
Specification errors in linear regression models∗

Jean-Marie Dufour†

McGill University

First version: February 2002
Revised: December 2011

This version: December 2011
Compiled: December 9, 2011, 22:34

∗This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), a Guggen-
heim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [pro-
gram onMathematics of Information Technology and Complex Systems (MITACS)], the Natural Sciences and Engineering Research Councilof Canada, the
Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).

† William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Cen-
tre interuniversitaire de recherche en économie quantitative (CIREQ).Mailing address: Department of Economics, McGill University, Leacock Build-
ing, Room 519, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514 398 8879; FAX: (1) 514 398 4938; e-mail: jean-
marie.dufour@mcgill.ca . Web page: http://www.jeanmariedufour.com



Contents

1. Classification of specification errors 1

2. Incorrect regression function 3
2.1. The problem of incorrect regression function. . . . . . . . . . 3
2.2. Estimation of regression coefficients. . . . . . . . . . . . . . . 4

2.2.1. The case of one missing explanatory variable. . . . . . 4
2.2.2. Estimation of the mean from a misspecified regression

model . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Estimation of the error variance. . . . . . . . . . . . . . . . . 9

3. Error mean different from zero 11

4. Incorrect error covariance matrix 13

5. Stochastic regressors 14

i



1. Classification of specification errors

The classical linear model is defined by the following assumptions.

1.1 Assumption y = Xβ + ε
wherey is aT ×1 vector of observations on a dependent variable ,
X is aT × k matrix of observations on explanatory variables,
β is ak×1 vector of fixed parameters,
ε is aT ×1 vector of random disturbances.

1.2 Assumption E(ε) = 0 .

1.3 Assumption E
(

εε ′
)

= σ2IT .

1.4 Assumption X is fixed (non-stochastic).

1.5 Assumption rank(X) = k < T .

To these, the assumption of error normality is often added.

1.6 Assumption ε follows a multinormal distribution.

An important problem in econometrics consists in studying whathappens when
one or several of these assumptions fail. Important failures include the following
ones.

1. Incorrect regression – The linear regression model entails that

E(y) = Xβ = x1β 1+ x2β 2+ · · ·+ xkβ k . (1.1)

Here we suppose that:
a) x1, x2, . . . , xk are the correct explanatory variables;
b) the relationship is linear.
Suppose now we estimate

y = Zγ + ε (1.2)
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instead of (1.1). What are the consequences on estimation and statistical in-
ference?

2. The error vectorε does not have mean zero:

E(ε) 6= 0. (1.3)

3. Incorrect covariance matrix – The covariance matrix ofε is not equal toσ2IT :

E [εε ′] = Ω (1.4)

whereΩ is a positive semidefinite matrix.

4. Non-normality – The error vectorε does not follow a multinormal distribu-
tion.

5. Multicollinearity – The matrixX does not have full column rank:

rank(X) < k . (1.5)

6. Stochastic regressors – The matrixX is not fixed.
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2. Incorrect regression function

2.1. The problem of incorrect regression function

Let us suppose the “true model” is:

y = Xβ + ε (2.1)

where the assumptions of the classical linear model (1.1) - (1.5) are satisfied.
However, we estimate instead the model

y = Zγ + ε (2.2)

whereZ is aT ×G fixed matrix. Then the least squares estimator ofγ is:

γ̂ = (Z′Z)
−1Z′y

= (Z′Z)−1Z′(Xβ + ε)

= (Z′Z)−1Z′Xβ +(Z′Z)−1Z′ε (2.3)

and the expected value ofγ̂ is

E(γ̂) = (Z′Z)−1ZXβ = Pβ (2.4)

whereP = (Z′Z)−1Z′X . In general,

E(γ̂) 6= β (2.5)

so thatγ̂ is not an unbiased estimator ofβ . Usual tests and confidence intervals
are not valid.
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2.2. Estimation of regression coefficients

2.2.1. The case of one missing explanatory variable

We will now study the case where a variable has been left out of theregression.
Let

X =
[

X1
...xk

]

(2.1)

and
y = X1β 1+ xkβ k + ε (2.2)

whereX1 is a T × (k−1) fixed matrix andxk is a T ×1 fixed vector. Instead of
(2.2), we estimate:

y = X1γ + ε . (2.3)

This corresponds to the case whereZ = X1 and

P = (X ′
1X1)

−1X ′
1X

= (X ′
1X1)

−1X ′
1

[

X1
...xk

]

=
[

(X ′
1X1)

−1X ′
1X1

... (X ′
1X1)

−1X ′
1xk

]

=
[

Ik−1
... δ̂ k

]

(2.4)

where
δ̂ k = (X ′

1X1)
−1X ′

1xk . (2.5)

Note δ̂ k is the regression coefficient vector obtained by regressingxk on X1 :

(xk −X1δ̂ k)
′
(xk −X1δ̂ k) = min

δ k

(xk −X1δ k)
′
(xk −X1δ k) (2.6)

so X1δ̂ k provides the best linear approximation (in the least square sense) of the
missing variablexk based on the non-missing variablesX1. Thus

E(γ̂) = Pβ (2.7)

=
[

Ik−1
...xk

]

(

β 1

β k

)

(2.8)
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= β 1+ δ̂ kβ k (2.9)

so the bias of̂γ
E(γ̂)−β 1 = δ̂ kβ k (2.10)

is determined byβ k andδ̂ k. We see easily that̂γ is unbiased forβ 1 in two cases:

1. xk does not belong to the regression:β k = 0 ;

2. xk is orthogonal with all the other regressors (every column ofX1): X ′
1xk = 0.
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It is also interesting to look at the effect of excluding a regressor on

ŷ = X1γ̂ (2.11)

which can be interpreted as an estimator of estimator ofE(y), the mean ofy. We
have:

E(ŷ) = X1E(γ̂) = X1

[

β 1+ δ̂ kβ k

]

= X1β 1+(X1δ̂ k)β k. (2.12)

SinceE(y) = X1β 1 + xkβ k , it is clear thatE(ŷ) 6= E(y) even if X ′
1xk = 0, unless

very special conditions hold. We have:

E(ŷ) = E(y) ⇔ (X1δ̂ k)β k (2.13)

⇔ X1δ̂ k = xk or β k = 0. (2.14)

In other words,E(ŷ) = E(y) if and only if β k = 0 (xk is not a missing explana-
tory variable) orxk is linear combination of the columns ofX1 (xk is a redundant
explanatory variable).
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Even if γ̂ is a biased estimator ofβ 1, it is possible that the mean squared error
(MSE) of γ̂ be smaller than the MSE of estimatorβ̂ 1 based on the complete model
(2.2). The MSE of̂γ is

E
[

(γ̂ −β 1)(γ̂ −β 1)
′ ]

= V(γ̂)+ [E(γ̂)−β 1] [E(γ̂)−β 1]
′

= σ2(X ′
1X1)

−1+(δ̂ kβ k)(δ̂ kβ k)
′

= σ2(X ′
1X1)

−1+β 2
kδ̂ kδ̂

′

k (2.15)

while the MSE ofβ̂ 1 is

E
[

(β̂ 1−β 1)(β̂ 1−β 1)
′]

= V(β̂ 1)+
[

E(β̂ 1)−β 1

][

E(β̂ 1)−β 1

]′

= V(β̂ 1) = σ2(X ′
1M2X1)

−1 (2.16)

where we use the fact thatE(β̂ 1) = β 1 andM2 = IT −xk(x
′

kxk)x
′

k. In general, either
of these mean squared errors can be the smallest. More precisely, onobserving
that

X ′
1X1−X ′

1M2X1 = X ′
1(I −M2)X1

= X ′
1(I −M2)

′
(I −M2)X1

= [(I −M2)X1]
′
[(I −M2)X1] (2.17)

is a positive semidefinite matrix, this entails that

(X ′
1M2X1)

−1− (X ′
1X1)

−1 is a positive semidefinite matrix (2.18)

so that

V(β̂ 1)−E
[

(β̂ 1−β 1)(β̂ 1−β 1)
′]

=
[

σ2(X ′
1M2X1)

−1−σ2(X ′
1X1)

−1
]

−β 2
kδ̂ kδ̂

′

k

(2.19)
is the difference between two positive semidefinite matrices, which may be posi-
tive semidefinite, negative semidefinite, or not definite at all.
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2.2.2. Estimation of the mean from a misspecified regression model

Consider now the general case whereZ is differentX :

E(γ̂) = (Z′Z)−1ZXβ = Pβ (2.20)

where

P = (Z′Z)−1Z′X

= (Z′Z)−1Z′ [x1, . . . , xk]

= [(Z′Z)
−1Z′x1, . . . , (Z

′Z)−1Z′xk]

=
[

δ̂ 1, . . . , δ̂ k

]

(2.21)

and
δ̂ i = (Z′Z)

−1Z′xi , i = 1, . . . , k . (2.22)

The fitted values for the misspecified models

ŷ = Zγ̂ (2.23)

can be interpreted as estimators ofE(y), and

E(ŷ) = ZE(γ̂) = Z
[

δ̂ 1, . . . , δ k

]

β

=
[

Zδ̂ 1, . . . , Zδ̂ k

]

β

= [x̂1, . . . , x̂k]β = X̂β
= Z(Z′Z)−1Z′Xβ (2.24)

where ˆxi = Zδ̂ i is a linear approximation ofxi based onZ. In generalE(ŷ) 6= E(y),
but its MSE can be smaller than the one ofX β̂ based on the correctly specified
model (2.2).
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2.3. Estimation of the error variance

It is of interest to compare the estimators of the error variance derived from the
misspecified and correctly specified models. The “unbiased” estimator of σ2

based on model (2.2) is
s2

Z = y′MZy�(T −G) (2.25)

whereMZ = IT −Z(Z′Z)−1Z′.Using

y = Xβ + ε (2.26)

we see that

y′MZy = (Xβ + ε)
′
MZ(Xβ + ε)

= β ′X ′MZXβ + ε ′MZε +2β ′X ′MZε (2.27)

hence

E(y′MZy) = β ′X ′MZXβ +E(ε ′MZε)

= β ′X ′MZXβ +E [tr(ε ′MZε)]

= β ′X ′MZXβ +E [tr(MZεε ′)]

= β ′X ′MZXβ + tr[MZE(εε ′)]

= β ′X ′MZXβ +σ2tr(MZ)

= β ′X ′MZXβ +σ2(T −G) (2.28)

and

E(s2
Z) = σ2+

1
T −G

β ′X ′MZXβ ≥ σ2 = E(s2
X) (2.29)

where

s2
X =

1
T − k

y′MXy . (2.30)

If we compare two linear regression models, one of which is the correct one,
the expected value of the “unbiased estimator” of the error variance is never the
largest for the correct model. This provides a justification for selecting the model
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which yields the smallest estimated error variance (or the largest R̄2).
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3. Error mean different from zero

In the model
y = Xβ + ε (3.31)

consider now the case where the assumptionE(ε) is relaxed:

E(ε) = ξ , (3.32)

V(ε) = σ2IT = E
[

(ε −ξ )(ε −ξ )′
]

. (3.33)

Then

E(β̂ ) = E[β +(X ′X)−1X ′ε]

= β +(X ′X)−1X ′ξ (3.34)

and we see that̂β is not anymore an unbiased estimator (unlessX ′ξ = 0).

Suppose now that the model contains a constant term, i.e.

X = [iT , x2, . . . , xk] (3.35)

whereiT = (1, 1, . . . , 1)
′
, and the components ofε all have the same meanµ :

ξ = µiT . (3.36)

We can then set the mean to zero by defining

v = ε −µiT (3.37)

so thatE(v) = 0, and rewrite the model as follows:

y = iT β 1+ x2β 2+ · · ·+ xkβ k + ε
= iT β 1+ x2β 2+ · · ·+ xkβ k + µiT + v

= iT β̄ 1+ x2β 2+ · · ·+ xkβ k + v (3.38)

whereβ̄ 1 = β 1 + µ. In this reparameterized model, the non-zero mean problem
has disappeared. The only difference with the standard case is that the interpreta-
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tion of the constant term has been modified.
This type of reformulation is not typically possible when if themodel does not

have a constant. This suggests it is usually a bad idea not to include a constant in
a linear regression (unless very theoretical reasons are available).
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4. Incorrect error covariance matrix

The assumption
E
(

εε ′
)

= σ2IT (4.39)

is typically quite restrictive and is not satisfied in many econometric models. Sup-
pose instead that

V(ε) = Ω (4.40)

whereΩ is a positive definite matrix.
It is then easy to see that the estimatorβ̂ remains unbiased:

E(β̂ ) = E[β +(X ′X)−1X ′ε]

= β +(X ′X)−1X ′
E(ε) = β . (4.41)

However, the covariance matrix ofβ̂ is modified:

V(β̂ ) = E
[

(X ′X)
−1X ′εε ′X(X ′X)−1

]

= (X ′X)
−1X ′

E(εε ′)X(X ′X)−1

= (X ′X)−1X ′ΩX(X ′X)−1 6= σ2(X ′X)−1
. (4.42)

This entails that̂β is not anymore the best linear unbiased estimator ofβ . Further,
usual formulas for computing standard errors and tests are not valid anymore.
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5. Stochastic regressors

The assumption thatX is fixed is also quite restrictive and implausible in most
econometric regressions. However, ifε is independent ofX , most results obtained
from the classical linear model remain valid. This comes form the fact these hold
conditionally onX .We have in this case

E(ε |X) = E(ε) = 0, (5.43)

V(ε |X) = V(ε) = σ2IT (5.44)

hence

E(β̂ ) = β +E
[

(X ′X)−1X ′ε
]

= β +E
[

E
[

(X ′X)−1X ′ε |X
]]

= β +E
[

(X ′X)−1X ′
E(ε |X)

]

= 0 . (5.45)

Similarly usual tests and confidence intervals remain valid (under the assumption
of Gaussian errors).

However, if
E(ε |X) 6= 0 (5.46)

we can only write

E(β̂ ) = β +E
[

(X ′X)−1X ′ε
]

= β +E
[

E
[

(X ′X)−1X ′ε |X
]]

= β +E
[

(X ′X)−1X ′
E(ε |X)

]

(5.47)

andβ̂ is typically biased. The Gauss-Markov theorem as well as usual tests and
confidence intervals are not typically valid.
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