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1. Basic notions

1.1. Probability space
1.1.1 Definition A probability spaces a triplet(2, A, P) where

(1) 12 is the set of all possible results of an experiment;
(2) A is class of subsets 6f (calledeventg forming ac—algebraj.e.

(1) 2 e A,

(i) Aec A= A€ A,

(uii) 'Ole A; € A, for any sequencgA;, A,,..} CTA;
=

(3) P: A — [0, 1] is a function which assigns to each evént A a numberP(A) €
[0, 1], called the probability oA and such that

(1) P(£2) =1,

(4) if {A;}52, is a sequence of disjoint events, th@(vaolAj) = > P(4)).
J= j=1

1.2. Real random variable

1.2.1 Definition (heuristic) A real random variabl& is a variable with real values whose
behavior can be described by a probability distributionudlly, this probability distribu-
tion is described by a distribution function:

Fx(z) =P[X <z. (1.1)
1.2.2 Definition (formal) A real random variabl& is a functionX : {2 — R such that
XY (~o0, 7)) ={weN: X(w) <z} AVrecR.
X is ameasurable functionrhe probability law ofX is defined by

Fx(z) = P[X ((—o00,1])]. (1.2)



1.3. Stochastic process

1.3.1 Definition LetT' be a non-empty set. A stochastic processlois a collection of
r.v./s X, : £2 — R such that to each element T is associatedav. X,;. The process can
be written{ X, : t € T'}. If T' = R (real numbers), we have a process in continuous time.
If T'=Z (integers) ofl’ C 7., we have discrete time process.

The setl’ can be finite or infinite, but usually it is assumed to be indinith the sequel,
we shall be mainly interested by processes for whieha right-infinite interval of integers:
i.e., T = (ng, o0) wheren, € Z orny = —oo. We can also considerv.’s which take their
values in more general spaces,

X, : 02— ()

where (2, is any non-empty set. Unless stated otherwise, we shall bomselves to the
case wherg, = R.

To observe a time series is equivalent to observing a reiizaf a procesg X, : t €
T} or a portion of such a realization: givér, A, P), w € (2 is first drawn and then the
variablesX,(w), t € T, are associated with it. Each realization is determined i siot
by w.

The probability law of a stochastic process, : ¢ € T} whereT' C R can be described
by specifying, for each subsét,, ¢, ... ,t,} C T (wheren > 1), the joint distribution
function of (X;,, ... , X4,) :

F(zy, ooy xp; ty, ooy ty) = PIXy, <1y o, Xy, <@y (1.2)

This follows from Kolmogorov’'s theorem [see Brockwell and\is (1991, Chapter 1)].

1.4. L, spaces

1.4.1 Definition Letr be a real numbell, is the set of real random variabl&s defined
on(S2, A, P) such that’[| X|"] < oc.

The spacd.. is always defined with respect to a probability spa@e.A, P). L, is the
set ofr.v./s on (2, A, P) whose second moments are finisg(are-integrable variabl@s
A stochastic procesgX; : t € T}isin L, iff Xy, € L,,Vt € T, i.e.

E[|X,]"] < o0 ,VteT. (1.1)



The properties of moments ofv.’s are summarized in Dufour (1999b)

2. Stationary processes

In general, the variables of a proceSs; : t € T’} are not identically distributed nor
independent. In particular, if we suppose thdtY?) < oo, we have

B(X) = i, (2.1)

COU(th, Xt2) = E[(Xt1 - :ut1>(Xt2 - Mtg)] - C(tb tQ) . (22)

The means, variances and covariances of the variables pfdlcess depend on their posi-
tion in the series. The behavior &f, can change with time. The functi@an: 7' x 7" — R
is called thecovariance functiomf the procesg X, : t € T'}.

In this section, we will study the case whéras an right-infinite interval of integers.

2.1 Assumption (Process on an interval of integers).

T={teZ:t>ny}, wherenyecZU{—o0}. (2.3)

2.2 Definition (Strictly stationary process) : A stochastic proceXs : t € T'} is strictly
stationary (SS) iff the joint probability law of the vectdrXy, vx, Xi,+ks - 5 Xe,+x) IS
identical with the one ofX;,, X,,, ..., X;,), for any finite subseft,, t5, ... ,t,} C T
and for any integek > 0. To indicate thaf X, : t € T} is SS, we will write{ X, : t €
T} ~SSorX;~SS.

2.3 Proposition If the proces§ X, : t € T'} is SS, then the joint probability law of the
vector(Xy, 11, Xeak, -, Xt 1) IS identical to the one dfX,,, X,, ..., X;,)’, for any
finite subsefty, to, ... ,t,} and any integek > ny — min{ty, ... ,t,}.

2.4 Proposition (Strict stationarity of a process on the integei&)process{ X, : t € 7}
is SS iff the joint probability law of X, ., Xty 1k, --- » X4, 1+1)" IS identical with the law of
(X4, Xiys -, Xy,), for any subsefty, ts, ... ,t,} C Z and any integek.



Supposer(X?) < oo, for anyt € T. If the procesg X, : t € T} is SS, we see easily
that

E(X) = E(X;) ,Vs,t €T, (2.4)
E(XX) = E(XsyxXtyx) ,Vs,t € T)VE > 0. (2.5)
Furthermore, since
COU(Xsa Xt) = E(Xth) - E(XS)E(Xt) ) (26)
we also have
Cov(Xs, Xy) = Cov(Xgip, Xogk) ,Vs,t €T ,VE>0. (2.7)

The conditions (2.4) and (2.5) are equivalent to the coodg(2.4) and (2.7). The mean of
X, Is constant and the covariance between any two variabldgegirocess only depends
on the distance between the variables, but not their pogitithe series.

2.5 Definition (Second-order stationary process). A stochastic progEss t € T} is
second-order stationa(p?2) iff

(1) E(X}) < co,Vt €T,
(2) E(X,) = E(X;),Vs,t €T,
(3) Cov(X,, Xy) = Cov(Xgyp, Xear), Vs, t € T)VE > 0.

If{X,:teT}isS2 wewrite{X,:t€T}~S2o0rX; ~S2.
2.6 Remark Instead ofsecond-order stationarpne also sayweakly stationarfWs).

2.7 Proposition (Relation between strict stationarity and second-orddrastarity). If the
process X, : t € T} is strictly stationary and/(X}?) < oo for anyt € T, then the process
{X: :t € T} is second-order stationary.

2.8 Proposition (Existence of an autocovariance function). If the prode$s: t € T} is
second-order stationary, then there exists a functiod — R such that

Cov(Xs, Xt) =v(t —s),Vs,t€T. (2.8)



The functiony is called theautocovariance functioof the proces$ X, : t € T'} andy(k),
for k given,the lag# autocovarianceof the proces$ X, : t € T'}.

PROOF: Letr € T" any element of. Since the procesgX, : t € T'} is S2, we have, for
anys, t € T such thats < t,

OOU(XraXr-I—t—s) = OOU(XT-I—S—T?XT-I—t—S-I—S—T)

= Cov(Xs, Xy), if s >, (2.9)
Cov(Xs, Xy) = Cov(Xeyr—s, Xewr—s) (2.10)
= Cov(X,, Xyy1—s), ifs<r (2.11)

Further, in the case whese> ¢, we have
COU(X87 Xt) = COU(Xtu Xs) = COU(XM Xr-l—s—t) . (212)

Thus

Cov(Xs, Xy) = Cov( Xy, Xoqpi—s) = Y(t —5) . (2.13)
Q.E.D.

2.9 Proposition (Properties of the autocovariance function). Kef, : t € T} be a
second-order stationary process. The autocovarianceidang k) of the proces§ X; :
t € T} satisfies the following properties:

(1) v(0) =Var(X;) >0, VteT;
(2) v(k) = v(—k) , Vk € Z (i.e., v(k) is an even function of);
(3) [v(k)| <~(0), Vk € Z;

N N
(4) the functionv(k) is positive semi-definitej.e. > > a;a;y(t; —t;) > 0, for
i=1j=1
any positive integetN and for all the vectorss = (ay, ... ,ay) € RY and
T=(ty, .., tn) €TV ;

(5) anyN x N matrix of the form



Yo 1 Yo T IN—

o (2.14)

YN-1 In—2 TIN-3 " Yo

is positive semi-definite, wherg, = (k).

2.10 Proposition (Existence of an autocorrelation function). If the procgXs : t € T'}
is second-order stationary, then there exists a fungtioh — [—1, 1] such that

p(t —s) = Corr(Xs, Xy) =~(t —s)/~v(0) ,Vs, t €T, (2.15)

where0/0 = 1. The functiorp is called theautocorrelation functiowf the proces§X; :
t € T}, andp(k), for k given, thelag-k autocorrelatiorof the proces$ X, : t € T'}.

2.11 Proposition (Properties of the autocorrelation function). Let, : t € T} be a
second-order stationary process. The autocorrelatioctibmp(k) of the proces§ X; :
t € T} satisfies the following properties:

(1) p(0) =
(k) = (k;) Vk € Z;

lp(k)| < 1,Vk € Z;

)
(2)
(3)
(4)

4) the functionp(k) is positive semi-definite,e.

N N
Zzai@jp(ti — ;) >0 (2.16)

i=1 j=1

for any positive integeN and for all the vectora = (a4, ... ,ay) € RY and
T=(ty, .., ty) €TV ;

(5) anyN x N matrix of the form

1 P1 P2 T PN-1
1 p 1 p “t PN-
Ry=—In=|. . T (2.17)
Yo : : : :
PN-1 PN—2 PN-3 ]



is positive semi-definite, wherg, = Var(X;) andp, = p(k) .

2.12 Theorem (Characterization of autocovariance functions) : An everctiony : 7 —
R is positive semi-definite iff/(.) is the autocovariance function of a second-order station-
ary proces§ X, : t € Z}.

PROOF: See Brockwell and Davis (1991, Chapter 2).

2.13 Corollary (Characterization of autocorrelation functions). An efiamctionp : 7. —
[—1, 1] is positive semi-definite iff) is the autocorrelation function of a second-order
stationary processX, : t € Z}.

2.14 Definition (Deterministic process). LétX, : t € T'} be a stochastic proceds, C T
andl; = {X, : s < t}. We say that the proce$, : t € T'} is deterministiconT; iff there
exists a collection of functiongy,(1;—,) : t € T\} such thatX, = ¢,(1,_,) with probability
1,vVtel.

A deterministic process is a process which can be perfeotigipted form its own past
(at points where it is deterministic).

2.15 Proposition (Criterion for a deterministic process). LEX, : t € T} be a second-
order stationary process, whéfe= {t € 7Z : t > ny} andny € Z U {—o0}, and let
v(k) its autocovariance function. If there exists an intelyer> 1 such that the matrix
I'y is singular [wherdy is defined in Propositio.9], then the proces§X, : t € T} is
deterministic fort > no + N — 1. In particular, ifVar(X;) = v(0) = 0, the process is
deterministic fort € T.

For a second-order indeterministic stationary processngn & 7', all the matrices
I'yv, N > 1, are invertible.

2.16 Definition (Stationary of ordefn). Letm be a non-negative integer. A stochastic
procesg X, : t € T'} is stationary of orden iff

(1) E(|Xy|™) <o00,VteT,
and



(2) BIXp X027 X = BIX X X

for anyk > 0, any subseft,, ... ,t,} € T™ and all the non-negative integers, ...
, m, such thatn, + ms + ... +m,, < m.

If m = 1, the mean is constant, but not necessarily the other momknts = 2, the
process is second-order stationary.

2.17 Definition (Asymptotically stationary process of order). Let m a non-negative
integer. A stochastic proce$X, : t € T'} is asymptotically stationary of order iff

(1) there exists an integé¥ such that|X,;|™) < oo, fort > N,
and

. mi mo Mn _ : mi ma2 Mn
(2) tIhE;OE (XX A, X0 A,) = tlhféoE (XXt apn X0 avk)

foranyk > 0, t; € T, all the positive integerd,, As, ..., A, suchthatd, < Az <
. < A,, and all the non-negative integers, ..., m, such thain, + mo, + ... +
m, < m.

3. Some important models
In this section, we will again assume thats a right-infinite interval integers (Assumption

2.1):
T={teZ:t>ny}, whereny € ZU {—o0}. (3.1)

3.1. Noise models

3.1.1 Definition Sequence of independent.’s : process{X; : t € T} such that the
variablesX, are mutually independent. We write

X,:teT} ~INDor{X,} ~ IND; (3.2)
{X;:teT} ~ IND(u,) or E(Xy) = pu; (3.3)

{Xi:t €T} ~ IND(,07),
if E(X;) = p, andVar(X;) = o7. (3.4)



3.1.2 Definition Random sample sequence of independent and identically distributed
(2.0.d.) r.v.s. We write
{X;:teT} ~IID. (3.5)

A random sample is a SS processEIfX?) < oo, for anyt € T, the process is S2. In
this case, we write

{X;:te€T}~ IID(u, 0% , if E(X;) =pandV(X;) = o> (3.6)

3.1.3 Definition White noise sequence af.v.'s in L, of mean zero, of same variance and
mutually uncorrelated, e.

E(X?) < ooVt €T, (3.7)
E(X?) < oo,VteT, (3.8)
E(X})=0o" VteT, (3.9)
Cov(Xs, Xy) =0, if s #t. (3.10)
We write :
{X;:t €T}~ BB(0,0% or{X;} ~ BB(0,0?). (3.11)

3.1.4 Definition Heteroskedastic white noissequence af.v.’s in L, with mean zero and
mutually uncorrelated, i.e.

E(X}) <oo,VteT, (3.12)
E(X;) =0,VteT, (3.13)
Cov(Xy, Xs) =0, if s # ¢, (3.14)
E(X?) =07, VteT. (3.15)
We write:
{X;:t€Z} ~ BB(0,0}) or{X;} ~ BB(0,0}). (3.16)

Each one of these four models will be called@seprocess.

3.2. Harmonic processes

Many time series exhibit apparent periodic behavior. Thiggests one to use periodic
functions to describe them.

3.2.1 Definition A function f(t), t € R, is periodic ofperiod P if

ft+ P) = f(t),Vt.



1
P

3.2.2 Example
sin(t) = sin(t + 27) = sin(t + 27k),Vk € Z.
3.2.3 Example
cos(t) = cos(t + 27m) = cos(t + 27k),Vk € Z.
3.2.4 Example
2 2
sin(vt) = sin |:V (t + —W)} = sin |:l/ (t + Lk)] Vk € Z.
v v
3.2.5 Example

cos(vt) = cos {1/ (t + 21)] = CO0S |:V (t + %)} ,Vk € Z.
v v

Forsin(vt) andcos(vt), the period isP = 27 /v .
3.2.6 Example

f(t) = C cos(vt+60) = C[cos(vt) cos(f) — sin(vt) sin(6)]
= A cos(vt) + B sin(vt)

whereC' >0, A = C cos(f) andB = —C sin 6 . Further,
C=vA2+B?, tan(d)=—-B/A(if C #0).
3.2.7 Definition We call:

C = amplitude;

v = angular mfrequency (radians/time unit);
P = 2n/v = period;
1 . .
vo= o= 21 = frequency (number of cycles per time unit);
s
0 = phase angle (usually< 6 < 2w or — /2 <0 < 7/2).

3.2.8 Example

f(t) = Csin(wt+6)=C cos(vt+0—7/2)

10

is thefrequencyassociated with the function (number of cycles per unitrogj.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)



C'sin(vt) cos() + cos(vt) sin(6)] (3.24)

= A cos(vt) + B sin(vt) (3.25)
where
0 < v<2m, (3.26)
. m
A = Csin(0) =C cos (0 - 5) , (3.27)
. s
B = C cos(d) = —C sin (9 . 5) . (3.28)
Consider the model

Xy = C cos(vt+0) (3.29)
= A cos(vt) + B sin(vt),t € Z. (3.30)

If AandB are constants,
E(X;) = A cos(vt) + B sin(vt), t € Z, (3.31)

and thus the process; is non-stationary (the mean is not constant). Supposefand
B arer.v.'s such that

E(A) = E(B) =0,E(A%) = E(B?) = 0*, E(AB) = 0. (3.32)

A and B do not depend o but are fixed for each realization of the procgds= A(w),
B = B(w)]. In this case,
E(X;) = 0, (3.33)
E(X,X;) = FE(A%) cos(vs)cos(vt) + E(B?)sin(vs)sin(vt)
= o?[cos(vs) cos(vt) + sin(vs) sin(vt)]

= o?cos[y(t —s)|. (3.34)

The processy, is stationary of order 2 with the following autocovariance @autocorrela-
tion functions:
vx (k) = o? cos(vk), px (k) = cos(vk). (3.35)

If we addm cyclic processes of the form (3.29), we obtain a harmonicgss of ordem.

3.2.9 Definition (Harmonic process of orden). We say the processX, : t € T} is a

11



harmonic process of ordert if it can written in the form

X, =) [Ajcos(vyt) + Bysin(v;t)], Wt € T, (3.36)

J=1

wherevy, ... ,v,, are distinct constants in the interv@/ 2).

If we supposed;, B; ,j =1, ... ,m, arer.v.’s in L, such that

E(A;) = E(B;) =0, E(A;%) = E(Bj) = a?,j =1, ....,m, (3.37)
E(AjAr) = FE(BjBy) = 0,pourj # k, (3.38)
E(A;By) = 0,Y5,k, (3.39)

the processX; can be considered second-order stationary:

E(X;) = 0, (3.40)
E(X.X;) = Za? cos[v;(t —s)], (3.41)
j=1
hence .
vx (k) = 03 cos(v;k) | (3.42)
j=1
px(k) = 0% cos(v;k)/> o7 . (3.43)
j=1 i=1
If we add a white noise, to X; in (3.36), we obtain again a second-order stationary psoces
X, = Z[Aj cos(v;t) + Bjsin(vt)] +u, t € T, (3.44)
j=1

where the processy; : t € T} ~ BB(0, 0?) is uncorrelated witi;, B; , j = 1, ... ,m.
In this caseF(X;) = 0 and

vx (k) = ia? cos(v,k) + o0 (k) (3.45)

whered(k) = 1 for k = 0, anddé(k) = 0 otherwise. If a series can be described by an
equation of the form (3.44), we can view it as a realizatiora &gfecond-order stationary

12



process.

3.3. Linear processes

Many stochastic processes with dependence are obtainedraformations of noise
processes.

3.3.1 Definition The proces§ X, : t € T} is an autoregressiyerocessof orderp if it
satisfies and equation of the form

p
Jj=1

where{u, : t € Z} ~ BB(0, o?). In this case, we denote

{Xi:teT} ~ AR(p).
p
Usually,T = Z orT = 7Z, (positive integers). Iy ¢; # 1, we can defing. = i/(1 —
j=1
p
> ;) and write
=1
J ) » )
Xt = Z(ijt_j + ut,Vt S T,
j=1

whereX, = X, — p.

3.3.2 3.3.3 Definition The proces§ X, : t € T'} is a moving averagprocessof order
q if it can written in the form

q
Xp=p+ Y tu;,VteT, (3.47)
=0

where{u, : t € Z} ~ BB(0, ¢%). In this case, we denote

(X, teT}~ MA(q). (3.48)

13



Without loss of generality, we can sgf = 1 andy; = —0;,j =1, ... ,q :
q
Xt :/]—i-ut —Zejut,j ,t eT
j=1
or, equivalently,

q
Xt = Ut — E qut—j
j=1

whereX, = X, — [u.

3.3.4 Definition The proces$ X, : t € T} is anautoregressivenoving-averaggARMA)
process of ordelp, q) if it can be written in the form

p q
Xe=p+> X j+u—» Ou_jVteT, (3.49)

j=1 j=1
where{u, : t € Z} ~ BB(0, ). In this case, we denote

{Xi:teT} ~ARMA(p,q). (3.50)

p
If >, # 1, we can also write
j=1

X; = Z%’Xt—j +ur — Zejut—j (3.51)
~ p
whereX; = X; —pandu = /(1 — > ;).
j=1

3.3.5 Definition The proces$ X, : t € T'} is amoving-average process of infinite order if
it can be written in the form

+o0
Xp=p+ Y tu_;VteL, (3.52)
Jj=—00

where{u, : t € Z} ~ BB(0, %) . We also say thaX, is a weakly linear process. In this

14



case, we denote
{X;:teT} ~ MA(c0). (3.53)

In particular, if; = 0 for j <0, i.e.
Xe=p+ > V€L, (3.54)
=0

we say thatX, is a causal function ai, (causal linear process). [Box and Jenkins (1976)
speak about general linear processes.]

3.3.6 Definition The proces$ X, : t € T'} is an autoregressiygocess of infinite order if
it can be writtenin the form

Xo=p+Y ¢ Xij+u,teT, (3.55)
j=1
where{u, : t € Z} ~ BB(0,c?) . In this case, we denote

{(X,:teT} ~ AR(c0). (3.56)

3.3.7 Remark Generalization: We can generalize the notions defined above by assuming
that{u, : ¢ € Z} is a noise. Unless sated otherwise, we will suppas¢ is a white noise.

3.3.8 QUESTIONS::

1. Under which conditions are the processes defined abotierstey (strictly or in
L.)?

2. Under which conditions are the processiigi(co) or AR(co) well defined (conver-
gent series)?

3. What are the links between the different classes of peesedefined above?

4. When a process is stationary, what are its autocovariandewutocorrelation func-
tions?

15



3.4. Integrated processes

3.4.1 Definition The proces§X; : t € T'} is a random walkf it satisfies anequation of
the form
Xt — Xt,1 = /Ut,vt € T, (357)

where{v, : t € Z} ~ IID. For such a process to be well defined, we must suppose that
ng # —oo (the process ne can startato). If ng = —1, we can write

t
Xt = XQ + Z’Uj (358)
j=1

hence the name “integrated process’Elfy;) = jn or Med(v,) = 1, one often writes
Xt — Xt—l = ,l_,b + Uy (359)

whereu, = v, — p ~ IID and E(u;) = 0 or Med(u;) = 0 (depending on whether
E(u;) =0 o0rMed(u;) = 0). If i # 0, the random walk has drift.

3.4.2 Definition The procesg X, : t € T} is a random walk generated by a white noise
[or an heteroskedastic white noise, or a sequence of indep¢nv.'s] If X, satisfies an
equation of the form

X=Xy =p+uy (3.60)

where{u; : t € T} ~ BB(0, 0?) [or{u; : t € T} ~ BB(0,0?), or{u; : t € T} ~
IND(0)].

3.4.3 Definition The proces§X; : t € T'} isintegratedof orderd if it can be written in
the form
(1-B)X, =27, VteT, (3.61)

where{Z, : t € T} is a stationary process (usually stationary of order 2)d&iga non-
negative integetd = 0, 1, 2, ...). In particular, if{Z; : t € T} is anARMA(p, q)
stationary processX; : t € T} is anARIMA(p, d, q) process {X; : t € T} ~
ARIMA(p, d, q). We note

B Xt - Xt—l y (362)
(1-B)X: = Xi—Xi1, (3.63)
(1-B)’X; = (1-B)(1-B)X;=(1-B)(X; - X; ) (3.64)
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= X;—2X;1 + X0, (3.65)
(1-B)Y¥X, = (1-B)(1-B)*"'X,,d=1,2,.. (3.66)

where(1 — B)? = 1.

3.5. Models of deterministic tendency

3.5.1 Definition The proces$ X, : t € T'} follows a deterministic tendency if it can be
written in the form

wheref(t) is a deterministic function of time anidZ, : t € T} is a noise or a stationary
process.

3.5.2 Important cases of deterministic tendency:

Xt = P+ Pt + u, (3.68)
k
Xi=> Bt +uy, (3.69)
j=0

where{u; : t € T} ~ BB(0,0?).

4. Transformations of stationary processes

4.1 Theorem Let{X, : t € Z} be a stochastic process on the integers, 1 and{a; :

j € Z} a sequence of real numbers. [§_ |a;|E(|X,_,;|")"/" < oo, then, for anyt, the

j=—o0

o0
random series) , a;X;_; converges absolutely.s. and in mean of order to ar.v. Y;
j=—00

such thatt(|Y;|") < oo .
PROOF: See Dufour (1999a).
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4.2 Theorem Let{X, : t € Z} be a second-order stationary process and j € Z} an
sequence of real numbers absolutely convergent sequerea oimbers,.e. ) |a;| <

j=—00

o0
oo. Then the random seried a;X,;_; converges absolutefys. and in mean of order 2
j=—00

toar.w.Y; € Ly, Vt, and the procesgy; : t € Z} is second-order stationary.

PROOF : See Gouriéroux and Monfort (1997, Property 5.6).

4.3 Theorem If {X; : t € Z} be a second-order stationary process with autocovariance
function~  (k), the autocovariance function of the transformed process

Y= Z a;j Xi—j, (4.1)

j=—o00
0 . .
where Y |a;| < oo, is given by
j=—o00

o0

k)= ) magyx(k—i+j). (4.2)

1=—00 j=—00

[ee]
4.4 Theorem The series ) a;X;_; converges absolutelys. for any second-order sta-
j=—o00

tionary proces§ X, : t € Z} iff
> lag| < oo (4.3)

j=—o00

5. Infinite order moving averages

Consider the random series

> Yt €T (5.1)

j=—o0

where{u; : t € Z} ~ BB(0, 0?).
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5.1. Convergence conditions

We can write

D Y=y () ZY )+ 3V (5.2)

Jj=—00 Jj=—00 Jj=—00 J=0

whereY;(t) = ¢ ;u,_; and
EY;(0)) = [l Elluej1] < [,|[E(ui_)]? = |,lo < o0,

(@)
> Y,uq—j is a series of orthogonal variables.

j=—o0

-1
Suppose > v < co. Then

j=—00

[see Dufour (1999a)], and thus

Yin(t) SV () + Y1) > X =Y +YX ()= Y tuey V€ L.

n—o0 j=—00

It is also clear that

Xn(t)EY +Y2 Z¢ iUp— j+z¢ Ut —j % XtE Z@/)jut_j,VtEZ.

j=—-n Jj=—0o0
(5.3)
Thus,

“+00 0
Y Wi <oo= > u; converges in.m. to ar.v. X,

j=—o00 j=—00

[see Dufour (1999a)]. Further

“+oo o]
> wl<oo= > wu._; converges im.m. toaruv. X,

j=—o0 j=—o0
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[see Dufour (1999a)],

i|¢j| < o= iw§<oo

j:—oo jzfoo

o
= > w,u,_; converges in.m. to aX,.

j=—o0

If the variables{u; : ¢t € Z} are mutually independent,

+oo +0o0
> @i <oo= Y tu_;convergesim.s. toarwv. X,
j=—o0 j=—00
[see Dufour (1999a)]. The variablg, is called the limit (ing.m. or a.s.) of the series
> Wjuj, and we write

j=—o0

Xt = Z Qﬂjut,]’.

j=—00
on definingX, = 1 + X,, we obtain the linear process
[e.e]
Xy =p+ Z YU
j=—00

where it is assumed that the series converges.

5.2. Mean, variance and covariances

By (5.3), we have:
B[X.(0)] — B(X)),

E[Xa(1)] — E(X?),

n—oo

E[Xo(t)Xa(t + )] — B(X; Xear):
see Dufour (1999a). Consequently,

E(X) =0, (5.4)
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Var(X,) = E(X]) = lim > ¢30> =0 ) 43,

j=—n j=—00

OOU(Xt, Xt—f—k) = E(Xt Xt-l—k)

(S ()

= Jm 33 i)

i=—nj=—n

= limF

n—od

n—k 0o
Hm > Y 0% =0 30 Vb, if £ >1,

— 1=—n 1=—00

n—oo ,__
Jj=

sincet —i=t+k—j=j5=1i+kandi =j — k. Foranyk € Z, we can write

COU(Xt,XtJrk) = o’ Z ijj-ﬂk"

j=—o0

Corr(Xy, Xesx) = Z Vitism/ Z W7

j=—00 j=—o00
i o0
The series ) | 1%, converges absolutely, for
j=—00

1
2

D Uit

j=—o0

j=—o0

~ +o0

j=—00
E(Xt) =W, CO'U(Xt,Xt+k) = CO'U(Xt,Xt+k).

In the case of a causdl A(oo) process causal, we have

Xe=p + Z%Ut—j
=0

21
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(5.8)
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where{u, : t € Z} ~ BB(0,¢?),

Cov(Xy, Xepr) = 02> by s (5.12)
7=0
Corr(Xe, Xewr) = D st/ D V5 - (5.13)
j=0 j=0

5.3. Stationarity

The process

Xp=p+ Y tu_j te, (5.14)

j=—o0

where{u; : t € Z} ~ BB(0,0%) and Y ¢7 < oo, is second-order stationary, for
j=—00

E(X;) andCov(X};, X;11) do not depend on If we suppose thafu, : t € Z} ~ 11D, with
Elu| < ocoand > w? < oo, the process is strictly stationary.

j=—00

5.4. Operational notation

We can denote the procedsA(oo)

X = p+0(B)uy = p+ ( S ¢ij> w (5.15)

j=—00

wherey(B) = > ;B andB/uy = uy_; .

j==o0

6. Finite order moving averages

6.1 The M A(q) process can be written

q
Xt = U + up — Zé’jut_j (61)

J=1
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whered(B) =1—-6,B — ... —0,B? . This process is a special case of ffiel(co) process
with

¢0 = 17¢]:_0]7f0r1§]§q7
Y, = 0,forj<0orj>gq. (6.2)

6.2 This process is clearly second-order stationary, with

E(X,) = pu, (6.3)
q
V(X)) = o° <1 + Zef.) : (6.4)
j=1
Y(k) = Cov(Xy, Xiwr) =0 Y by (6.5)
j=—00
On definingdy = —1, we then see that

q—k

1K) = o*) O

7=0
q—k
= o® | =0, + Zejej+k]
j=1
= 0[O0k + 0101+ ... +0,40,], for1 <k <gq, (6.6)
v(k) = 0,fork>q+1,
v(=k) = ~(k), fork <O0. (6.7)

The autocorrelation function of, is thus

q—k q
plk) = =0+ 200 | /(1 +2007 | . 1<k<q
j=1 j=1 (6.8)
=0, k>qg+1

The autocorrelations are zero for> ¢ + 1.

6.3 Forg =1,
(6.9)
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hencelp(1)] <0.5.

6.4 Forg=2,
pk) = (=0,4+610,)/(1+62+62), k=1,
=—0/(1+067+63), k=2,
=0, k>3,

hencelp(2)] < 0.5 .

6.5 For anyM A(q) process,
plg) =—6,/(1+ 02 + ... + 92) ,

hencelp(q)| < 0.5.

6.6 There are general constraints on the autocorrelations 8f dKy) process:

|p(F)| < cos(m/{lq/k] +2})

(6.10)

(6.11)

(6.12)

where|z] is the largest integer less than or equattd-rom the latter formula, we see:

forg=1, |p(1)] < cos(r/3) = 0.5,

forg =2, |p(1)| < cos(m/4) = 0.7071,
|p(2)| < cos(m/3) = 0.5,

forq =3, |p(1)] < cos(m/5) = 0.809,
|p(2)] < cos(m/3) = 0.5,
|p(3)] < cos(m/3) = 0.5.

See Chanda (1962), and Kendall, Stuart, and Ord (1983, p. 519

7. Autoregressive processes

7.1 Consider a processX; : t € Z} which satisfies the equation:

p
Xe=0+> ¢;Xej+u,Vt €L,

J=1
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where{u; : t € Z} ~ BB(0, %) . In symbolic notation,
@(B)Xt = ﬂ+ut7t € Z7
wherep(B) =1 — ¢, B — ... —p,B" .

7.2 Stationarity
Consider the process AR(1)

Xi =1 Xio1 +ug, 01 # 0.
If X,isS2,
E(Xy) = ¢ B(Xi1) = 0, B(Xy),

henceF(X;) = 0. By successive substitutions,

X = ol Ximo +ue] +

= U+ orueg + X o
N—-1

= Z‘P{Ut—j +er X

J=0

If we suppose thak, is S2 with £(X?) # 0, we see that

N—o0

N—1 2
E (Xt - Z@{%ﬁj) = QO%NE(Xt{N) = SO%NE(XE) — 0= |901‘ <L
=0

The seriesZgo{uH converges i.m. to X :
j=0
X; = jzoso{m—j =(1-¢B) 'u = =58 "

where .
(1—@B) ' = ¢iB.
§=0
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Since

> Elpluj| <o) |o) = %W <00 (7.9)
j=0 5=0 1
when|p,| < 1, the convergence is alsos. The process(; = igp{ut_j is S2.
When|p,| < 1, the difference equation "
(1 - B)X: =y (7.10)
has a unique stationary solution which can be written
X; = ng{ut_j = (1—,B) 1. (7.11)

The latter is thus a causaf A(~o) process.

This condition is sufficient (but non necessary) for the exise of a unique stationary
solution. The stationarity condition is often expressed#ying that the polynome(z) =
1 — ¢,z has all its roots outside the unit cirdle = 1 :

1
l—pz =08 2, = —, (7.12)
¥1

where|z.| = 1/|¢¢| > 1. In this case, we also havé( X, ,u;) = 0, Vk > 1. The same
conclusion holds if we consider the general process

Xi=ji+p X1 +ug. (7.13)
For theAR(p) process, ,
Xo=p+Y o Xej+u (7.14)
or o~
(B) Xy = fi + w, (7.15)

the stationarity condition is the following :

if the polynomep(z) = 1 — ¢,z — ... — 27 has all its roots outside the unit circle,
the equation (7.14) has one and only one weakly statiindugieq.
(7.16)
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The ordem polynome (=) can be written
0(z) = (1 —G12)(1 — Gaz)...(1 — G,2)

and has the roots
2 =1/Gy, .. 2y = 1/G).

The stationarity condition may then be written:
IGil<1,5=1,...,p
The solution stationary can be written
Xi = @(B)"' i+ o(B) uy = p+ o(B) g

where

p=p/(1— Zsoj),

Jj=1
P

andKy, ... , K, are constants (expansion in partial fractions). Consetyien

o(B)"' = II(1-G,B) IZY (ZG’“B"”)

X, = gL
C= et o
j=1

= p+ Zwkzutfk’ = p+P(B)uy

k=0

p
wherey, = > K;G% . Thus
j=1

E(Xt_jut) == O,VJ Z 1.

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

For the process AR(1) and AR(2), the stationarity condgioan be written as follows.
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(@ ARQ): (1 — ¢y B) Xy = ji+wy
lpe| <1 (7.25)

(b) AR(2): (1 — 1B — 9, B*) Xy = i +

Yy +pp <1 (7.26)
Yy =1 <1 (7.27)
<<l (7.28)

7.3 Mean, variance and autocovariances

Suppose:

p
a) the autoregressive processis second-order stationary with, ¢, # 1

7=1
and (7.29)

b) E(Xt_jut) =0 ,VJ Z 1 y

i.e. we assumeX; is a weakly stationary solution of the equation (7.14) sucht t
E(Xt,jut) == O, VJ 2 1.
By the stationarity assumption,

E(X) =pNt=p=p+Y o;u=EX,)=p=p/ <1 - Z%) (7.30)

j=1

p

For stationarity to hold, it is necessary thaty; # 1. Let us rewrite the process in the
7j=1

form

P
X = Z@th—j +uy (7.31)

j=1
whereX, = X; — ., E(X;) = 0. Then, fork > 0,

p

XtJrk = ngthJrk*j—i_utJrk:; (7.32)

J=1

p
EXir Xi) = > 0, E(Xesn—y Xo) + Euger Xo), (7.33)

J=1
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v(k) = Z%’”Y(k —J) + Eur Xt)a (7.34)

where - )
E(Ut+k Xt) =0, if k= O,
=0, fk>1 (7.35)
Thus
Zgojp — ), k> 1. (7.36)
7j=1

These formulae are called the “Yule-Walker equations”. éfkmowp(0), ..., p(p — 1), we
can easily computg(k) for £ > p+ 1. We can also write the Yule-Walker equations in the
form:

p(B)p(k) =0,k > 1, (7.37)

whereB/p(k) = p(k—j) . To obtainp(1), ..., p(p—1) whenp > 1, itis sufficient to solve
the linear equation system:

p(1) = o1+ @p(l) + ... +p,p(p— 1)
p(2) = @1p(1) + @y + ... +@,p(p —2)

p(p—1) = wip(p—2)+@ap(p —3) + ... +¢,p(1) (7.38)

where we use the identipy(—j) = p(j). The other autocorrelations may then be obtained

by recurrence:
p

p(k) = @;plk —4), k > p. (7.39)

J=1

To computey(0) = Var(X;), we solve the equation

Y(0) = Zcp] )+ E(u, X,)
= Zsoﬂ(j)ﬂ%?, (7.40)
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hence, using(j) = p(5)7(0),

and

7.4 Special cases

1. AR(D): X, = ¢, X1 4+ w

P(l) = ¥

pk) = oplk—=1), k>1
p(2) = @ip(1) =]

p(k) = ol k>1

7(0) = Var(Xf/):l—igo%

These is no constraint gi{(1), but there are constraints @k) for k£ > 2.

2. AR(2): X, = 0, Xio1 + 0, Xi o + g

p(l) = o+ (1)
¥1
= p(l) =1
(1) s
% ©f + @y (1 — )
p(2) = + o, =
I — I —
p(k) = @ip(k — 1)+ pop(k —2),k > 2.

Constraints om(1) andp(2) entailed by stationarity:

()] < L]p(2)] <1
S+ (2

30

(7.41)

(7.42)

(7.43)
(7.44)
(7.45)
(7.46)

(7.47)

(7.48)
(7.49)

(7.50)
(7.51)

(7.52)
(7.53)



see Box and Jenkins (1976, p. 61).

7.5 Explicit form for the autocorrelations

The autocorrelations of adR(p) process satisfy the equation
Z% ), k> 1, (7.54)

wherep(0) = 1 andp(—k) = p(k) , or equivalently
p(B)p(k) =0, k> 1. (7.55)

The autocorrelations can be obtained by solving the honmemgen difference equation
(7.54).
The polynomep(z) hasm distinct non-zero roots;, ... , z* (wherel < m < p) with

multiplicitiespy, ... ,p,, (Where) p; = p), so thaty(z) can be written

o(z) = (1 = G12)P (1 — Go2)P?...(1 — Gpp2)Pm (7.56)

whereG; = 1/z;,j = 1, ... ,m. The roots are real or complex numberszlis a complex
(non real) root, its conjugate; is also a root. Consequently, the solutions of equation
(7.54) have the general form

p(k) = f: (iA M) G¥ k>1, (7.57)

where theA,, are (possibly complex) constants which can be determireed the values
p autocorrelations. We can easily fipdl), ... , p(p) from the Yule-Walker equations.

If we write G; = r;¢%, wherei = /—1 while r; andd; are real numberg; > 0),we
see that

NE

pi—1
p(k) = (ZAJ-@ kg> rielit
=1 \ (=0

J

Ms

(pjz_:Ajg k ) "lcos(8,k) + i sin(6;k)]

j=1
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= f: (jZ_Ajg k£> r;-“ cos(6;k). (7.58)

By stationarity,0 < |G;| = r; < 1 so thatp(k) — 0 whenk — oco. The autocorrelations
decrease at an exponential rate with oscillations.

7.6 M A(co) representation of ad R(p) process

We have seen that a weakly stationary process

p(B) X, = u (7.59)
wherep(B) =1 — ¢, B — ... — ¢, BP, can be written
X, = ¥(B)uy (7.60)
with .
W(B)=(B) ' = Y B’ (7.61)
§=0
To compute the coefficients;, it is sufficient to note that
p(B))(B) = 1. (7.62)

Definingy; = 0 for j < 0, we see that

j=—00 j=—o00 k=1
S (wj . zwkm) B
j=—00 k=1
- i ¥, B! = 1. (7.63)

Thusy; = 1,if j = 0, andy; = 0, if j # 0. Consequently,

p(B)Y; =, — ;%%—k =1,ifj=0 (7.64)
=0, if j #0,
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WhereB%j =1, . Sincey; = 0 for j <0, we see that:
Yy = 1
p
v, = ) ety ed > L (7.65)
k=1

More explicitly,

¢0 = 1,

V1 = @1ty =y,

Yy = o1+ pathy = 90% + ¥,

V3 = @by + @othy + 3 = Spi) +2 901 + 3,

P
v, = Z@k%'—ka
k=1

V4
vy o= D ety i =ptl. (7.66)
k=1

Under the stationarity condition [roots ofz) = 0 outside the unit circle], the coefficients
1, decline at an exponential rate as+ oo, possibly with oscillations.
Given the representation

[ee]

X = (B =3 bu (7.67)

=0

we can easily compute the autocovariances and autocaoredaif X, :

Cov(Xi, Xipr) = 02> b (7.68)
j=0
Corr(Xe, Xewr) = D Utyn/ ) V- (7.69)
j=0 Jj=0

However, this has the inconvenient of requiring one to campmits of series.

7.7 Partial autocorrelations
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The Yule-Walker equations allow one to determine the autetations from the coef-
ficientsyy, ..., ¢,. Inthe same way we can determipg ... , ¢, from the autocorrelations

p
p(k) = @iplk —4),k =1,2,3, . (7.70)
j=1

Taking into account the fact that0) = 1 andp(—k) = p(k), we find anAR(p) process:

1 p(1) p(2)  ...oplp=1) || @& p(1)
1 1 1 —2 2
p(1) p( ) p(p—2) 22| p(_ ) (7.71)
plp—1) plp—2) p(p—3) ... 1 @p p(p)
or, in more compact notation, .
P, ¢, = p,- (7.72)
It follows that B
Pk¢k :pk,k: 1,2,3,... (7.73)
whereg, = (¢11, ©ra» -+ »¢11) » SO that we can solve faf, :
&k = Pk_lpk‘ (7.74)

[If o2 > 0, we can show thaP, ' exists,vk > 1]. For anAR(p) process, we see easily

The coefficientsy,, are called the lagk partial autocorrelations
Particular values op,,, [settingp, = p(k)] :

Y11 = P (7.76)
' L m
P Po Py — Pi
— = , 7.77
Pa2 ) 1 o 1— 22 ( )
pr 1
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L p
P 1 po

Py P1 P
g3 = o (7.78)
I pr py

Lo
pa pr 1

7.8 Durbin-Levinson recurrence formula

The partial autocorrelations may be computed using thewviatlg recursive formulae:

k
p(k+1)— Z:lwkjp(/f+1—j)
=

Pr+1,k+1 = A ] (7.79)
1— leokjp ()
j:
Pr+1,; — Pkj — ¢k+1,k+190k,k_j+1>j =1,2,..,k. (7.80)

Givenp(1), ... ,p(k + 1) andepy, ... , o4, We can compute,, ;, j=1,... ,k+ 1. See
Durbin (1960) and Box and Jenkins (1976, pp. 82-84).

8. Mixed processes
Consider a processX; : t € Z} which satisfies the equation:
p q
Xt = ,l_L + ZQOJ Xt—j + up — Zé’jut_j (81)
j=1 j=1
where{u; : t € Z} ~ BB(0, 0*) . Using operational notation,
P(B)X; = ji+ 0(B)u. (8.2)

8.1 Stationarity conditions

If the polynomep(z) = 1 — ¢,z — ... —¢, 2" has all its roots outside the unit circle, the
equation (8.1) has one and only one weakly stationary swiutvhich can be written:

0 (B)

(
X = — Uy = E U 8.3
"+ ( )u ,u—i—jzozﬁ]u (8.3)
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where

p

po= wle(B)=n/(1-3 ¢,

j=1

W(B)=> ;B
j=0

The coefficients); are obtained by solving the equation

In this case, we also have:
E(Xt_jut) == O,VJ Z 1.

The, coefficients may be computed in the following way (settigg= —1) :

p oo q q
(1 — ngkB’“) (ijBj) =1-) 0, =-) 0,5
k=1 j=0 j=1 j=1

hence ,
=0,72q¢+1,

wherey; = 0, for j < 0. Consequently,
p .
¢j = ngkzﬂ)jfk —0;, 7=0,1,...q
k=1
p
= > ok, Jj=zq+1,
k=1
and

¢0 = ]-7
vy = oy =0 = =01,
ey = ¢1¢1+902¢0_92:¢1¢1+902_92:90%_901914‘902_927

P
v; = Z@kﬂ)jfk?qu_}_l'

k=1
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The ), coefficients behave like the autocorrelations of/aR(p) process, except for the
initial coefficientsy,, ... ,1,.

8.2 Autocovariances and autocorrelations

Suppose:
p
a) the process, is second-order stationary wih, ¢, # 1 ; (8.12)
j=1 -
b) E(Xt,jut) =0 ,VJ Z 1.
By the stationarity assumption,
hence »
p=p Y e (8.14)
j=1
and
p
E(Xy) =p=p/ (1 - Z%) : (8.15)
j=1

The mean is the same as in the case of a gutép) process. Théd/ A(q) part has no effect
on the mean. Let us now rewrite the process in the form

p q
X = Z@th—j +ur — Zejut—j (8.16)
=1 =1

whereX, = X, — . Consequently,

p q
Xk = Z@j Xiph—j + Ut — ZejutJrk:*JV (8.17)
j=1 j=1
E(Xt Xt+k) - Z@jE(Xt Xt+k—j) + E(Xt ut—l—k) - Z‘ng(Xt Ut—l—k—j) 7(8-18)
j=1 j=1
P q
j=1 j=1
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where 3
qu(k) = E(Xt ut-{—k) =0 y |f k Z 1 s
#0, if k<0, (8.20)
qu(o) = E(Xt ut) =02

Fork > q+1,
(k) = iwﬂ(k —J); (8.21)
p(k) = Zi;sojp(k —J)- (8.22)
The variance is given by
(0) = i}@ﬂ(i) +o’ - Zj;@mu(—j) (8.23)
hence
7(0) = [02 — Z;@ﬂm(—j)] / [1 — Zi;sojp(j)] : (8.24)

In operational notation, the autocovariances satisfy thagon
p(B)v(k) = 0(B)v,4u(k)  k =0, (8.25)
wherey(—k) = (k) , B'y(k) = y(k — j) andB’~,, (k) = v,,(k — 7) . In particular,

p(B)y(k) = 0,k>q+1, (8.26)
o(B)p(k) = 0,k>q+1. (8.27)

To compute the autocovariances, we can solve the equa8Bol®)(fork = 0, 1, ... ,p,
and then apply (8.21). The autocorrelations of an proceddAR, ¢) process behave like
those of anA R(p) process, except that initial values are modified.

8.3 Example ARMA(1, 1) process

X = n+ QolXt—l + up — O1us_q , ‘(,01‘ <1 (828)
Xt — ¥ Xt—l = uy — Orusy (8.29)
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whereX, = X, — ;. We have

(0) = ©17(1) +744,(0) = 017,,(—1), (8.30)
and
Yaull) = 0, (8.32)
Tl0) = 0% ) (8.33)
You(—1) = E(Xpuw1) =0 E(Xi1w-1) + E(wu—1) — 01E(u;_,)
= 9017xu(0) - 6102 = (901 - 61)02 (834)
Thus,
70) = @17(1) + 0% = bi(p, — 61)0
= 901'7(1) + [1 - 01(901 - 01)]027 (8.35)
(1) = ©7(0) = b10”
= oi{err() + [1 = 01(py — O1)]0*} — 6107, (8.36)
hence
(1) = {eill = 0i(p, — 01)] — 01}0% /(1 — ])
= {o1 — 010} + 0,07 — 01}0° /(1 — &)
= (1 - ‘91901)(901 - ‘91)02/(1 - 90%) . (8.37)
Similarly,

(0) = wv(1) +[1 = Oi(py — ‘91)]02
(1 =01p1) (1 — 01) o’

= ¥ 1= + 1 —6:1(p, — 01>]02
2
o
= =z {o1(1 = 010,) (0 — 61) + (1 — )1 — O1(0; — 01)]}
1
2
o
= 1_7902 {(10% - 9190? + 90%(9% — @191 +1-— (70% — 61901 + 91(70? + 9% o 90% 9%}
1
o’ ,
= g UTzehir (8.38)
1
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Thus,

70) = (1=2¢,0:+6})0°/(1— ), (8.39)

(1) = (L=0ip1)(py = 01)0%/(1 = 1), (8.40)

v(k) = @v(k—1), fork>2. (8.41)
9. Invertibility

9.1 Any second-order stationaryR(p) process can be written under ahA(oco) form.
Similarly, any second-order stationatyR M A(p, ¢) process can also be written under an
M A(c0) form. By analogy, it is natural to ask the question: canfd(q) or ARM A(p, q)
process be represented in a purely autoregressive form?

9.2 Consider the process MA(1) :
Xt = Ut — 91ut_1,t S Z s (91)
where{u; : t € Z} ~ BB(0, c%)ando? > 0. We see easily that

U = Xt + Hlut_l
= Xy 4+ 01(Xo1 + Orup—s)
= X+ 01X + OFuyo

= ) X+ 0 (9.2)
j=0

and

E = B[O u)’] =600 = 0, (93)

n 2
(Z@{Xt] — Ut>

Jj=0

provided|d, | < 1. Consequently, the seri€s ¢ X,_; converges iny.m. to u if |6, < 1.
§j=0
In other words, whet¥, | < 1, we can write

Y X j=u,tel, (9.4)

J=0
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or
(1 — QIB)_IXt = Ut,t c Z s (95)

where(1 — #,B)~! = >.#/BJ. The condition|d,| < 1 is equivalent to having the roots
j=0
of the equatiorl — A,z = 0 outside the unit circle. 1§, = 1,

X = U — U (9-6)
and the series . .
(1-6:B)'X, = ZH{Xt—j = ZXt—j (9.7)
j=0 j=0
does not converge, f@(Xf_j) does not converge to 0 as— oo. Similarly, if 0, = —1,
Xy = up + (9.8)
and the series .
(1-6,B)' X, = ) (1) X, (9.9)
j=0

does not converge either. These models are not invertible.

9.3 Theorem (Invertibility condition for aM A process) : Le{ X, : t € 7Z) be a second-
order stationary process such that

whered(B) = 1—6,B — ... —0,B9. Then the procesk, satisfies an equation of the form
> 6 X =p+u (9.11)
j=0

iff the roots of the polynomé(z) are outside the unit circle. Further, when the representa-
tion 9.11) exists, we have:

¢(B)=0(B)", p=0(B)"'p=p/ <1 - Zé’j) : (9.12)
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9.4 Corollary (Invertibility of an ARM A process) : Lef X, : t € Z} be a second-order
stationaryARM A process that satisfies the equation

(B)Xy = i+ 0(B)uy (9.13)

wherep(B) =1— B — ... —p,B? andd(B) = 1—-6,B — ... —0,B7. Then the process
X, satisfies an equation of the form

Z¢ Xij= p+ (9.14)

iff the roots du polynomé(z) are outside the unit circle. Further, when the represemtati
(9.14) exists, we have:

&(B) = 0(B) " ¢(B), i = 0(B) i = i/ (1 - Zej) . (9.15)

10. Wold representation

10.1 We have seen that all second-order ARMA processes can btenviit a causal
M A(c0) form. This property indeed holds for all second-order etaiy processes.

10.2 Theorem (Wold) : Let{X,, t € Z} be a second-order stationary process such that
E(X;) = p. ThenX, can be written in the form

Xp=p + Y e+, (10.1)

J=0

where{u, : t € Z} ~ BB(0,0?), Z@Z) < oo, E(wX;_;)=0,Vj>1,and{v; : t € Z}

is a process deterministic such tlﬁ(tut) = 0 andE(usv;) = 0, Vs, t. Further, ifo* > 0,
the sequence);} and{u,} are unique, and

Uy = Xt — P(Xt‘Xt—lu Xt_g, ) (102)

whereX; = X, —
PROOF: See Anderson (1971, Section 7.6.3, pp. 420-421).
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10.3 If E(u?) > 0in Wold representation, we say the proc&sss regular. v, is called the

deterministic component dhe process whil& v ,u,_; is its indeterministic component
=0
Whenuv, = 0, Vt, the process; is said to bestrictly indeterministic

10.4 Corollary (Forward Wold representation) : LétX, : t € Z} be second-order a
Stationary process such thatX,) = u. ThenX, can be written in the form

Xe=p + Z{ﬂjﬂtﬂ' + 0 (10.3)
=0

where{u, : t € Z} ~ BB(0,5?), Z@E? <00, E(u;Xey;) =0,Y5 > 1,and{v, : t € Z}
7=0

is a deterministic (with respect tQ,1, Uy , ... ) Such that(v,) = 0 andE(u,v;) = 0,
Vs, t. Further, ifa* > 0, the sequences);} and{u,} are uniquely defined, and

ﬂt - Xt - P(Xt‘Xt—l—lu Xt+2, ) (104)

whereX, = X; — 1 .

PROOF. The result follows on applying Wold theorem to the procBss X _, quiis also
second-order stationar§).E.D. O

11. Generating functions and spectral density

11.1 Generating functions constitute a convenient technigpeesenting or finding the
autocovariance structure of a stationary process.

11.2 Definition (Generating function) : Leta, : £k = 0, 1, 2, ...) and (b, : k =
..,—1, 0, 1, ...) two sequences of complex numbers. [Kt) C C the set of points
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z € C for which the seriesy_ a;,2* converges, and léD(b) C C the set of points for
k=0

which where the series) | b,2* converges. Then the functions

k=—00
a(z) = Zakzk, z € D(a) (11.2)
k=0
and
b(z) = i brz", 2 € D(b) (11.2)
k=—00

are called the generating functions of the sequeagcesdb;. respectively.

11.3 Proposition (Convergence annulus of a generating function) : (bgt: k € Z) be a
sequence of complex numbers. Then the generating function

o0

a(z) = Z a2’ (11.3)

k=—00

converges foRR;, < |z| < Ry, where

R, = limsupla_|"*, (11.4)
k—o0
Ry, = 1/ {limsup\ak\l/k], (11.5)
k—o0

and diverges fotz| < Ry or|z| > Rs. If Ry < Ry, a(z) converges nowhere and, if
Ry = R, a(z) diverges everywhere except possibly, fdr= R, = R,. Further, when
R, < R», the coefficients,, are uniquely defined, and

o = - /M k=0,+1,42, .. (11.6)

- ; k+1°
211 .. z — ZO)

whereC = {z € C: |z — 2| = R} andR; < R< R, .

11.4 Proposition (Sums and products of generating functions) : (&t : k € 7Z) and
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(bx € Z) two sequences of complex numbers such that the generatietjdosa(z) and
b(z) converge foR; < |z| < Ry, where) < R; < Ry < oo. Then,

(1) the generating function of the sum= ay, + by, iSc(z) = a(z) + b(2);
(2) if the product sequence

de = Y ajb_ (11.7)

j=—00

converges for any, the generating function of the sequeidges

d(z) = a(2)b(2). (11.8)

Further, the seriegz) andd(z) converge fol?, < |z| < Ra.

11.5 We will be especially interested by generating functionsuwatiocovariances, and
autocorrelationg, of a second-order stationary process

Y.(2) = Y met, (11.9)

k=—o00

p.(2) = D pp =7.(2) /- (11.10)
k=—o00
We see immediately that the generating function with a whiese {u; : ¢t € Z} ~
BB(0,0?) is constant::
Yu(2) = 0% p,(2) = 1. (11.12)

11.6 Proposition (Convergence of the generating function of the autocomags): Let
v, k € 7Z, the autocovariances of a second-order stationary processdp,,, k € 7Z, the
corresponding autocorrelations.

(1) If R = limsup|p,|'/* < 1, the generating functions,(z) andp,(z) converge for
k—o0

R < |z| < 1/R.

(2) If R = 1, the functionsy,(z) andp,(z) diverge everywhere, except possibly on the
circle|z| = 1.
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(3) If i lpe] < oo, the functionsy,(z) andp,(z) converge absolutely and uniformly on
k=0

the circle|z| = 1.

11.7 Proposition (Unicity) : Let~, andp,, k € Z, autocovariance and autocorrelation
sequences such that

=) = D= DA (11.12)
k=—oc0 k=—oc0

p(z) = D pdt =D phA (11.13)
k=—0c0 k=—0oc0

where the series considered convergeior. |z| < 1/R, whereR > 0. Thenry, = -} and
pe = p). foranyk € Z.

11.8 Proposition (Generating function of the autocovariances o0f d(oo) process: Let
{X: : t € Z} a second-order stationary process such that

X, = i b (11.14)

j=—o0

where{u, : t € Z} ~ BB(0,0?). If the series

P(z)= Y 2 (11.15)
j=—00
andiy(z~') converge absolutely, then

Te(2) = PP(2)e (7). (11.16)

11.9 Corollary (Generating function of the autocovariances of/diiM A process: Let
{X: : t € Z} a second-order stationary and cau$&IM A(p, q) process, such that

where{u; : t € Z} ~ BB(0,0%),¢(2) =1—pz—...—p,2’ andf(z) =1 -0,z — ... —
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8,2%. Then the generating function of the autocovariances,a

(11.18)

for R < |z| < 1/R, where
0 < R=max{|Gy|,|Gsl,....|G,|} < 1 (11.19)

andGi',G5", ..., G, are the roots of the polynomsz).

11.10 Proposition (Generating function of the autocovariances of a filterextess) : Let
{X; : t € Z} a second-order stationary process and

Yi= ) X tez, (11.20)

j=—o0

[es)
where(c; : j € Z) is a sequence of real constants such that |c;| < co. If the series

J=—00
v.(2) andc(z) = 3 ¢;27 converge absolutely, then

j=—00

Ty(2) = e(2)e(z™)7,(2)- (11.21)

11.11 Definition (Spectral density) : LeK,; a second-order stationary process such that
the generating function of the autocovariangeg:) converge follz| = 1. The spectral
density of the process, is the function

1
fo(w) = o

Yo + ZZ'yk cos(wk)]

k=1

1 [o.¢]
= X + = i cos(wk) (11.22)

2T
k=1

where the coefficients,, are the autocovariances of the proc&ss The functionf,(w) is

defined for all the values of such that the seri€y v, cos(wk) converges.
k=1
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11.12 Remark If the series}_ v, cos(wk) converges, it is immediate that (e~*) con-
k=1

verge and

folw) = —v,(e7) = — Z ek (11.23)

where; = +/—1.

11.13 Proposition (Convergence and properties of the spectral densibet,, k € Z,
be an autocovariance function such that~,.| < oo . Then
k=0

(1) the series

folw) = ;—; + %;% cos(wk) (11.24)

converges absolutely and uniformly.n;
(2) the functionf,(w) is continuous ;
(3) fulw +2m) = fo(w) andf,(~w) = fu(w), Yo ;
(4) o= [ folw) cos(wh)duw, VK ;

(5) fulw) =0,
(6) Yo = ;[‘ﬂ fac("‘))dw :

11.14 Proposition (Spectral densities of special processdset{ X, : t € Z} be a second-
order stationary process with autocovarianggs: € Z.

(D) If Xy =p+ i Yjue_; where{u, : t € Z} ~ BB(0,0%) and 3 |¢;] < oo, then

j=—o00 j=—o00

2

— Jip(e™)[*. (11.25)

folw) = b)) = o
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(2) If o(B)X; = o+ 0(B)u, ,wherep(B) =1— ¢, B— ... —¢,B?, 0(B) =1—-0,8 —
..—0,Band{u; : t € Z} ~ BB(0,0?), then

folw) = o ) (11.26)
3)IfY, = > ¢;Xi_; where(c; : j € Z) is a sequence of real constants such that
j=—00
2. gl < o0, andle\vkl < 00, then
j=—o00
fy(w) = |e(e®)] fo(w). (11.27)

12. Inverse autocorrelations

12.1 Definition (Autocorrelations inverses) : Légt.(w) the spectral density of a second-
order stationary procedsX, : t € Z}. If the functionl/ f.(w) is also a spectral density,
the autocovariances, )(k), k € Z, associated with the inverse spectrum invarsg.(w)
are called thénverse autocovarianced the process(,, i.c.

(I = i ! S(wW w .
~ (k) /f$(w)co(k)d,k€Z. (12.1)

12.2 The inverse autocovariances satisfy the equation

1

(I) (I> 12.2
@) =5 Zooﬂy ) cos(wk) = Z% cos(wk). ( )

The inverse autocorrelations are
pD (k) =~ (k) /48D(0), k € Z. (12.3)

12.3 A sufficient condition for the function/f,(w) to be a spectral density is that the
functionl/ f,(w) be continuous on the intervair < w < 7, which entails thaf, (w) > 0,

49



Yw.

12.4 If the processX; is a second-order stationadyR M A(p, q) process such that

wherep (B) = 1—¢,B — ... —p,B? andd,(B) = 1-0,B — ... —0,B7 are des polynomes
which have all their roots outside the unit circle and : ¢ € Z} ~ BB(0, 02), then
o2 |6, (¢) 2
folw) = — |2 (12.5)
() 27 |, ()
and o,
1 27 |y (€™)
= — . 12.6
7@ o [0,e) (129

The inverse autocovariance¥ )(k) are the autocovariances associated with the model
0,B)X: = p+ ¢,(B)y, (12.7)

where{v, : t € Z} ~ BB(0, 1/0%) andy is some constant. Consequently, the in-
verse autocorrelations of ahRM A(p, q) process behave like the autocorrelations of an
ARM A(q,p). For an processiR(p) process,

pD(k) =0, fork > p. (12.8)

For aM A(q) process, the inverse partial autocorrelatioins the partial autocorrelations
associated with the inverse autocorrelations) are equadrmfork > ¢. These properties
can be used for identifying the order of a process.
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13. Multiplicity of representations

13.1. Backward representation ARMA models

By the backward Wold theorem, we know that any strictly iedetinistic second-order
stationary procesi, : t € Z} can be written in the form

Xo= o+ ) Wi (13.1)
j=0

whereu, is a white noise such that(X,_;u;) = 0,Vj > 1. In particular, if
©p(B) (X — ) = 0,(B)uy (13.2)

where the polynomeg,(B) =1 — ¢, B — ... —p, B and0,(B) =1 - 0,B — ... —0,B1
have all their roots outside the unit circle afd, : ¢t € Z} ~ BB(0, 0?), the spectral

density ofX, is
2

0.2 6 (eiw>
frlw) = — [1-— 13.3
( ) 27T ()Op (ezw) ( )
Consider the process
¢, (B™) -
Vi= et (X —p) = ch(Xt+j — ). (13.4)
0,(B7)
Pour the Propositiofi1.14 the spectral density df; is
; 2
v, (€%) o?
fy(CU) eq (6“‘") f (w) o ( 3 5)
and thus{Y; : t € Z} ~ BB(0, 0?). If we defineu, = Y;, we see that
e, (B
eq (Bfl) (Xt :u) = Uy (136)
or
wp(B™) Xy = i+ 0,(B™ )i, (13.7)
and
(1017)Xt — QDIX,H,l —_ ... — Sprter = ,l] —|— ﬂt — elﬂt+1 — ... — eq/at+q (138)
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where(l — ¢, — ... —¢,)u = . We call (13.6) or (13.8) the backward representation of
the X, process.

13.2. Multiple moving-average representations
Let {X,} ~ARIMA (p,d,q). Then

W, = (1 - B)‘X, ~ ARMA(p,q). (13.9)

If we suppose thak'(IW,) = 0, W, satisfies an equation of the form

0p(B)Wy = 04(B)uy (13.10)
or . (B)

To determine an appropriatéR M A model, one typically estimates the autocorrelations
pi- The latter are uniquely determined by the generating fanaif the autocovariances:

204 (2) 04 (=)

1ole) = Pl = oS 2 (13.12)
i
0(2) =101z — .~ 0,2 = (1~ Hy2).(1 - Hy2) = I (1~ Hyz),  (13.13)
then )
n(e) = (Z)‘;p o (1= Hy2)(1 = Hyz™). (13.14)
However

(1-Hjz)(1—-H;z") = 1—Hjz—H;z ' +H; =H(1—H;'2— H; "2 + H:?)
2 -1 —-1_-1

hence
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= G (13.16)
¢y (2) o, (271)
where
72 = oI H, (13.17)
7j=1
q
0,(z) = j:1(1—H;1z). (13.18)

v.(z) in (13.16) can be viewed as the generating function of a goéthe form

¢, (B)W, = 0, (B)u, = [II (1 — H; ' B)|u (13.19)

Jj=1

while v, (z) in (13.14) is the generating function of

Q»Q

p(B)W; = 0,(B)u; = [II (1 — H;B)Ju,. (13.20)

J=1

The processes (13.19) and (13.20) have the same autocwmafianction and thus cannot
be distinguished by looking at their seconds moments.

13.1 Example
(1-05B)W; =(1-0.2B)(1+0.1B)wy, (13.21)

(1 -0.5B)W, = (1 —5B)(1+ 10B)u, (13.22)
have the same autocorrelation function.

In general, the models

Pp(B)W; = {

Sl
I

(1— H;—LlB)} iy (13.23)

all have the same autocovariance function (and are thustinguishable). Since itis easier
with an invertible model, we select

« ) Hj if
Hj—{Hj—l,if

where|H;| < 1, in order to have an invertible model.

<1
> 17

Hj
H;

(13.24)
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13.3. Redundant parameters
Supposep, (B) andd,(B) have a common factor, s&y(5) :

QOP(B) - G(B>90p1 (B)v QQ(B> = G(B)qu (B) (1325)
Consider the models

ep(B)W: = 04(B)us (13.26)
ep (B)Wr = 04, (B)us. (13.27)

The M A(oco) representations of these two models are

W, = ¢(B)u,, (13.28)
where 6,(B) 0, (B)C(B) 6, (B)
u(p) = s = s = el = wp) (13.29)
and

Wi = o (B)uy. (13.30)

(13.26) and (13.27) have the samfA(oo) representation, hence also the same autoco-
variance generating functions:

Y2(2) = o WY(2)Y(z ) = o™y (2)1hy (271). (13.31)

It is not possible to distinguish a series generated by @)3@m one produced with
(13.27). Among these two models, we will select the simples,0.c. (13.27). Further,
if we tried to estimate (13.26) rather than (13.27), we waukkt singularity problems (in
the covariance matrix of the estimators).
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