Jean-Marie Dufour October 2011 Compiled: October 18, 2011

ECONOMETRICS 1 EXERCISES 3

Linear regression

- 1. State and prove the Gauss-Markov theorem.
- 2. Suppose we have

$$y = X\beta + \varepsilon \tag{1}$$

along with assumptions of the classical linear model with $E[\varepsilon \varepsilon'] = \sigma^2 I_T$. Instead of (1), we estimate β in the context of a regression with additional explanatory variables Z:

$$y = X\beta + Z\gamma + \varepsilon_* = X_*\delta + \varepsilon_* \tag{2}$$

where Z is a fixed $T \times k_0$ matrix, the extended matrix $X_* = [X, Z]$ has rank $k + k_0$ and

$$\delta = \begin{bmatrix} \beta \\ \gamma \end{bmatrix}. \tag{3}$$

Let $\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'y$ and $\hat{\boldsymbol{\delta}} = (X'_*X_*)^{-1}X'_*y = (\hat{\boldsymbol{\beta}}'_*, \hat{\boldsymbol{\gamma}}'_*)'$ where $\hat{\boldsymbol{\beta}}_*$ is a $k \times 1$ vector.

- (a) Show that $\hat{\beta}$ and $\hat{\beta}_*$ are unbiased estimators of β .
- (b) Give the covariance matrices of $\hat{\beta}$ and $\hat{\beta}_*$ under the assumptions the classical linear model (1).
- (c) Show that $\hat{\beta}$ is more efficient than $\hat{\beta}_*$ in terms of its squared error.
- (d) Discuss the consequences of adding irrelevant explanatory variables on the estimation of regression coefficients.
- (e) Let $\hat{\varepsilon}_* = y X_* \hat{\delta}$. Find the expected value of the sum of squares $\hat{\varepsilon}'_* \hat{\varepsilon}_*$.
- (f) Propose an unbiased estimator of σ^2 .