν0 ∈ ΩD} = sup{pN[LR(0)
B

∣∣LRN(γ̂, ν0)] : ν0 ∈ ΩD} ,

= sup{pN[LR(0)(γ̂)
∣∣LRN(γ̂, ν0)] : ν0 ∈ ΩD} = sup{p̂N(LR; γ̂, ν) : ν0 ∈ ΩD} ,

hence sup{p̂N(LR;γ0, ν0) : γ0 ∈ Γ , ν0 ∈ ΩD} ≤ α ⇒ sup{p̂N(LR; γ̂, ν0) : ν0 ∈ ΩD} ≤ α ⇒
p̂U

N(LRB; γ̂, ΩD) ≤ α and p̂U
N(LRB; γ̂, ΩD) > α ⇒ sup{p̂N(LR;γ0, ν0) : γ0 ∈ Γ , ν0 ∈ ΩD} > α ⇒

CLR
γ (α; D) 6= /0.
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Table 3. Tests on zero-beta rate: empirical power
Gaussian GARCH design

n = 12 T = 60 T = 120 T = 828
Statistic p-value Step Power Step Power Step Power
LR(γ0) MC: φ1 = φ2 = 0 .50 .112 .50 .203 .20 .195

MC: φ1,φ2 known .113 .204 .198
MMC: φ1,φ2 unknown .106 .170 .168

J (γ0) MMC: φ1,φ2 known .088 .155 .208
MMC: φ1,φ2 unknown .078 .133 .183

LR(γ0) MC: φ1 = φ2 = 0 .75 .247 .75 .449 .30 .465
MC: φ1,φ2 known .248 .452 .471

MMC: φ1,φ2 unknown .213 .411 .425
J (γ0) MMC: φ1,φ2 known .177 .316 .442

MMC: φ1,φ2 unknown .158 .276 .411
LR(γ0) MC: φ1 = φ2 = 0 1.0 .447 1.0 .753 .50 .945

MC: φ1,φ2 known .441 .753 .950
MMC: φ1,φ2 unknown .395 .709 .937

J (γ0) MC: φ1,φ2 known .300 .552 .934
MMC: φ1,φ2 unknown .269 .505 .920

LR(γ0) MC, φ1 = φ2 = 0 2.0 .913 1.5 .973 .75 1.0
MC: φ1,φ2 known .915 .970 1.0

MMC: φ1,φ2 unknown .892 .962 1.0
J (γ0) MMC: φ1,φ2 known .719 .856 1.0

MMC: φ1,φ2 unknown .664 .931 1.0

Note – The values ofγ0 tested are:γ0 = −0.000089 forT = 60, γ0 = .004960 forT = 120,γ0 = .005957 forT = 828.

Numbers reported are empirical rejection rates for various tests ofH (γ0) with nominal size 5%. The sampling design

conforms with the size study, for thêK case; errors are generated with conditional variance as in (2.17) using K̂. See

Table 1 for a complete description of the designs and tests applied. Samplesare drawn withγ calibrated to its QML

counterpart from the 1991-95 subsample; values forγ0 are set to the latter value +step×σ̂min
i (for variousstepvalues)

whereσ̂min
i = [min{σ̂2

i }]
1/2, andσ̂2

i are the diagonal terms of̂KK̂′.
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Table 4. QML-based tests of BCAPM

Sample LRB p∞ Normal GARCH

LMC MMC BND BND

1927−30 16.10 .137 .269 .308 .366 .340
1931−35 14.09 .228 .344 .381 .432 .451
1936−40 15.36 .167 .257 .284 .345 .355
1941−45 18.62 .068 .148 .163 .203 .213
1946−50 32.69 .001 .005 .006 .007 .006
1951−55 37.04 .000 .003 .004 .004 .003
1956−60 26.10 .006 .027 .031 .042 .039
1961−65 29.21 .002 .011 .016 .020 .015
1966−70 27.45 .004 .016 .018 .026 .029
1971−75 16.81 .113 .213 .224 .292 .294
1976−80 25.76 .007 .027 .031 .040 .042
1981−85 14.98 .183 .316 .335 .387 .404
1986−90 35.41 .000 .003 .004 .004 .005
1991−95 16.41 .127 .219 .253 .310 .320

Student-t Normal mixture
LMC MMC BND LMC MMC BND

1927−30 .272 .316 .360 .279 .313 .381
1931−35 .359 .399 .468 .342 .387 .452
1936−40 .282 .308 .372 .265 .302 .357
1941−45 .147 .169 .210 .150 .165 .211
1946−50 .007 .007 .010 .007 .007 .008
1951−55 .003 .005 .005 .003 .003 .003
1956−60 .030 .040 .052 .028 .035 .045
1961−65 .013 .017 .023 .014 .021 .024
1966−70 .020 .025 .032 .018 .023 .028
1971−75 .217 .248 .300 .206 .238 .292
1976−80 .026 .035 .039 .026 .034 .042
1981−85 .323 .399 .405 .318 .339 .406
1986−90 .004 .005 .005 .004 .004 .005
1991−95 .226 .263 .325 .226 .261 .319

Note –LRB is the statistic in (2.24). Remaining numbers are associatedp-values. p∞ is based onχ2(n−1). All other

non-Gaussianp-values are the largest MCp-values over the shape parameterν within the specified confidence sets [ν = κ
or ν = (π, ω); refer to Table 5]. LMC is the bootstrapp-value in (6.11) and MMC is the maximalp-value in (6.10) (refer

to Section 6.2). BND is the bound (6.2) for the Gaussian case and theQML-BMCbound from Theorem6.3otherwise; the

GARCH BND is the largestQML-BMCoverφ1i ,φ2i [from (2.17)]. Returns for the months of January and for October

1987 are excluded. Given a 5% level, the cut-off is.05 for p∞, the normal LMC, MMC and the GARCHp-values; for

the Student-t and mixtures, the cut-off is .025.p-values which lead to significant tests with this benchmark are in bold.
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Table 5. Confidence sets for intervening parameters

Mixture (π, ω), confidence set forω t(κ)

(1) (2) (3) (4) (5) (6)

Sample π = 0.1 π = 0.2 π = 0.3 π = 0.4 π = 0.5 κ
1927−30 ≥ 1.8 1.6−2.8 1.6−2.5 1.6−2.5 1.6−2.6 3−12
1931−35 2.1−10.0 1.9−3.0 1.9−2.7 1.9−2.7 2.1−3.0 3−8
1966−40 1.5−3.5 1.5−2.3 1.4−2.1 1.4−2.0 1.4−2.1 4−25
1941−45 1.3−3.5 1.3−2.1 1.3−1.9 1.3−1.8 1.3−1.9 ≥ 5
1946−50 1.4−3.5 1.3−2.2 1.3−2.0 1.3−1.9 1.3−1.9 5−37
1951−55 1.4−3.5 1.4−2.2 1.3−2.0 1.3−1.9 1.3−2.0 5−34
1956−60 1.3−2.8 1.2−2.0 1.2−1.9 1.2−1.8 1.2−1.8 ≥ 5
1961−65 1.0−2.2 1.0−1.6 1.0−1.5 1.0−1.5 1.0−1.5 ≥ 7
1966−70 1.3−3.0 1.3−2.0 1.3−1.9 1.3−1.8 1.2−1.9 ≥ 5
1971−75 1.5−3.5 1.5−2.2 1.4−2.0 1.4−1.9 1.4−2.0 4−24
1976−80 1.6−4.0 1.5−2.5 1.5−2.2 1.5−2.2 1.5−2.3 4−19
1981−85 1.4−3.5 1.4−2.1 1.3−2.0 1.3−1.9 1.4−2.0 5−33
1986−90 1.1−3.0 1.1−2.0 1.1−1.8 1.0−1.7 1.1−1.8 ≥ 5
1991−95 1.0−1.9 1.0−1.5 1.0−1.4 1.0−1.3 1.0−1.3 ≥ 19

Note – Numbers in columns (1)-(5) represent a confidence set for the parameters(π, ω) [respectively, the probability

of mixing and the ratio of scales] of the multivariate mixtures-of-normal error distribution. Column (6) presents the

confidence set forκ , the degrees-of-freedom parameter of the multivariate Student-t error distribution. See Section 6 for

details on the construction of these confidence sets: the values of(π, ω) or κ (respectively) in this set are not rejected

by theCSKtest (6.12) [see Dufour et al. (2003)] under multivariate mixtures orStudent-t errors (respectively). Note that

the maximum of thep-value occurs in the closed interval forω. Returns for the month of January and October 1987 are

excluded from the data set.
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Table 6. QML-based point and set estimates for the zero-beta portfolio rate

Sample R̄M r̄ f γ̂ Wald-type
1927−30 .0045 .0045 .0047 [−.0037, .0130]
1931−35 .0103 .0025 −.0130 [−.0301, .0039]
1926−40 .0031 −.0006 −.0069 [−.0192, .0055]
1941−45 .0097 −.0042 .0117 [.0037, .0198]
1946−50 .0021 −.0051 −.0219 [−.0189, −.0070]
1951−55 .0145 .0001 .0024 [−.0015, .0064]
1956−60 .0086 .0002 .0156 [.0109, .0202]
1961−65 .0080 .0014 .0571 [.0398, .0744]
1966−70 .0008 .0004 .0169 [.0096, .0242]
1971−75 −.0061 −.0010 .0150 [.0030, .0270]
1976−80 .0056 −.0012 −.0096 [−.0169, −.0024]
1981−85 .0081 .0037 .0197 [.0125, .0268]
1986−90 .0088 .0020 .0053 [−.0024, .0131]
1991−95 .0104 .0011 .0010 [−.0130, .0062]

95% Confidence set, Fieller-type
Sample Normal errors Student t errors Mixture errors GARCH

1927−30 [−.0133, .0227] [−.0143, .0229] [−.0141, .0227] [−.0125, .020]
1931−35 [−.0509, .0225] [−.0520, .0225] [−.0157, .0227] [−.0517, .0217]
1926−40 [−.0341, .0187] [−.0350, .0190] [−.0349, .0817] [−.0300, .0175]
1941−45 [−.0045, .0275] [−.0048, .0287] [−.0045, .0283] [−.0025, .0275]
1946−50 /0 /0 /0 /0
1951−55 /0 /0 /0 /0
1956−60 /0 [.0149, .0161] /0 /0
1961−65 /0 /0 /0 /0
1966−70 /0 /0 /0 /0
1971−75 [−.0069, .0454] [−.0081, .0488] [−.0069, .0531] [−.0050, .0450]
1976−80 /0 /0 /0 /0
1981−85 [.0059, .0371] [.0051, .0376] [.0051, .0387] [.0075, .0350]
1986−90 /0 /0 /0 /0
1991−95 [−.0285, .0147] [−.0303, .0154] [−.0325, .0147] [−.0275, .0125]

Note –R̄M is the average real market portfolio return for each subperiod, ¯r f is the real average risk-free rate for each

subperiod;γ̂ is the QML estimate ofγ; the remaining columns report 95% confidence sets for this parameter,using,

respectively, the asymptotic standard errors (2.27) [γ̂±1.96× AsySE(γ̂)], the inverted test based onLR(γ0) from Theorem

3.1, and the MC Gaussianp-value, the MMCp-value imposing multivariatet(κ) errors and mixture-of-normals(π, ω)

errors, and the MMC GARCHp-value. See Section 4 for details on the construction of these confidence sets. Non-

Gaussianp-values are the largest MCp-values over the shape parametersκ or (π, ω). The GARCHp-value is the largest

MC p-value overφ1i ,φ2i [from (2.17)]. Returns for the months of January and October 1987are excluded from the data

set.
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Table 7.J (γ0) based inference on the zero-beta portfolio rate

(1) (2) (3) (4)

sample γ̃ = argmin
γ0

J (γ0) min
γ0

J (γ0) BND 95% Confidence set, MMC

1927−30 .0090 71.29 .650 [−.0195, .0235]
1931−35 −.0045 71.06 .541 [−.0240, .0250]
1926−40 −.0045 54.52 .620 [−.0355, .0550]
1941−45 .0415 163.26 .143 [−.0455, .0670]
1946−50 .0000 133.76 .121 [−.0105, .0075]
1951−55 .0075 104.93 .250 [.0000, .0120]
1956−60 .0195 110.18 .280 [−.0385, .0415]
1961−65 .0370 149.61 .142 [−.0295,−.0150]∪ [.0250, .0670]
1966−70 .0090 168.54 .081 [.0045, .0135]
1971−75 .0060 61.06 .623 [−.0180, .0067]
1976−80 .0060 172.09 .061 [−.0225, .0135]
1981−85 .0195 121.41 .201 [.0105, .0385]
1986−90 .0030 184.38 .030 /0
1991−95 .0100 53.60 .841 {≤ .0075}∪{≥ .0310}

Note –J (γ0) is the HAC statistic in (2.28).̃γ is the minimum distance estimator from (2.29). Column (3) provides a

bound MCp-value simulated at̃γ and maximized overφ1i ,φ2i [from (2.17)]. Column (4) provides the confidence set for

γ which inverts the inverted test based onJ (γ0) and the MMC GARCHp-value; again, this is the largest MCp-value

overφ1i ,φ2i [from (2.17)]. Returns for the months of January and October 1987are excluded from the data set. Given a

5% level, the cut-off of the BNDp-value is.05; p-values which lead to significant tests with this benchmark are in bold.

Note that the confidence set which invertsJ (γ0) based on the asymptoticχ2(12) cut-off is empty for all sub-periods.
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