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Problem 1 (20 points)

Grading remarks: 5 points each for (a)-(d)
Suppose we have the formal series

o0

> iy

j=—o00

where {u, : t € Z} ~ WN(0,0?). For a fixed ¢, we can in general write

iquutj_ZY_ZYJrZY

J=—00 Jj=—00 Jj=—00

where Y; = 9;us—;. In particular, the dependence of Y; on ¢t has been suppressed in the
notation. Note that E(Y;) = 0, E(Y?) = ¢j0° < oo so that Y; € Ly, and E(Y;Y;) = 0 for
1 7.

(a) Convergence in mean of order 2

Proposition 4.2.6 in Dufour (2008b) implies that if

oo

o> BV = Y (B =0 3 [ 1)

j=—00 j=—00 j=—00

then there exists random variables Y~ and Y such that

0 n
Z Y}m%oo Y77 Z}/Jn—%oo Y

j=—m =0
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We can thus write Y~ =3"____ ¥ and Y+ = ;=1 Yj. Moreover, we have

J
0 n
2 _
)DRTED NERCRRE
j=—m 7=0

Having shown convergence, we are now justified in writing

Y=Y Y=Y dju

j=—o00 j=—00

Remark: what the above has shown is that 3 7% [¢);] < oo is sufficient for the convergence
in mean of order 2 of 7% _ tbju; ;. A different result from Dufour (2008b) (Proposition
4.3.1) gives another sufficient condition

oo>z E[Y?] = o? Z¢<:>Z1/J<oo (2)

j=—00 j=—00 Jj=—00

We note that (1) is a strictly stronger condition than (2): the former implies the latter but
the reverse implication fails. To see that, the convergence of Z;’;_Oo |¢;| implies that there
is N sufficiently large that for |n| > N, we have |¢;| < 1. Then, for n,m > N, we have

—N-1
Z Y2 = Z Y2 + Z VY o
j=—m j=N+1 j=—m
—N-1
< Z v+ Z [+ > Tl
Jj=—N J=N+1 Jj=—m

When we let m,n — oo, absolute summability (i.e. (1)) implies that the second line above
converges, which in turn gives the convergence of E;’;foo %2'- To see that square-summability
doesn’t imply absolute summability, consider

1
Y; =0 V5 <0, %’I; Vi > 1.

Then

i?ﬁ OO%:W—Q whereas ZW]\—Z = +00.

j:—()o : j——OO

(b) Convergence in mean of order r

Following the same approach above and Proposition 4.2.6 (Dufour (2008b)), we may infer
that for » > 1, the condition

00 > Z sl D" = Bl )" Y Wyl <= Y [yl <0 (3)

j=—00 j=—00 j=—00



is sufficient for Z;’i_oo Yjus—; to converge in mean of order r. Of course, here we also need
each u; to be in L,.

For r < 1, we also appeal to Proposition 4.2.6. To be specific, that proposition tells us that
for 3277 ¥jus—; to converge in mean (i.e. in L), it also suffices to have }37° _ |i;| < oo
(and that for each ¢, F(|uy|) is finite but this follows because E(u?) is finite.) But convergence
in L; implies convergence in L, for r < 1, so the same sufficient condition is enough for
> Wju—; to converge in mean of order r < 1.

j=—o0

(c) Almost sure convergence

Proposition 4.2.6 again gives us a sufficient condition

S iyl < oo. (4)

j=—00
Proposition 4.3.1 competes to give another sufficient condition

o) -1

> (log )’} < oo, > (log(—j))*¥; < o0 (5)

=1 j=—o00

We see that (5) does not imply (4). For example, when ¢); = 0 for j < 0 and ¢; = % for
J > 1, we have

> (om0 = 3 1

J=1 J=1 J

< oo and i\wj]:il—)oo.
j=1 =17

(d) Convergence in probability

Since convergence in probability is implied by convergence in mean of order r (r > 0) and
almost sure convergence, each of the conditions (2), (4), and (5) will be sufficient here.

Problem 2 (10 points)

Grading remarks: 5 points each for (a) and (b)
Consider an M A(1) model

Xt:/j“—u,j—eut_l, teZ
where u; ~ WN(0,0?%) and o2 > 0.

(a) The first autocorrelation of this model cannot be greater than 0.5 in absolute value.



Proof. We have

COV(Xt,Xt+1) = E[(ut — Hut_1)<ut+1 — Qut)] = —HE(U?) = —00'2,
Var(X;) = Var(u;) + 0% Var(u,_1) = (1 + 6*)o?.

This implies
COV(Xt,Xt+1) . |9|

(D] = ‘ Var(X;) | 1+6?

which is less than or equal to % because

ol

@Sy & 210 <14+ 6* <= (|| —1)* > 0.

DO | —

(b) Values of the model parameters for which this upper bound is attained.

Answer. As shown in (a), we have

20148 (5~ 1001 ) = ()08~ 1 2 0

which equals 0 iff |§| = 1. That is, when § = %1, the absolute value of the first
autocorrelation equals % O]

Problem 3 (72 points)

Grading remarks: for each process, 3 points each for (a)-(f) and 4 x 18 = 72 points total
Let {X; : t € Z} be an M A(q) process. For ¢ = 3,4,5,6, check whether the following
inequalities are correct:



A general M A(q) process can be written as

q
Xp=p+u+ Y Ouj=p+0(L)u, with 6(L)=1+6,L—.. . +0,L"

t=1

From the lecture notes (Dufour (2008a)), the autocorrelation coefficients can be computed
as follows

plk) = (0 + X0k 03000 ) / (14 X0, 02), 1<k <g
=0, k>q-+1.

In particular, the autocorrelations vanish for £ > ¢ 4+ 1. Moreover, formula (6.12) from the
lecture notes gives us

p(k)] < Blg,k) = cos (m) |

Plotting B(g, k) for various ¢ and k gives

« Big.k) 0.75 — 0.90 « B(g.k) 0.75 — 0.90
0.8f 0.8
0.6} 0.6 )
0.4} o 0.4} -
0.2 0.2
1 2 3 4 5 6 1 2 3 4 5 6
(a) MA(3) (b) MA(4)
« B(g.k) 0.75 — 0.90 « B(g.k) 0.75 — 0.90
08 0.9 °
06l ’ 0.8 .
0.4] o 0.7} ‘
0.2} 0.6
1 2 3 4 5 6 0 T2 T3 S s 6
(c) MA(5) (d) MA(6)

Figure 1: Upperbounds for autocorrelations of some MA processes



MA(3)

From the Figure 1, we know that (b)—(f) must hold, but let’s verify this algebraically. Because
p(k) =0 for k > 4, the inequalities in (d)—(f) hold automatically. For (a)—(c), we write

01+ 0,10, + 6,05

1) =
p(1) 14602 + 62+ 62
0y + 6105
2) =
S S
0
p(3) >

TP TR12

From these, (c¢) holds because
1
2005| <1+0;<1+07+05+ 0, = |p3)] < 5 < 0.90.
In a similar manner, we can use the inequality 2ab < a? + b* to infer
2 92 2 1

So (b) indeed holds. As the figure suggest however, (a) can fail. And it does when we set
01:92:03:0:%sothat

o(1+20) 24 24
DA S . B
P =5 =31 73 =01

MA(4)

Again, Figure 1 says that (b)—(f) are true whereas (a) may fail. For (e)—(f), the implications
are immediate because p(5) = p(6) = 0. For the rest, we write

01+ 0105 + 0205 + 030,

m”“l+9%+%+ﬂ§+%’
p(2) = O + 0105 + 050,
1+ 602+ 603402+ 62’
o(3) = 03 + 010,
1467 +05+63+ 67
2

4) = .
Pt 1+ 6% + 034 05 + 03

Because |04 < (1 + 67), it’s obvious that [p(4)] < 3 < 0.90. Similarly, [63] < (1 + 63) and
161]164] < 2(67 + 6%) imply that |p(3)] < & < 0.90. To prove [p(2)] < 0.90 we can assume
WLOG that 6, > 0 so that [p(2)] < 0.90 is equivalent to

9 + 96?2 + 962 4 962 4 962 > 100, + 100,05 + 10020,



Noting that 967 + 902 — 100,05 = (26)* + (26,)* + 5(6; — 63)?, we only need to prove
9+ 905 + 967 > 100 + 1060,. (%)

We can treat (x) as an inequality for 6, equals some fixed y > 0 and while 6, = 2 > 0 is
allowed to vary. That is, () follows if we can show that

9+ 92% 4+ 9y* > 10z + 10zy = (10 + 10y)z ()

for all x,y > 0. With y > 0 fixed, the LHS above is convex in x whereas the RHS is linear.
The derivative (w.r.t. to =) of the RHS is 10 + 10y whereas the derivative of the LHS is 18z
which equals 9 4+ 10y when z = 3(1 + y). At this value of z, (x*) is equivalent to

81 + 81y* 4+ 25(y + 1) > 50(y + 1)* <= 0 < 56y — 50y + 56

which is true because 56y% — 50y + 56 = 31y* + 31 + 25(y — 1)2. Due to the convexity
observation from the previous paragraph, that the inequality holds for z = 8(1 + y) is
enough for (%) to hold for all x > 0 given y is fixed. As y is arbitrary, (x*) and, thus, (x)
must hold generally. In other words, |p(2)| < % is true.

Finally, (a) fails when we set 6; = 0 = 03 = 64 = 0 so that

0+362 232 210
A Y £

1) = 7
Pl =175 = %81~ 280

M A(5)

Figure 1 says that (b)—(f) are true while (a) may fail. p(6) = 0 so (f) is immediate. For
(a)—(e), we write

0y + 0105 + 0205 + 030, + 0,05

pl1) = 1+602+603+63+67+0602 7
p(2) = O + 0105 + 020, + 0505

1+ 07+ 65+ 035+ 07 + 0%
o(3) = O3 + 0,16, + 0205

1+607+ 635+ 03+ 67+ 0%
o(4) = 0y + 0,05

1+607 + 03+ 03+ 03+ 62
p(5) %

BN N RN

Using the same techniques as above, we can again show that |p(3)], |p(4)], and |p(5)] are less
than or equal to % < 0.90. The autocorrelation of order 1 p(1) can exceed 0.75 in absolute
value: when 6, =0y =05 =0, =05 =0 = %, we have
0+467 6

== > 0.75.

1N = ——
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As with the M A(4) case, p(2) poses a more challenging problem. The algebra seems intimi-
dating so we settle with formula (6.12) from Dufour (2008a):

1
= —<0.9.
V2

q=5,k=2

p(2)] < cos (

i)

M A(6)

We get no free lunch with this one as none of the correlation is 0. The standard formulas
give

01+ 0105 + 0305 + 030, + 0405 + 0506

plL) = 1+674+03+605+07+62+06;
o(2) = 0y + 0105 + 0204 + 0305 + 0406
1+62+02+63+07+62+060%
p(3) = ot 010t 05 + 6a0
1+624+02+63460%+602+62
o) = 01 + 0105 + 0206
1+624+02+63460%+062+62
p(5) = LA
14607+ 05+ 05+ 03 + 602 + 65
0(6) "

T I+ P+ R 2+ 0+ 202

A quick glance gives [p(4)], [p(5)| and |p(6)| are no more than 3 < 0.9. To find the counter
example for p(1), we set 6; = ... =05 = 6 = £ to obtain

530030 _ g
14662 409 T 480

lp(D)]

The algebra for p(2) and p(3) looks scary so we again use (6.12) from Dufour (2008a):

Ip(2)] < cos (W) - = i(l +/5) < 0.9.
T 1
1p(3)| < cos <W> o =5 < 0.9.

Problem 4 (300 points)

Grading remarks: for each process, 2 points for (a), 2 points for (b), 7 (1+ 4+ 2) points for
(c), 8 points for (d), 5 points for (e), 2 points for (f), 5 (2+ 3) points for (g), 4 points for
(h), and so 6 x 30 = 180 points total



Some general results for ARMA(p,q) (p, q finite)

For some finite and positive integers p and ¢, we consider a process {X; : t € Z} which
satisfies the equation

p q
Xe =i+ Y @iXey+ui— ) Oty (6)
P =1

where {u, : t € Z} is a homoskedastic white noise with common variance 0. Using op-

erational notation, we can define p(B) = 1 — 37, ;B and 0(B) = 1 — > 7_, 6;B7 and
write

o(B)X, = 1 + 0(B)u,. (7)

(1) Stationarity condition: if the polynomial p(2) = 1 — p12 — ... — ¢,2? has all its
roots outside the unit circle, the equation (6) has one and only one weakly stationary
solution, which can be written

Xy =p+[pB) 0(B)uy = p+ Y tju; (8)
=0
where
= g H
p(B)  1- 5:1%7
0(B) _ 5y = =

(2) The 1; coefficients are obtained by solving the equation ¢(B)y(b) = 0(B):

(1 = i gokBk) (i ¢jBf'> =1- ieij (9)

and comparing powers of B’s on both sides. For examples, (below we define 6y = —1)
1/]0 = _90 = 17
1 — 1 = —b,

Py — 1P — g = —0s,

J
¢j_Z@k¢j—k:—Qj, (j=0,1,...,9)
k=1

If we define 1p; = 0 for j < O then the last line above can be rewritten as 1); —
r_ ek = —b6; for j = 0,...,q. For j > ¢, things get slightly trickier. The

9



advantage of this re-expression is that for j > ¢, we can also write ¢; — >} _, @stbj_k =

0.

Thus, a convenient algorithm for solving for ¢, is that:
(1) define ¢—p = I/J_(p_l) = ...= 1/}_1 = O,
(ii) for j =0,1,...,¢q, recursively compute ©; = —0; + > 7 _, @i,

(iii) for j > ¢, continue the recursion ¢; = > "7 _; k-

Invertibility: If the ARMA process (7) is second-order stationary, then the process
{X.} satisfies an equation of the form

e ~
Z ;i Xi—j = b+
=0

iff the roots of the polynomial §(B) are outside the unit circle. Further, when the
representation above exists, we have

—ﬂ .

1->1 .0,

j=1

¢(B) =0(B)"o(B), fi=0(B)"i=

In particular, any stationary AR(p) process is invertible. Note that invertibility is
actually a separate concept from stationarity. In Box et al. (2008), a linear process X; =
Y02 pjarj is invertible if 3077 |7;] < oo, where 7(B) = ¢~ 1(B) = 1-372, m; B/,

Autocovariances and autocorrelations: Suppose that

(i) the polynomial ¢(z) has is roots outside the unit circle and the process X; the
unique stationary solution to ¢(B)X; = @ + 0(B)u,

(i) E(Xi—juy) =0 for all j > 1.

By the stationarity assumption, F(X;) = p for some p and for all ¢. This u satisfies

i

ILL:E(Xt),Vt - ‘P(B)N:E[%O(B)Xt]:a — K= 1—SP 90.'
j=1 %7

Now, let us define Y; = X; — p so that E(Y;) = 0 and ¢(B)Y; = 0(B)u,. It follows that
for k>0

P q
Yigp = Z 0 Yerh—j + Uppr, — Z Ot r—j,
=1 =1
P q
= EYYiu] =Y @ EViYirk ] + ENowi] = Y 0, E[Yupj],

J=1 J=1

10



which implies

p q
V() =D ey =5) = > 0ivaulk — j) (10)
j=1 j=1
where ‘r
0 1 > ]
%cu(k) = E(Y;fut-&-k) = { o2 if k ; 0

and 7., (k) # 0 in general for £ < 0. That is, for 1 < k < g,

Veu(—k) = E(Yiuir)
P q
<Z Yij+u — Z ejut—j) Ut—k]
j=1 J=1

p
= Yeul—k +j) = k0™,

Jj=1

=F

As j in the last line above is strictly positive, —k+j > —k so that ., can be computed
backwards recursively. Once we have found ~,,, we can solve (10) and

7(0) = Z pi7(j) +0* - Z 0 Vau(—7)

for 4(0),v(1),...,7v(p) in terms of the ARMA coefficients. Then for k > p, y(k) can
be computed using (10). Finally, the autocorrelation p(0) is simply %.
(e) Partial autocorrelations: the partial autocorrelation of order k, denoted by ¢(k), is

computed as follows: first, we define

p(1) p(k—=2) p(k—1) p(1)
p(1) 1 o plk=3) p(k—2) p(2)

O (k) = : : - : : : . (11)
p(k—2) p(k—3) p(1) p(k—1)
pk—=1) p(k—2) . p(1) 1 p(k)

Then, ¢(k) is just the k-th entry of ®(k).

The AR(1) process X; = 0.5X; 1 + u;
Write this as (1 — ¢1)X; = @ + u; where ¢; = 0.5 and 4 = 0. Here, u; ~ N(0,0?) where

c=1.

11



(a) The process is stationary because ¢(z) = 1 — 0.5z has root z = 2 which is outside the
unit circle.

(b) The process is invertible, as is any other AR(p) process for some finite p.

(c) () BE(X) =15 =145=0,

~ 1-¢1  1-05

(ii) Using formulae (7.47) and (7.46) from Dufour (2008a), we have

o? 1 4
4
_ .k _
v(k) = pi7(0) = o3
(iii) The autocorrelations are
1
p0) =1, plk) =1 =5

(d) We can plot p(k) for k=0,...,8:

0.8~ 4

0.6 —

0.2- T~

(e) Write M A(co) representation as X; = ¢(B)u; where ¢(B) = ¢(B)~" = Y372 ¢; B’

Because
— 1 B 232 233 2B4 L
-0 B B2 U= 2R = e a2 P R pl 270 = S R

we have

1/J0 = 1a

P = @1 = 0.5;

Yo = go% = 0.25;

5 = o = 0.125;

Yy = o] = 0.0625.

12



(f) With 9(z) = —-— as defined above, then

1—p12

Ye(2) = *P(2)(z7)

2

T (- )1 — )
1

T (1-052)(1-05/z)

B 4z .

T (2-2)(22—-1)

(g) By Proposition 11.14 from Dufour (2008a), we have

2

Falw) = =1 (exp(iw))(exp(—iw))

2m
o? 1
27 (1= gy exp(iw)) (1 — g exp(—iw))
1
- 271 — 0.5 exp(iw)][1 — 0.5 exp(—iw)]
2

- (5 — 4cos(w))

Plotting it yields:

13



The AR(1) process X; = 10 — 0.75X;_; + u,

Write this as (1 — 1) X; = @ + u; where ¢ = —0.75 and % = 10. Here, u; ~ N(0,0?) where
o=1.

(a) The process is stationary because (z) = 14 0.75z has root z = —3 which is outside
the unit circle.

(b) The process is invertible, as is any other AR(p) process for some finite p.

(© () B(X)= o = 10 _ 1w

~ 10 140.75 — 7

(ii) Using formulae (7.47) and (7.46) from Dufour (2008a), we have

o? 16

~(0) = Var(X;) =z 7
k (—3)"16
(k) = 17(0) = -

(iii) The autocorrelations are

(d) We can plot p(k) for k=0,...,8:

(e) Write M A(oo) representation as X; = ¢(B)u; where ¥(B) = ¢(B)™" = > ;B
Because

=1 B 2B2 233 234
—1_9013 B2 T = 2R = R a2 V= R pl 270 = e e

14



we have

Yo =1,

1?12901—_?3;
1/12:%0% 1%;
¢3_90i)__6—i7;
¢4_80411:%-

(f) With ¥(z) = 1—1012 as defined above, then
Yo(2) = " P(2)P(27)

0.2

(1 =p12)(1 = p1271)
B 16z
124252 + 1222

(g) By Proposition 11.14 from Dufour (2008a), we have
o? . .
falw) = o—h(exp(iw))(exp(—iw))
1

0_2

~or (1—¢ exp(iw))l(l — @1 exp(—iw))
~ 271+ 0.75 exp(iw)][1 + 0.75 exp(—iw)]
1

~ 7(3.125 + 3cos(w))
Plotting it yields:

15



(h) Using the formula (11) four times, we get

The AR(2) process X; =10+ X, 1 — X, +

Write this as
2 _ 7 _1
(1 =1 B — p2B*) Xy = i + uy, =1 2T

As before, u; ~ N(0,0?) with o = 1.

(a) Stationarity holds because 1 — 2z — 2% have 2 complex roots that both are outside
the unit circle.

(b) Invertibility is immediate because this is an AR(2) process.
(c) Using the formulas (7.49-51) from Dufour (2008a), we have:
(i> 1*50[3*%02 = 20;

(iii)

p(0) =1;

o) = 2=

o(2) = ¥t +1902_(102— pa) _ %’

p(3) = p1p(2) + p2p(1) = ﬁ,
o(4) = p1p(3) + p2p(2) = o
p(5) = p10() + @2p(3) = 5ok
(6) = o10(5) + papld) = 5200
(1) = 1p(6) + p29(3) = 5o
p(8) = e1p(T) + 20(6) = gt

In general, for k£ > 3, we have p(k) = p1p(k — 1) + @ap(k — 2) and for k£ < 0,
p(k) = p(=Fk).

16



(ii) Using formula (7.42) from Dufour (2008a), we have
o? 30
’y O = = —
O=1 p1p(1) —pop(2) 19

For general k, we can easily compute v(k) = p(k)v(0) where p(k) is given above.

(d) Plotting p(k) for k =0,...,8 yields

R SR S S
(e) We have

o =1;

Y1 =1 = 1—70;

e =i+ 2= %;

VY3 = p1the + pathy = %3

Ys = P13 + pathe = %

(f) The autocovariance function is
Ya(2) = o*P(2)P(z7)
where 1(z) = ¢(z)!. In our particular case, the algebra simplifies to

(2) = 10022
TRV T 10— 72 1 222)(2 — 72 + 1022)

0_2

27[1 — 1 exp(iw) — @9 exp(2iw)][1 — @1 exp(—iw) — @9 exp(—2iw)] '

folw) =

17



()
7 7

The M A(2) process X; = 10 + u; — 0.75u;_1 + 0.125u;_»
Write this as

3
Xe=p+u — b1 —bhupo, p=10, 01 = 7 b, = 3

(a) Stationarity is automatic for all finite-order M A processes.

(b) This MA(2) process is invertible because 6(z) = 1 — 612 — 6522 has 2 roots 2 and 4
that both are outside the unit circle.

(c) We have:

(i) E(X:) =p=10,
(ii) We have

7(0) = Var(X,) = o?(1 4+ 62 + 62) = %
2 o1

(1) = (=01 + 6162) = -,

1(2) = o*(-0) = .

108) =) =+ =1(8) =0

18



(iii) It follows that

p(0) =1;
(1) 54

P(l) = W = _ﬁv
_1(@2) _ 8

p(2) = ~(0) ~ 101

p(3) =p(4)=--=p(8) =0

(d) Plotting p(k) for k =0,...,8 yields

(e) We have
¢0 = 17
3
¢1 - _01 = _Za
1
¢2 = _92 = g')
¢3 ;
Py =0

(f) The autocovariance generating function is

Yo(2) = a*(2)9(1/7)
=0*(1 =012 — 0223 (1 — 01 /2 — 05/ 27)
(8 — 62 + 22)(1 — 62 + 82?)

6422

19



(g) The spectral density is

o2 . .
) = Tofe)u(e™)
101 — 108 cos(w) + 16 cos(2w)
B 1287 '

(h) We have

o4 68 792 208

The ARMA(1,1) process X; = 0.5X; 1 + u; — 0.25u; 4
Write this as
(]_ — QDIB)Xt =u-+ (]_ — QlB)Ut
where @ = 0, ¢; = 0.5, 6; = 0.25 and u; ~ N(0, 0?) with 02 = 1.
(a) Stationary: yes because 1 — ¢z has a single root outside the unit circle.
(b) Invertible: yes because 1 — f;z has a single root outside the unit circle.
(c) We have:
(ii) We use formulas (8.39)—(8.41) from Dufour (2008a):

2 13

— (1= 2p10; + 03)——; = =
7(0) = ( p1th + 1)1_@%

o? 7

1)=(1-26 -0 = —

Y(1) = ( 191) (1 1)1_@% o1’

and (k) = p1y(k —1) = @7 '(1) for k > 2.
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(iii) We have

@) 1 =2p+ 67T
P =0 T U= tron) (e —6) 26

and p(k) = p1p(k — 1) = @ 'p(1) for k > 2.

(d) Plotting p(0), ..., p(8) yields

1.0m

(e) We have
¢0 = 15
1
Yr=p1— 01 = 1
Uy = 191 = %
1
VY3 = p1ihe = 16
1
Yy = 113 = 39
" 0(2)0(z71)  4— 172+ 422
o)) 4a—liz+4z _
Vel2) =0 o(2)p(z71) 8 —20z + 822
(&)

_ 02 Olexp(iw)]0[exp(—iw)] _ 17— 8cos(w)
27 plexp(iw)]plexp(—iw)]  2m(20 — 16 cos(w))
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6(1) = o
5(2) = g
63) = e,
o) = o

The ARMA(1,1) process X; = 0.5X;_1 + u; — 0.5u;4

This is the white noise process in disguise. So it is stationary and invertible. v(0) = 1 and
v(k) = 0 for k # 0. Similarly, p(0) = 1 and p(k) = 0 for k& # 0. Plotting p(0),...,p(8) is
trivial:
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We have ¢y = 1 and ¢, = 0 for £ > 1. The autocovariance generating function is just

Y2(z) = 1 whereas the spectral density is the constant f,(w) = 5. Plotting the latter is

2
trivial as well:

(=]
Pa
e

(=]
[X]
©a

Finally, ¢(1) = - - = ¢(4) = 0 because the white noise can be seen as an AR(0) process.
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