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1. Estimator consistency

Letys,Vo,...be a sequence of observations and

A A

Ot = O71(Y1, Yo,....¥71) (1.1)

an estimator for & x 1 parameter vectdd. We say thaBr is consistent (or weakly consistent) for
6 when

6+ T_p> 9. (1.2)
This is also written: A
plimér =6. (1.3)
T—o
This means that A
TIimP[HQT—GH>£] =0,Ve>0 (1.4)

where||-|| represents the Euclidean distance.
We say thaBr is stronglyconsistent consistent (or weakly consistent) for 8 when

o1 Ta_sx 0, (1.5)
i.e., when
P [TIianGT - e} —1. (1.6)

Itis easy to see that strong consistency entails weak consistency.
We say thaBt is asymptotically unbiased for 8 when
Jim E(Br)=6. (1.7)
In general, a consistent estimator is not necessarily asymptotically unpiasegample when the
estimator does not have a finite mean. Similarly an asymptotically unbiased estimgtootrize

consistent, for example if it unbiased but not consistent. In the followingasition, we give a
general condition under which asymptotic unbiasedness entails congistenc

1.1 Proposition If the estimatoft satisfies

Jim E(Br) =6 (1.8)
and A
lim V(87) =0, (1.9)

thenéT Ti> 0.



2. Congistency of least squaresin linear regression
Let us now consider a linear regression model of the form
y=XB+¢€

wheref is a fixedk x 1 parameter vectoy,ande areT x 1 vectors X is aT x k matrix,

Y1 &1
Y2 &2
y= : , €= . ;
yr €T
X112  X12 X1k
X21  X22 Xok

2.1)

2.2)

Instead of the finite-sample assumptions of the classical linear model, we naKelltdwing

“asymptotic” assumptions:

X’X is nonsingular with probability one for all > k

1

FXX T—p> Sx Where detSx) #0,
1 / P
TR0

1
—ee Po?2>0.
T T—o

Then, we have:

Br = (XX)Xy=B+(X'X)Xe
— B+ (ixx _15x’e—p>ﬁ+z*ozl3
T T 1 X

—00

and the least squares estimator is (weakly) consistent.
Similarly, the “unbiased” least squares estimatoodf

1.
ST = EE

(2.3)
(2.4)
(2.5)

(2.6)

2.7)

(2.8)

(2.9)



whereg = M(X)e = [It — X (X’X) " X']¢, satisfies
1

= ——_gM(X
$ = —— EMXe
_ 1 / v\ 1y
= =[x (%) X
_ 1 / / v\~ 1y
= ﬂ[se—sx(xx) Xs}
T |1, 1, \N /1., \ 11,
— T—k[TSS (TX£> (Txx +Xe (2.10)
where
lee P g2 (2.11)
T T—o ’
1 I ' 1 / - 1 / p 10
so that
S%T_p”’z' (2.13)

In other wordss? is a consistent estimator of.
If furthermore,%x’s satisfies a central limit theorem, namely

1., L 2
FX e — N[0, 03], (2.14)

we have, using (2.7),

-1
VT[Br—B] = v?(iwx) Ixe
1 1
= —X'X —Xe

(p) "%

TL> N[0, 025 Y] . (2.15)
In other words, the distribution oﬁ[ﬁT — B] is approximately normal fof large enough. This
entails that the distributions of theandF statistics can be approximated by the distributions ob-

tained under the assumptions of the Gaussian classical linear model. [fBilse dEthe arguments
to establish asymptotic distributions are not presented in this course.]



3. Instrumental variables

If X ande are asymptotically correlatede.

1
?X/(“: T—>_p>oo 0)(5 ?é 0, (31)
we have
N 1 / - 1 / p -1
Br=B+(7XX) IXe T B+Itoxe#p (3.2)

and the least squares estimator is not consisterf fédternative estimation methods are typically
required to deal with this problem.

The instrumental variables (IV) method is the simplest alternative to leastesqudoen ex-
planatory variables and disturbances are asymptotically correlatedunesital variables can be
defined as variables which are (asymptotically) uncorrelated with the diseetiarm but still cor-
related with the variables iK. More precisely, suppose withTax | matrix Z of variables with the
following properties:

%Z’s Tﬁ; 0, (3.3)

Z'Z andX’'Z are full rank matrices with probability one for &l (3.4)
%z’z P 5, where detsy) #0. (3.5)

%Z’X T—p> Z7x where rank>zx) = k. (3.6)

Assumption (3.3) means thatand e are (asymptotically) uncorrelatethgtrument validity). As-
sumption (3.4) means th&tZ and X’Z are full rank matrices, Assumption (3.5) means they are
not (asymptotically) collinear, while Assumption (2.4) means the variablg<ontain information
about all the variables iK (asymptotically)

Consider now equation (2.1) and multiply both sideszby

Z'y=7'XB +Z'. (3.7)
If we then multiply by, we get:
i, 1, 1,
ZZy= ZZXB+ 7. (3.8)

Consider first the case where the number of instruments is equal to the nofméeplanatory
variables(l = k), so thatZ'X is a square invertible matrix. In view of assumption (3.3), we expect
%Z’s to be close to zero fof large enough. This suggests to estimatey solving the equation

1_, _} /
TZy=ZZXB. (3.9)



which leads to the estimator: .
B=(ZX)"1zy. (3.10)

This estimator is called the 1V estimator Bfbased on the instrume#t(in the case where= k).
It is easy to see tha is consistent fof3 :

B = B+(ZX)Ze
1

-1
1
- B+ (Tz’x> TZe T%Z B+5l0=p (3.11)

It is interesting to note the least squares gstimﬁtoan be viewed as a special case of the IV esti-
mator obtained by taking = X. Of course 3 will be consistent only if the orthogonality condition
(2.5) holds.

Similarly, if we allow the number of instruments to be larger than the number of exiaey
variables(l > k), suppose temporarily th&tis fixed. Then the covariance matrix of the error term
Z'ein (3.7)is:

V(Ze) = E[Ze€'Z]
= ZE(e€)Z=0°ZZ. (3.12)

This suggests to consider the following “generalized least squares” ¢éstima
B=[X2(22)ZX]"™X'2(Z2)"Zy. (3.13)
If | =k, Z'X is a square invertible matrix, so that
B = (ZX)YZ2)(X'2)"X'Z2(Z2)"*Zy
(Z'X)"*Zy (3.14)

reduces to the estimator in (3.10). Bchs also called the IV estimator ¢& based on the instrument
Z (in the general case where> k). Again, it is easy to see thftis consistent fof3 :

B=[XZ(Z2)ZX]"™X'2(Z2)"'Zy
=B+ [X'2(Z22)1ZX]"X'2(Z2)*Z ¢

(32) () (=] ()5 (e

P B4 Sy x| g S 0= B. (3.15)

T—oo

:ﬁ_|_

If furthermore,%z’s satisfies a central limit theorem, namely

1_, 2



we find

ﬁ[BT *B] = ﬁ

() (32) 2o0)] () () "3
() ) 3] (32 32 (29

£ N[0, 0[Sy S5 5] 7Y (3.17)

T—oo

Tests based on this distribution can also be derived. [The details areeseiped in this course.]



