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1. Estimator consistency

Let y1, y2, . . .be a sequence of observations and

θ̂ T = θ̂ T (y1, y2, . . . ,yT ) (1.1)

an estimator for ak×1 parameter vectorθ . We say that̂θ T is consistent (or weakly consistent) for
θ when

θ̂ T
p−→

T→∞
θ . (1.2)

This is also written:
p lim
T→∞

θ̂ T = θ . (1.3)

This means that
lim

T→∞
P

[∥

∥θ̂ T −θ
∥

∥ > ε
]

= 0, ∀ε > 0 (1.4)

where‖·‖ represents the Euclidean distance.
We say that̂θ T is stronglyconsistent consistent (or weakly consistent) for θ when

θ̂ T
a.s.−→

T→∞
θ , (1.5)

i.e., when
P

[

lim
T→∞

θ̂ T = θ
]

= 1. (1.6)

It is easy to see that strong consistency entails weak consistency.
We say that̂θ T is asymptotically unbiased for θ when

lim
T→∞

E(θ̂ T ) = θ . (1.7)

In general, a consistent estimator is not necessarily asymptotically unbiased, for example when the
estimator does not have a finite mean. Similarly an asymptotically unbiased estimator may not be
consistent, for example if it unbiased but not consistent. In the following proposition, we give a
general condition under which asymptotic unbiasedness entails consistency.

1.1 Proposition If the estimatorθ̂ T satisfies

lim
T→∞

E(θ̂ T ) = θ (1.8)

and
lim

T→∞
V(θ̂ T ) = 0, (1.9)

thenθ̂ T
p−→

T→∞
θ .

1



2. Consistency of least squares in linear regression

Let us now consider a linear regression model of the form

y = Xβ + ε (2.1)

whereβ is a fixedk×1 parameter vector,y andε areT ×1 vectors,X is aT × k matrix,

y =











y1

y2
...

yT











, ε =











ε1

ε2
...

εT











, (2.2)

X = [x1,x2, . . . , xk] =











x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
...

xT1 xT2 · · · xT k











.

Instead of the finite-sample assumptions of the classical linear model, we make the following
“asymptotic” assumptions:

X ′X is nonsingular with probability one for allT ≥ k (2.3)

1
T

X ′X
p−→

T→∞
ΣX where det(ΣX) 6= 0, (2.4)

1
T

X ′ε p−→
T→∞

0, (2.5)

1
T

ε ′ε p−→
T→∞

σ2
> 0. (2.6)

Then, we have:

β̂ T = (X ′X)−1X ′y = β +(X ′X)−1X ′ε (2.7)

= β +

(

1
T

X ′X

)−1 1
T

X ′ε p−→
T→∞

β +Σ−1
X 0 = β (2.8)

and the least squares estimator is (weakly) consistent.
Similarly, the “unbiased” least squares estimator ofσ2,

s2
T =

1
T − k

ε̂ ′ε̂ (2.9)
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whereε̂ = M(X)ε = [IT −X (X ′X)−1 X ′]ε, satisfies

s2
T =

1
T − k

ε ′M(X)ε

=
1

T − k
ε ′

[

IT −X
(

X ′X
)−1

X ′
]

ε

=
1

T − k

[

ε ′ε − ε
′
X

(

X ′X
)−1

X ′ε
]

=
T

T − k

[

1
T

ε ′ε −
(

1
T

X ′ε
)′( 1

T
X ′X

)−1 1
T

X ′ε

]

(2.10)

where

1
T

ε ′ε p−→
T→∞

σ2
, (2.11)

(

1
T

X ′ε
)′( 1

T
X ′X

)−1(

1
T

X ′ε
)

p−→
T→∞

0
′
Σ−1

X 0 = 0, (2.12)

so that
s2

T
p−→

T→∞
σ2 · (2.13)

In other words,s2
T is a consistent estimator ofσ2.

If furthermore, 1√
T

X ′ε satisfies a central limit theorem, namely

1√
T

X ′ε L−→
T→∞

N
[

0, σ2ΣX
]

, (2.14)

we have, using (2.7),

√
T [β̂ T −β ] =

√
T

(

1
T

X ′X

)−1 1
T

X ′ε

=

(

1
T

X ′X

)−1 1√
T

X ′ε

L−→
T→∞

N
[

0, σ2Σ−1
X

]

. (2.15)

In other words, the distribution of
√

T [β̂ T −β ] is approximately normal forT large enough. This
entails that the distributions of thet andF statistics can be approximated by the distributions ob-
tained under the assumptions of the Gaussian classical linear model. [The details of the arguments
to establish asymptotic distributions are not presented in this course.]
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3. Instrumental variables

If X andε are asymptotically correlated,i.e.

1
T

X ′ε p−→
T→∞

σXε 6= 0, (3.1)

we have

β̂ T = β +

(

1
T

X ′X

)−1 1
T

X ′ε p−→
T→∞

β +Σ−1
X σXε 6= β (3.2)

and the least squares estimator is not consistent forβ . Alternative estimation methods are typically
required to deal with this problem.

The instrumental variables (IV) method is the simplest alternative to least squares when ex-
planatory variables and disturbances are asymptotically correlated. Instrumental variables can be
defined as variables which are (asymptotically) uncorrelated with the disturbance term but still cor-
related with the variables inX . More precisely, suppose with aT × l matrix Z of variables with the
following properties:

1
T

Z′ε p−→
T→∞

0, (3.3)

Z′Z andX ′Z are full rank matrices with probability one for allT, (3.4)

1
T

Z′Z
p−→

T→∞
ΣZ where det(ΣZ) 6= 0, (3.5)

1
T

Z′X
p−→

T→∞
ΣZX where rank(ΣZX) = k . (3.6)

Assumption (3.3) means thatZ andε are (asymptotically) uncorrelated (instrument validity). As-
sumption (3.4) means thatZ′Z andX ′Z are full rank matrices, Assumption (3.5) means they are
not (asymptotically) collinear, while Assumption (2.4) means the variables inZ contain information
about all the variables inX (asymptotically)

Consider now equation (2.1) and multiply both sides byZ′ :

Z′y = Z′Xβ +Z′ε . (3.7)

If we then multiply by 1
T , we get:

1
T

Z′y =
1
T

Z′Xβ +
1
T

Z′ε . (3.8)

Consider first the case where the number of instruments is equal to the number of explanatory
variables(l = k), so thatZ′X is a square invertible matrix. In view of assumption (3.3), we expect
1
T Z′ε to be close to zero forT large enough. This suggests to estimateβ by solving the equation

1
T

Z′y =
1
T

Z′Xβ , (3.9)
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which leads to the estimator:
β̃ = (Z′X)−1Z′y . (3.10)

This estimator is called the IV estimator ofβ based on the instrumentZ (in the case wherel = k).
It is easy to see that̃β is consistent forβ :

β̃ = β +(Z′X)−1Z′ε

= β +

(

1
T

Z′X

)−1 1
T

Z′ε p−→
T→∞

β +Σ−1
ZX 0 = β (3.11)

It is interesting to note the least squares estimatorβ̂ can be viewed as a special case of the IV esti-
mator obtained by takingZ = X . Of course,β̂ will be consistent only if the orthogonality condition
(2.5) holds.

Similarly, if we allow the number of instruments to be larger than the number of explanatory
variables(l ≥ k), suppose temporarily thatZ is fixed. Then the covariance matrix of the error term
Z′ε in (3.7) is:

V
(

Z′ε
)

= E
[

Z′εε ′Z
]

= Z′E(εε ′)Z = σ2Z′Z . (3.12)

This suggests to consider the following “generalized least squares” estimator:

β̃ = [X ′Z(Z′Z)−1Z′X ]−1X ′Z(Z′Z)−1Z′y . (3.13)

If l = k, Z′X is a square invertible matrix, so that

β̃ = (Z′X)−1(Z′Z)(X ′Z)−1X ′Z(Z′Z)−1Z′y

= (Z′X)−1Z′y (3.14)

reduces to the estimator in (3.10). Soβ̃ is also called the IV estimator ofβ based on the instrument
Z (in the general case wherel ≥ k). Again, it is easy to see thatβ̃ is consistent forβ :

β̃ = [X ′Z(Z′Z)−1Z′X ]−1X ′Z(Z′Z)−1Z′y

= β +[X ′Z(Z′Z)−1Z′X ]−1X ′Z(Z′Z)−1Z′ε

= β +

[

(

1
T

X ′Z

)(

1
T

Z′Z

)−1(

1
T

Z′X

)

]−1
(

1
T

X ′Z

)(

1
T

Z′Z

)−1(

1
T

Z′ε
)

p−→
T→∞

β +[Σ
′
ZX Σ−1

Z ΣZX ]−1Σ
′
ZX Σ−1

Z 0 = β . (3.15)

If furthermore, 1√
T

Z′ε satisfies a central limit theorem, namely

1√
T

Z′ε L−→
T→∞

N
[

0, σ2ΣZ
]

, (3.16)
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we find

√
T [β̃ T −β ] =

√
T

[

(

1
T

X ′Z

)(

1
T

Z′Z

)−1(

1
T

Z′X

)

]−1
(

1
T

X ′Z

)(

1
T

Z′Z

)−1(

1
T

Z′ε
)

=

[

(

1
T

X ′Z

)(

1
T

Z′Z

)−1(

1
T

Z′X

)

]−1
(

1
T

X ′Z

)(

1
T

Z′Z

)−1(

1√
T

Z′ε
)

L−→
T→∞

N
[

0, σ2[Σ
′
ZX Σ−1

Z ΣZX ]−1]
. (3.17)

Tests based on this distribution can also be derived. [The details are not presented in this course.]
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