Université de Montréal ECN 6238 Économétrie des séries chronologiques Examen final

Aucune documentation permise Calculatrice permise Durée : 3 heures

10 points

1. Discutez les conditions de convergence de la série

$$\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$$

où $\{u_t: t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$. En particulier,

- (a) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converge en moyenne d'ordre 2;
- (b) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converge en moyenne d'ordre r>0;
- (c) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converge presque sûrement;
- (d) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converge en probabilité.

20 points

2. Soit $(X_t : t \in \mathbb{Z})$ un processus ARMA(1,1) satisfaisant l'équation

$$X_t - \varphi X_{t-1} = u_t + \theta u_{t-1}, \ u_t \sim BB(0, \ \sigma^2),$$

où $|\varphi| < 1$ et $|\theta| < 1$.

- (a) Déterminez les coefficients ψ_j de la représentation $\mathrm{MA}(\infty)$ de X_t .
- (b) Déterminez la fonction d'autocorrélation de X_t .
- (c) Donnez la densité spectrale de X_t .
- (d) Si $\varphi=0.5$, $\theta=0.5$, $X_{10}=1.0$, $u_{10}=0.5$ et $X_t=u_t=0$ pour $t\leq 9$, donnez des prévisions optimales (au sens de l'erreur quadratique moyenne) pour X_{11} et X_{12} .

15 points

3. Considérez le modèle décrit par les hypothèses suivantes :

(1)
$$Y_t = \mu_0 + \sum_{j=1}^p \varphi_j Y_{t-j} + u_t$$
, $t = p+1, \dots, T$;
(2) $\{u_t : t = 1, \dots, T\} \sim IID(0, \sigma^2)$;

- (3) le polynôme $\varphi(z)=1-\varphi_1z-\varphi_1z^2-\cdots-\varphi_pz^p$ a toutes ses racines sur le cercle unité sauf possiblement une qui peut être égale à 1.

Décrivez une procédure qui permet de tester l'hypothèse que le polynôme $\varphi(z)$ a une racine sur le cercle unité.

15 points

- 4. Fonctions de transfert
 - (a) Décrivez ce qu'est un modèle de fonction de transfert dans l'analyse des séries chronologiques.
 - (b) Décrivez brièvement comment fonctionne, pour un modèle de fonction de transfert, la méthode d'identification de Box et Jenkins.
 - (c) Décrivez brièvement comment fonctionne, pour un modèle de fonction de transfert, la méthode d'identification de Haugh et Box.

40 points

- 5. Soit $\{(X_t, Y_t) : t \in \mathbb{Z}\}$ un processus stationnaire au sens large strictement non déterministe.
 - (a) Que veut-on dire par l'expression "stationnaire au sens large"?
 - (b) Qu'implique le théorème de Wold multivarié pour ce processus ?
 - (c) Que veut dire l'expression "strictement non déterministe"?
 - (d) Expliquez les expressions suivantes :
 - i. X cause Y;
 - ii. Y cause X instantanément;
 - iii. il y a rétroaction entre X et Y.
 - (e) Si on dit que (X_t, Y_t) suit un processus ARMA, qu'est-ce que cela signifie?
 - (f) En supposant que (X_t, Y_t) possède une représentation autorégressive, donnez une caractérisation de la relation $X \nrightarrow Y$:
 - i. à partir de la représentation autorégressive du processus (X_t, Y_t) ;
 - ii. à partir de la représentation moyenne mobile du processus (X_t, Y_t) ;
 - iii. à partir des représentation univariées des processus X_t et Y_t .
 - (g) Décrivez une méthode permettant de tester l'hypothèse que les processus X et Y sont indépendant entre eux.
 - (h) Décrivez une méthode permettant de tester l'hypothèse que X cause Y au sens de Granger.