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1. Classification of specification errors

The classical linear model is defined by the following assumnst

1.1 Assumption y=XB+¢

wherey is aT x 1 vector of observations on a dependent variable ,
X is aT x k matrix of observations on explanatory variables,

(B is ak x 1 vector of fixed parameters,

€ is aT x 1 vector of random disturbances.

1.2 Assumption E(g) =0.
1.3 Assumption E(eg’) = o?ly .
1.4 Assumption X is fixed (non-stochastic).

1.5 Assumption rank(X)=k<T.

To these, the assumption of error normality is often added.

1.6 Assumption ¢ follows a multinormal distribution.

An important problem in econometrics consists in studying waapens when
one or several of these assumptions fail. Important failurdadecthe following
ones.

1. Incorrect regression — The linear regression model entails that

E(y) =XB =x1B1+ X%+ - +XB: (1.1)

Here we suppose that:
a) Xy, Xo, ..., X¢ are the correct explanatory variables;
b) the relationship is linear.
Suppose now we estimate
y=2Zy-+E¢€ (1.2)



instead of (1.1). What are the consequences on estimation atmstisal in-
ference?

2. The error vectoe does not have mean zero:

E(e) #£0. (1.3)
3. Incorrect covariance matrix — The covariance matrig isfnot equal tar?l+ :
Elee'] = Q (1.4)

whereQ is a positive semidefinite matrix.

4. Non-normality — The error vectar does not follow a multinormal distribu-
tion.

5. Multicollinearity — The matriXX does not have full column rank:

rank(X) < k. (1.5)

6. Stochastic regressors — The maiXixs not fixed.



2. Incorrect regression function

2.1. The problem of incorrect regression function

Let us suppose the “true model” is:
y=XB+¢ (2.1)

where the assumptions of the classical linear model) ¢ (1.5 are satisfied.
However, we estimate instead the model

y=2y+¢€ (2.2)
whereZ is aT x G fixed matrix. Then the least squares estimatoy st
y = (Z2)"Zy
= (ZZ)7'Z'(XB+¢)
= (Z2)'ZXB+(22)*Z¢ (2.3)

and the expected value gfis
E(Yy) =(Z22)'zXB =P (2.4)
whereP = (Z'Z2)~1Z'X. In general,
E(Y) # B (2.5)

so thaty is not an unbiased estimator Bf Usual tests and confidence intervals
are not valid.



2.2. Estimation of regression coefficients

2.2.1. The case of one missing explanatory variable

We will now study the case where a variable has been left out afetpession.
Let
X = [X1ix (2.1)
and
y=XiB;+XBy+ € (2.2)

whereX; is aT x (k— 1) fixed matrix andx, is aT x 1 fixed vector. Instead of
(2.2), we estimate:
y=X1y+E€. (2.3)

This corresponds to the case whére- X; and
P = (X{X1) XX
(X1Xe)™ 1Xl [Xl Xk]
= [(X(%) XX (X4Xa) X

= |l 1: 5k] (2.4)
where A
Ok = (X{Xa) Xy (2.5)
Note 3k IS the regression coefficient vector obtained by regressiog X; :
(X — X18k) (X — X10x) = min(x - X1 3k) (X — X15) (2.6)
k

SO X13k provides the best linear approximation (in the least squareejenshe
missing variabley based on the non-missing variabkes Thus

E(y) = PB (2.7)
= end () @9



= B+ By (2.9)

so the bias o¥ i
E(Y) — By = kB (2.10)
is determined by3, anddy. We see easily thatis unbiased fof3, in two cases:
1. X does not belong to the regressidh.= 0;

2. X Is orthogonal with all the other regressors (every columK;pf X;x, = 0.



It is also interesting to look at the effect of excluding a regresso
y=Xiy (2.11)

which can be interpreted as an estimator of estimat&(gf, the mean ofy. We
have:

E() = XiE(Y) =X [ By + 8y
= X+ (%10 By (2.12)

SinceE (y) = X18; + Xy, it is clear thatE(y) # E(y) even if X{xx = 0, unless
very special conditions hold. We have:

E(§) = E(y) < (%008 (2.13)
& X0k =xcor 3, =0. (2.14)

In other wordsE(y) = E(y) if and only if B, = O (X« is not a missing explana-
tory variable) orx is linear combination of the columns &f (X is a redundant
explanatory variable).



Even if y is a biased estimator ¢, it is possible that the mean squared error
(MSE) of y be smaller than the MSE of estimaf®y based on the complete model
(2.2). The MSE ofyis

E[(7—B) (V=B ] = VI +[E[) - BIE[) — By

o % (XXa) "+ (OkBy) (3kBy)’

02(X|X) "L+ B8, D) (2.15)
while the MSE of,[AB1 IS

~ ~

E[(By—Ba)(By—By)] = V(Bo)+ [E(By) — Ba [E(B) — B
= V(By) = 0°(X{MzXa) ! (2.16)
where we use the fact thB{f,) = 8, andM, = I — X(X.X)X.. In general, either

of these mean squared errors can be the smallest. More preciselgserving
that

XXy — XIMoXy = XL(1 — M2)Xq
= XI(I = M) (I = M2)Xq
= [(I = M2)Xa] [(1 = M2)Xq] (2.17)

IS a positive semidefinite matrix, this entails that
(X{MoXq) ™t — (X{X;) "t is a positive semidefinite matrix (2.18)

so that

~ ~ ~

V(By) —E [(Bl —B1)(B1— /31),] = [02(X1M2X1)_1 - Uz(xixl)_l] — B§5k5:<
(2.19)
is the difference between two positive semidefinite matricésgchvmay be posi-
tive semidefinite, negative semidefinite, or not definitellat a



2.2.2. Estimation of the mean from a misspecified regression model

Consider now the general case wharis differentX :

E(y) = (Z2)"'zXB =P (2.20)
where
P = (Z2)7'ZX
= (Z2)7'Z [xq,. .., %]
= (Z2) " Z'%, ..., (ZZ2)1Z'%]
= [01,..., Ol (2.21)
and A
0= (22 "Z%.,i=1,...k (2.22)
The fitted values for the misspecified models
V=72V (2.23)

can be interpreted as estimatorsEdy), and

E(§) = ZE()) =2 [81, L 54 B

- [281,...,2843
= [R1,..., B =Xp
= Z2(Z2)7'7’XpB (2.24)

wherex = Z&; is a linear approximation of based orZ. In generak(y) # E(y),
but its MSE can be smaller than the oneXg® based on the correctly specified
model (2.2).



2.3. Estimation of the error variance

It is of interest to compare the estimators of the error variance etfrom the
misspecified and correctly specified models. The “unbiasetiinasor of g2
based on model (2.2) is

5 =yMzy,/(T —G) (2.25)
whereMz = |+ —Z(Z'2)~1Z'.Using
y=XB+e¢ (2.26)
we see that
YMzy = (XB+¢€)Mz(XB+eé)
= B'X'MzXB + &'Mze +2B'X'Mz¢ (2.27)
hence
E(y,sz) = B/X/M2XB+E(8/M28)
= B'X'MzXB +E[tr(€' Mz¢€)]
= B'X'MzXB +E|tr(Mzeg')]
= B'X'MzXB +tr[MzE(g€’)]
= B'X'MzXB 4+ a*tr(My)
= B'X'MXB+0*T —G) (2.28)
and 1
E(s) = 0%+ = =B X'MzXB > 0* = E(5}) (2.29)
where 1
Sx = ﬂ)/MXY- (2.30)

If we compare two linear regression models, one of which is the cooee,
the expected value of the “unbiased estimator” of the error neeas never the
largest for the correct model. This provides a justification féecteng the model



which yields the smallest estimated error variance (or the $aRf.
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3. Error mean different from zero

In the model
y=XB+¢ (3.31)
consider now the case where the assumiig@) is relaxed:
E(e) =&, (3.32)
V(e)=0%r =E[(e-&)(e-&)']. (3.33)
Then

E(B) = E[B+(X'X)"X¢]
= B+ (X'X)X'¢ (3.34)

and we see thzfi IS not anymore an unbiased estimator (unk€s= 0).
Suppose now that the model contains a constant term, i.e.

X= [iT7X27"'7Xk] (335)

whereit = (1,1,..., 1)', and the components @efall have the same mean:

¢ = uir. (3.36)
We can then set the mean to zero by defining
V=¢€— Uiy (3.37)

so thatE(v) = 0, and rewrite the model as follows:

y = ItB1+%Bo+ - +XPy+ €
= 1By +XBo+ -+ XLy + it +V
= 1B+ XBo+ -+ XBy+V (3.38)

Whereﬁ1 = B, + M. In this reparameterized model, the non-zero mean problen
has disappeared. The only difference with the standard casat ihthinterpreta-
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tion of the constant term has been modified.

This type of reformulation is not typically possible when if tm@del does not
have a constant. This suggests it is usually a bad idea nothadie a constant in
a linear regression (unless very theoretical reasons are available

12



4. Incorrect error covariance matrix

The assumption
E(e€’) = 0%l (4.39)

IS typically quite restrictive and is not satisfied in many emoetric models. Sup-
pose instead that
V(e)=Q (4.40)

whereQ is a positive definite matrix.
It is then easy to see that the estimgkaremains unbiased:

~

E(B) = EIB+(X'X)"*Xe]
= B+ (X'X)"XE(e) = B. (4.41)
However, the covariance matrix ﬁfis modified:

~

V(B) = E[(X'X) *X'ee'X(X'X)™}]
= (X'X) " XE(gg")X(X'X) 1
= (X'X)"IX'QX(X'X)™t £ g?(X'X) L. (4.42)

This entails thafB’ IS not anymore the best linear unbiased estimat@. éfurther,
usual formulas for computing standard errors and tests are not vginae.
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5. Stochastic regressors

The assumption thaX is fixed is also quite restrictive and implausible in most
econometric regressions. Howevelk is independent ok, most results obtained
from the classical linear model remain valid. This comes form dloethese hold
conditionally onX.We have in this case

E(e|X) = E(g) =0, (5.43)
V(e|X) = V(g) =0%ly (5.44)
hence
E(B) = B+E[(X'X)"X]
= B+E[E[(X'X)X'e|X]]
= B+E[(X'X)"X'E(¢]| X)] = 0. (5.45)
Similarly usual tests and confidence intervals remain valid€utite assumption
of Gaussian errors).

However, if
E(e|X)#0 (5.46)

we can only write
E(B) = B+E[(XX)Xe]
= B+E[E[(X'X) X'e|X]]
= BHE[(X'X)"XE(g|X)] (5.47)

andB is typically biased. The Gauss-Markov theorem as well as usstd aind
confidence intervals are not typically valid.

14
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