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Abstract Weak identification is a well-known issue in the context of linear structural mod-

els. However, for probit models with endogenous explanatory variables, this problem has

been little explored. In this paper, we study by simulation the behavior of the usual z-test

and the LR test in the presence of weak identification. We find that the usual asymptotic

z-test exhibits large level distortions (over-rejections under the null hypothesis). The mag-

nitude of the level distortions depends heavily on the parameter value tested. In contrast,

asymptotic LR tests do not over-reject and appear to be robust to weak identification.
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1 Introduction

Probit models are widely used in applied econometrics; for some recent examples, see

Abramitzky and Lavy (2014), Beck et al (2014), Bijsterbosch and Dahlhaus (2015), Bouoiy-

our et al (2016), Cornelli et al (2013), Croushore and Marsten (2016), Engelhardt et al

(2010), Esaka (2010), Fitzenberger et al (2011), Haider and Jahangir (2017), Hao and Ng

(2011), Hlaing and Pourjalali (2012), Horvath and Katuscakova (2016), Khanna et al (2015),

Litchfield et al (2012), Massa and Zhang (2013), Wen and Gordon (2014). As in linear mod-

els, one or more explanatory variables can be endogenous. This problem can be solved

by using instrumental variables; see Wilde (2008) for a comparison of different estimation

methods using instrumental variables. The resulting estimates can be used to calculate test

statistics for the parameters of the model.

In linear models, it is well known that weak instruments can cause considerable level (or

size) distortions [see Dufour (2003) for an overview]. Wald-type tests like the usual t-tests

and F-tests are especially vulnerable to this problem [see Dufour (1997)]. In probit models,

a single parameter hypothesis is usually tested by the so-called z-test, i.e. the ratio of a

consistent estimate and its asymptotic standard error. This is a Wald-type test. Therefore,

large level distortions can be expected. Nevertheless, the topic seems to be largely a white

spot in the literature. Exceptions are the recent theoretical papers of Andrews and Cheng

(2013, 2014), who address the probit model as an example. However, Andrews and Cheng

(2013) restrict their numerical analysis to a probit model with a nonlinear regression function

and without endogeneity, and Andrews and Cheng (2014) do not analyze the probit model

numerically.1

This paper makes several contributions to this problem. First, large level distortions in

probit models with endogeneity are demonstrated by a simulation study. Second, we show

that level distortions depend heavily on which parameter value is tested: whereas level dis-

tortions are moderate for the problem of testing the null of a zero parameter, testing other

values of the parameter yield large level distortions. Third, the behaviour of the classical

likelihood ratio statistic in this case is analyzed. For the simulation design considered, no

level distortions are observed. However, the probability of type I error can be notably lower

than the nominal level of the test (undersizing). Fourth, some new insights concerning the

estimation of probit models with endogenous covariates are provided.

Section 2 describes the econometric model and the test statistics. Section 3 explains

the simulation design and the estimators used. Since a probit equation is part of the model,

some formulae become more complicated than in the linear case. They are described in

detail because textbook descriptions are missing so far. Section 4 presents the results of the

simulation study, and Section 5 concludes. For ease of exposition, we focus on the binary

probit model.

2 Model and classical tests

We study a structural probit model, where one of the explanatory variables is endogenous,

and a reduced-form equation for this variable is specified. The specific model considered is:

1 A further exception is Magnusson (2007), who considered in an early version of his paper the probit

model with endogenous covariates as an example and found medium level distortions. However, in later

versions of the working paper and in the published version Magnusson (2010) the probit example was deleted.
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y∗1i = γ1y2i+β1x1i+u1i ,

y2i = π21x1i+π22x2i+ v2i ,
y1i =

{
1 , if y∗1i > 0

0 , otherwise
, i= 1, . . . ,N , (1)

where y∗1i is a latent variable, y1i is its observable indicator, y2i is an endogenous (observable)

variable, x1i and x2i are K1× 1 and K2× 1 vectors of exogenous variables, γ1, β1, π21, π22

are unknown parameter vectors of dimensions 1, 1×K1, 1×K1 and 1×K2 respectively,

and u1i and v2i are error terms with mean zero, variances σ2
u1

and σ2
v2

respectively, and

Cov(u1i,u1 j) = Cov(v2i,v2 j) = Cov(u1i,v2 j) = 0 for i 6= j. The probit model assumes that

the u1i’s are normally distributed. Whether the distribution of v2i must also be specified

depends on the estimation method. If a distribution is needed, we assume that u1i and v2i

follow a joint normal distribution, i.e.

(u1i,v2i)|x1i,x2i
iid∼ N

[(
0

0

)
,

(
σ2

u1
σu1v2

σu1v2
σ2

v1

)]
.

The parameter of special interest is γ1. It is not identified when π22 is equal to zero.

Therefore, we say γ1 is weakly identified if π22 is close to zero. Sometimes weak identifi-

cation is quantified by the so-called concentration parameter; see Stock et al (2002), p. 519.

However, this parameter grows with N, and hence it suggests that the problem of weak iden-

tification is reduced by enlarging the sample size. This is misleading, and therefore we do

not use it as guideline in our study.

Testing the significance of γ1 in empirical studies is usually done by the z-statistic (im-

plemented in almost all econometric software packages):

z=
γ̂1√

V̂ (γ̂1)
(2)

where V̂ (γ̂1) is a consistent estimate (assuming identification) of the asymptotic variance of√
N(γ̂1− γ1). If γ̂1 is consistent with a standard normal asymptotic distribution, z is asymp-

totically standard normal under the assumption of strong identification. The parameter γ1

can be estimated by two-step methods [see Blundell and Smith (1993) for an overview]

or via joint GMM or maximum likelihood (ML) estimation of both equations [see Wilde

(2008) for a comparison].

The z-test is a Wald-type test. The classical alternatives to it — the Likelihood Ratio

(LR) and the Lagrange Multiplier (LM) tests — are based on ML estimation of the parame-

ters. In linear models, the latter are less affected by weak identification than Wald-type tests.

Here, we focus on the LR test. Given the estimates, the LR statistic is calculated easily,

whereas the LM test requires the estimation of a complicated information matrix, so the re-

sults may depend on the estimation procedure chosen. The log-likelihood function of model

(1) under the above standard assumptions is:

ln l(θ) =
N

∑
i=1

[
−0.5ln(2πσ

2
v2
)−0.5

(
y2i−π2xi

σv2

)2

+ y1i lnΦ

(
1√

1−ρ2
v

(
(γ1π21+β1)x1i+ γ1π22x2i

σv1

+ρv

(
y2i−π2xi

σv2

)))

+(1− y1i) ln

(
1−Φ

(
1√

1−ρ2
v

(
(γ1π21+β1)x1i+ γ1π22x2i

σv1

+ρv

(
y2i−π2xi

σv2

))))]
(3)
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where xi = (x
′
1i,x
′
2i)
′ , v1i = u1i + γ1v2i, θ = (γ1,β1,π2,σv2

,ρv)
′, π2 = (π21,π22), σv1

=√
Var(v1i), and ρv = Corr(v1i,v2i); see Wilde (2008), appendix 2. Since the structural pa-

rameters enter the likelihood only through ratios with a standard deviation and the latter

does not appear separately, only these ratios are identifiable. Therefore, in our simulation

study, σv1
is taken as known.

We consider the problem of testing

H0 : γ1 = γ̃1 vs. H1 : γ1 6= γ̃1 .

We denote by θ̂ML the unrestricted ML estimator of θ [based on (3)] and by θ̂RML the

restricted ML estimator under the null hypothesis. The LR statistic has the form

LR= 2
[
ln l(θ̂ML)− ln l(θ̂RML)

]
.

Under the usual assumptions (including strong identification) LR is asymptotically χ2(1)
under H0.

3 Simulation design

In order to avoid arbitrary choices of unnecessary nuisance parameters, we consider a simple

simulation design with K1 ∈ {0,1} and K2 = 1. The value K1 = 0 defines a model without

constants, whereas K1 = 1 is used to add a constant in both equations. With K1 = 0, ML

estimation causes numerical problems, i.e. many replications end with the message “max-

imum iterations reached” even after 200 and more iterations. Since GMM estimation is a

well-known alternative to ML estimation for probit-type models and the efficiency loss in

models like ours seems to be small [see Wilde (2008)], we used GMM estimation for the

z-test. As will be shown below, the results under weak identification are nearly the same for

models with and without constants. Therefore, we focus our comparison of z-test and LR

test for models including constants in both equations.

In (1), the second equation is a reduced-form equation. Endogeneity of y2 can occur for

at least two reasons: correlation between the error terms of the structural equations and/or

simultaneity between y1 and y2. Both yield a correlation between u1 and v2. In our simula-

tion, we focus on simultaneity because it can be interpreted more easily. Nevertheless, all

results can be reproduced by assuming correlation between the error terms of the structural

equations. Therefore, our main data generating model with constants is:

y∗1i = γ1y2i+β11+u1i,

y2i = γ2y∗1i+β21+β22xi+u2i,
y1i =

{
1 , if y∗1i > 0

0 , otherwise
, i= 1, . . . ,N . (4)

The residuals u1i and u2i are drawn independently from the N(0,16) distribution, so the

residual variances are equal for both equations. The exogenous variable xi is drawn from

the N(0.5,16) distribution, so the expected number of ones for y1i differs from the expected

number of zeros also for the model without constants. Alternatively, we draw the residuals

independently from the N(0,1) distribution and xi from an N(0.5,1) distribution. The con-

stants are β11 = 0.5 and β21 = 0.25. Weak identification is equivalent to β22 being close to

zero. In our simulations, we took β22 = 0.0001. Smaller values of β22 yield qualitatively

similar results. The case of strong identification is simulated with β22 = 1. The simula-

tions were also run with β22 = 0.1 to see whether weak identification also causes problems



Weak identification in probit models with endogenous covariates 5

for moderate parameter values. The sample sizes are N = 400 (medium sample size) and

N = 2000 (large sample), and the number of replications is 5000.

The estimated model in these simulations is:

y∗1i = γ1y2i+β11+u1i

y2i = π21+π22xi+ v2i

y1i =

{
1 , y∗1i > 0

0 , else
, i= 1, . . . ,N , (5)

where

π21 = (γ2β11+β21)/(1− γ1γ2), π22 = β22/(1− γ1γ2), v21 = (γ2u1i+u2i)/(1− γ1γ2).

In (5), γ1 is exactly identified as long as π22 is different from zero. (5) is estimated by GMM

using the ‘natural’ moment conditions [see Wilde (2008)]:

E


xi

(
y1i−Φ

(
γ1(π21+π22xi)+β11

σv1

))
xi(y2i−π21−π22xi)

1

(
y1i−Φ

(
γ1(π21+π22xi)+β11

σv1

))
1(y2i−π21−π22xi)

= 0 .

Setting

θ =

 γ1

π22

β11

π21

 , mi(θ) =


xi

(
y1i−Φ

(
γ1(π21+π22xi)+β11

σv1

))
xi(y2i−π21−π22xi)

1

(
y1i−Φ

(
γ1(π21+π22xi)+β11

σv1

))
1(y2i−π21−π22xi)

 , m̄(θ) =
1

N

N

∑
i=1

mi(θ) ,

we calculate

θ̂ = θ̂GMM = argmin
θ

{m̄(θ)′WN m̄(θ)

where WN is a weighting matrix. Since the number of moment conditions is equal to the

number of parameters, the weighting matrix in the criterion function of the GMM estimator

does not matter theoretically, and the same asymptotic covariance matrix of the estimator

can be used for all choices of WN [Harris and Mátyás (1999), p. 22]. To be more precise, the

asymptotic covariance matrix is [see Greene (2008), p. 445]:

asyVar(θ̂) =
1

N

[
G′Ψ−1G

]−1
,

Ψ = asyVar(
√

Nm̄) , ϕi := ϕ

(
γ1(π21+π22xi)+β11

σv1

)
,

G=
∂ m̄

∂θ ′
=



1
N

N

∑
i=1

− π21xi+π22x2
i

σv1
ϕi

1
N

N

∑
i=1

− γ1x2
i

σv1
ϕi

1
N

N

∑
i=1

− xi

σv1
ϕi

1
N

N

∑
i=1

− γ1xi

σv1
ϕi

0 1
N

N

∑
i=1

−x2
i 0 1

N

N

∑
i=1

−xi

1
N

N

∑
i=1

− π21+π22xi

σv1
ϕi

1
N

N

∑
i=1

− γ1xi

σv1
ϕi

1
N

N

∑
i=1

− 1
σv1

ϕi
1
N

N

∑
i=1

− γ1

σv1
ϕi

0 1
N

N

∑
i=1

−xi 0 −1


.
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Given the above assumptions, this matrix can be estimated consistently by

estasyVar(θ̂) =
1

N

[
Ĝ′Ψ̂−1Ĝ

]−1
,

Ψ̂ =
1

N

N

∑
i=1

mi(θ̂)mi(θ̂)
′ , Ĝ= G after substituting θ̂ for θ .

The square root of the first diagonal element is the denominator of the z-statistic (2). Ψ̂−1

is the optimal weighting matrix and is used to calculate the nominator of (2).2 In the model

without constants only the first two moment conditions are used (setting π21 and β11 equal

to zero), and G reduces to a 2×2 matrix.

For ML estimation of the model without constants, everything works fine under strong

identification, whereas under weak identification the algorithm did not find the maximum for

nearly half of the replications. This is not surprising under weak identification. For example,

in the model without constants, the second summand of (3) reduces to

y1i lnΦ

(
1√

1−ρ2
v

(
γ1π22xi

σv1

+ρv

(
y2i−π22xi

σv2

)))
where the parameter γ1 affects the log-likelihood function only through the product γ1π22.

However, under weak identification, π22 is close to zero, so that it is very difficult to find the

‘true’ value of γ1: the log-likelihood function is relatively flat with respect to γ1. However,

including constants avoids the numerical problems discussed above without changing the

results concerning weak identification. The latter aspect was confirmed for those parameter

values for which the optimum was also found in the model without constants. 3

4 Simulation results

We distinguish two cases. First, we test the null hypothesis γ1 = 0, i.e. the significance of

y2. Second, we test the null hypothesis γ1 = c, where c is a constant different from zero,

and we present the results for c= 2. In both cases, the simulations consider different values

of γ2. Small values of γ2 correspond to a ‘small’ simultaneity problem, here γ2 = ±0.5. A

‘medium’ problem of simultaneity is represented by γ2 = ±1.5, and a ‘large’ problem of

simultaneity is represented by γ2 =±3 and γ2 =±6.

4.1 Results for the z-test

Main model

The results for the models with and without constants are similar. Therefore, we focus on

the model with constants. The results for the model without constants can be found in the

appendix. In case of strong identification and testing γ1 = 0, no level problems can be ob-

served at the nominal levels 10%, 5%, and (to a lesser degree) 1%; see Table 1. Under weak

2 All simulations were done using R; see R Core Team (2016). The GMM estimation was done using the

package GMM, version 1.6-1. The case of iid observations can be implemented by the option vcov="iid"; see

Chaussé (2010), p. 13. All R codes are available on request.
3 For the ML estimation the exogenous variable xi was drawn from an N(0,16) distribution.
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identification, the picture is mixed.4 The key result is highlighted in Figure 1 for N = 2000

and a nominal level of 5%. If there is only ‘weak’ simultaneity, an extreme undersizing

phenomenon is observed. However, ‘strong’ simultaneity causes medium level distortions.

Nevertheless, the level distortions are smaller than those in linear simultaneous equations.

This is surprising because weak identification should cause similar problems in probit mod-

els. Furthermore, the results for β22 = 0.1 are close to the results for β22 = 0.0001, i.e.

oversizing occurs even for moderate values of the parameter β22. All results are similar for

N = 2000 and N = 400.

Next, we consider the results concerning data simulated with γ1= 2 and testing H0 : γ1=
2. Again, under strong identification, no level distortion appears at the nominal levels 10%

and 5%; see Table 2. However, with weak identification and strong simultaneity, the level

distortions become very large (γ2 = 0.5 is omitted because γ1 is no longer identified in this

case); see Figure 2. The empirical level becomes more than tenfold as high as the nominal

level. Thus, level distortions comparable to those in linear simultaneous equations models

can be observed in probit models. With strong simultaneity, level distortions also occur for

β22 = 0.1. They are stronger for N = 400, i.e. the sample size makes a notable difference in

this case.

The differences between testing γ1 = 0 and γ1 = 2 demonstrate an important feature: in

probit models, level distortions depend heavily on the parameter value tested. This property

is not easily explained by the concentration parameter. Following the definition of Stock

et al (2002), p. 519, the concentration parameter µ2 in the model without constants is:

µ
2 =

N

∑
i=1

x2
i π2

22

σ2
v2

=

N

∑
i=1

x2
i

(
β22

1− γ1γ2

)2

σ2
u2
+ γ2

2 σ2
u1

(1− γ1γ2)2

=

N

∑
i=1

x2
i β 2

22

σ2
u2
+ γ2

2 σ2
u1

.

The concentration parameter does not depend on γ1. In the model with constants the formula

is more bulky, but the message remains unchanged. Thus, concerning the concentration

parameter the problem of weak identification should not depend on the value of γ1.

Sensitivity analysis

We performed several robustness checks on our results. First, we vary the estimation method,

by iterating our two-step GMM estimator, and using I instead of Ψ−1 as weighting matrix.5

Second, we change the variances, i.e. we draw the ui’s from the N(0,1) distribution and

xi from an N(0.5,1) distribution. Third, we change from exact identification of γ1 to un-

deridentification (β22 = 0) and overidentification (a second exogenous variable is added to

the second equation). Except for overidentification, the different variants do not change the

results. Thus, we present only examples of the these variants.

Changing the estimation method does not affect the results, i.e. the rejection frequen-

cies are the same as in Tables 1 and 2. Changing the variances in the sample design slightly

modifies the results, but the pattern remains the same: we observe only moderate level dis-

tortions when testing γ1 = 0 and large level distortions when testing γ1 = 2 are observed (see

Table 3). The results in the case of underidentification are very close to those of β2 = 0.0001

(see Table 4).

4 This result is similar to that of Magnusson (2007).
5 We also tried the option "CUE" for the continuous updating estimator. However, we always got the error

message "node stack overflow".
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In contrast with the above results, overidentification leads to new insights. In the second

equations of (4) and (5), there is an additional exogenous variable drawn from an N(0,16)
distribution. The corresponding structural parameter β23 varies like β22: for strong identi-

fication, we consider β22 = β23 = 1, and for weak identification β22 = β23 = 0.0001 (very

weak identification) and β22 = β23 = 0.1. The second exogenous variable is used as an in-

strument in the same way as xi and the ones in the previous simulations. The matrix G now

becomes a (6×5)-matrix, i.e. the number of moment conditions exceeds the number of pa-

rameters. Thus, the choice of the weighting matrix should matter. Therefore, we compare

the results using the identity matrix I with those based on the ‘optimal’ weighting matrix.

We focus on a nominal level of α = 5%.

First, the sample size is important. Under strong (over-)identification, everything works

fine with N = 2000 (see Table 5), but N = 400 is too small to meet the nominal level. For

testing γ1 = 0, the rejection frequencies are in the interval [0.357, 0.3754]; for testing γ1 = 2,

the rejection frequencies are in the interval [0.2846, 0.3942]. This is an interesting side result

and a cautionary note if models like ours are used with macroeconomic or experimental data,

where sample sizes can easily be small.

Second, testing γ1 = 0 with N = 2000 leads to larger level distortions with weak iden-

tification and large simultaneity. Now, empirical rejection frequencies reach four times the

nominal level (see Table 5). The results are slightly stronger if I is used as weighting ma-

trix. With weak identification and weak simultaneity, undersizing is still observable, but it

is now less pronounced. With strong simultaneity, the results for β22 = β23 = 0.1 are again

close to those under weak identification, whereas with weak simultaneity, the results with

β22 = β23 = 0.1 are close to those under strong identification.

Third, when testing γ1 = 2 with N = 2000, the picture is mixed. Using the weighting

matrix I strengthens the results in case of strong simultaneity in comparison with the results

for model (5). The results are now close to the theoretical expectation. However, using the

optimal weighting matrix yields smaller level distortions than under exact identification.

The interpretation of this result is difficult: for some parameter combinations, the rejection

frequencies for β22 = β23 = 0.0001 are even lower than for β22 = β23 = 0.1 . This may be

due to the fact that the asymptotic standard errors are a complicated function of γ1. If the

identity matrix I is used as the weighting matrix, only G′G must be inverted for computing

the asymptotic variance-covariance matrix [see Greene (2008), p. 451]. In contrast, using

the optimal weighting matrix requires the inversion of G′Ψ−1G. Under weak identification,

the latter calculation can lead to ‘bad’ results. However, further research is needed to clarify

the reasons for this. Nevertheless, under strong and even medium simultaneity, noteworthy

level distortions are observed.

4.2 Results for the LR test on the main model

We consider again the main model (5). We use the same parameter values as in Section 4.1,

and we calculate the Maximum Likelihood estimator and the LR statistic. In case of strong

identification, no level problems can be observed (see Table 6). However, the results under

weak identification differ substantially from those for the z-test. If simultaneity is weak, the

observed rejection frequencies are close to the nominal level; if simultaneity is medium or

strong, undersizing is observed. Thus, the LR test may be a conservative alternative to the

z-test.

For testing γ1 = 0, the results with γ2 = 6 are missing, because the program stopped

with an error message for some replications. This can be explained as follows. Consider



Weak identification in probit models with endogenous covariates 9

for instance γ1 = 0 and γ2 = 6. This implies ρv = 0.9864, i.e. the bivariate normal distribu-

tion of v1 and v2 is close to being singular. In the log-likelihood function (3), we then have

1/
√

1−ρ2
v = 6.08, Φ(≈ 6) = 1 , 1−Φ(≈ 6) = 0, and ln(1−Φ(≈ 6)) is not defined. There-

fore, ML estimation is less robust against a high correlation of the reduced-form errors than

GMM estimation. This is similar to the findings in Wilde (2008), p. 476, and an interesting

side finding of this paper.

In contrast with the z-test, the results for the LR test under weak identification do not

change if γ1 = 2 is tested. Furthermore, γ2 = 6 does not raise numerical problems. With

β22 = 0.1 and N = 2000, only strong simultaneity (γ2 = ±6) leads to undersizing (for N =
2000), i.e. the results are more stable for moderate values of β22 than those for the z-test.

5 Conclusion

The paper analyses weak identification in probit models with endogenous covariates. It

shows remarkable level distortions concerning the usual z-test. However, further research

is needed to clarify why the magnitude depends heavily on the parameter value tested. The

likelihood ratio statistic seems to be a conservative alternative which is robust to weak iden-

tification. Further research is useful to clarify how advanced methods like those of Andrews

and Cheng (2014), Dufour (2006) or Kleibergen (2005) will work for probit models with

endogenous covariates.
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Table 1 Rejection frequencies of the z-test, H0 : γ1 = 0

Nominal level

β22 = 1 β22 = 0.1 β22 = 0.0001

γ2 N 10% 5% 1% 10% 5% 1% 10% 5% 1%

−6 2000 0.0908 0.0484 0.0178 0.1634 0.1142 0.0512 0.1690 0.1114 0.0464

400 0.0984 0.0688 0.0320 0.1764 0.1206 0.0500 0.1700 0.1196 0.0514

−3 2000 0.0950 0.0502 0.0118 0.1310 0.0880 0.0414 0.1424 0.0916 0.0350

400 0.0868 0.0508 0.0206 0.1528 0.1018 0.0394 0.1452 0.0938 0.0382

−1.5 2000 0.0988 0.0506 0.0114 0.0942 0.0626 0.0242 0.0854 0.0508 0.0124

400 0.0964 0.0482 0.0136 0.1044 0.0640 0.0196 0.0896 0.0528 0.0144

−0.5 2000 0.0984 0.0500 0.0102 0.0700 0.0340 0.0058 0.0120 0.0030 0.0000

400 0.0996 0.0510 0.0116 0.0432 0.0202 0.0012 0.0148 0.0056 0.0006

0.5 2000 0.0986 0.0470 0.0110 0.0698 0.0320 0.0080 0.0128 0.0046 0.0004

400 0.0974 0.0500 0.0102 0.0382 0.0154 0.0016 0.0126 0.0038 0.0006

1.5 2000 0.0970 0.0486 0.0100 0.0914 0.0626 0.0254 0.0836 0.0458 0.0136

400 0.0966 0.0480 0.0102 0.0960 0.0566 0.0178 0.0896 0.0480 0.0128

3 2000 0.0960 0.0468 0.0108 0.1212 0.0866 0.0388 0.1430 0.0922 0.0342

400 0.0864 0.0464 0.0160 0.1408 0.0914 0.0332 0.1488 0.0976 0.0340

6 2000 0.0886 0.0462 0.0160 0.1548 0.1076 0.0484 0.1674 0.1138 0.0458

400 0.0930 0.0658 0.0276 0.1696 0.1130 0.0454 0.1768 0.1196 0.0482

Table 2 Rejection frequencies of the z-test, H0 : γ1 = 2

Nominal level

β22 = 1 β22 = 0.1 β22 = 0.0001

γ2 N 10% 5% 1% 10% 5% 1% 10% 5% 1%

−6 2000 0.0890 0.0556 0.0234 0.2724 0.2280 0.1696 0.5586 0.5142 0.4366

400 0.1038 0.0726 0.0382 0.4480 0.4078 0.3322 0.5732 0.5260 0.4540

−3 2000 0.0996 0.0518 0.0144 0.1586 0.1244 0.0810 0.3686 0.3100 0.2076

400 0.0842 0.0480 0.0200 0.2772 0.2314 0.1634 0.3756 0.3150 0.2180

−1.5 2000 0.0970 0.0498 0.0108 0.1042 0.0756 0.0320 0.1562 0.0996 0.0404

400 0.0932 0.0490 0.0116 0.1460 0.1002 0.0434 0.1632 0.1040 0.0432

−0.5 2000 0.0990 0.0468 0.0108 0.0684 0.0316 0.0056 0.0110 0.0026 0.0000

400 0.0928 0.0490 0.0086 0.0418 0.0150 0.0012 0.0126 0.0032 0.0002

1.5 2000 0.0996 0.0494 0.0102 0.0864 0.0540 0.0218 0.0694 0.0358 0.0078

400 0.0914 0.0424 0.0084 0.0856 0.0522 0.0166 0.0700 0.0400 0.0084

3 2000 0.0946 0.0472 0.0116 0.1576 0.1182 0.0708 0.3184 0.2530 0.1554

400 0.0774 0.0426 0.0146 0.2496 0.1968 0.1246 0.3246 0.2608 0.1620

6 2000 0.0872 0.0482 0.0198 0.2640 0.2260 0.1674 0.5416 0.4966 0.4124

400 0.1036 0.0696 0.0334 0.4446 0.4004 0.3256 0.5592 0.5152 0.4304
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Table 3 Rejection frequencies of the z-test, sample design with variances =1

Nominal level

β22 = 1 β22 = 0.1 β22 = 0.0001

γ1 γ2 N 10% 5% 1% 10% 5% 1% 10% 5% 1%

0 6 2000 0.0908 0.0474 0.0162 0.1278 0.0834 0.0352 0.1424 0.0898 0.0330

400 0.0954 0.0618 0.0252 0.1358 0.0852 0.0340 0.1480 0.0946 0.0332

2 6 2000 0.0808 0.0510 0.0176 0.3126 0.2448 0.1708 0.5718 0.5084 0.4078

400 0.1054 0.0724 0.0352 0.4376 0.3902 0.3110 0.5464 0.5034 0.4194

Table 4 Rejection frequencies of the z-test in case of underidentification, i.e. β22 = 0

Nominal level

γ2 N 10% 5% 1%

6 2000 0.1674 0.1138 0.0458

400 0.1770 0.1194 0.0482

6 2000 0.5424 0.4964 0.4116

400 0.5592 0.5150 0.4300

Table 5 Rejection frequencies of the z-test, nominal level 5%, N = 2000, with overidentification of γ1 in the

theoretical model

Weighing matrix

β22 = β23 = 1 β22 = β23 = 0.1 β22 = β23 = 0.0001

γ1 γ2 I Optimal I Optimal I Optimal

0 −6 0.0526 0.0450 0.2396 0.1724 0.2682 0.2072

0 −3 0.0484 0.0464 0.1578 0.1100 0.2304 0.1758

0 −1.5 0.0466 0.0464 0.0818 0.0686 0.1350 0.1174

0 −0.5 0.0466 0.0464 0.0456 0.0488 0.0112 0.0122

0 0.5 0.0470 0.0456 0.0458 0.0456 0.0124 0.0150

0 1.5 0.0474 0.0460 0.0826 0.0710 0.1310 0.1232

0 3 0.0492 0.0464 0.1482 0.1062 0.2252 0.1904

0 6 0.0548 0.0496 0.2256 0.1692 0.2686 0.2120

2 −6 0.0376 0.0454 0.3580 0.1574 0.7844 0.0990

2 −3 0.0452 0.0486 0.1952 0.1130 0.5708 0.1126

2 −1.5 0.0470 0.0456 0.0888 0.0704 0.2416 0.1156

2 −0.5 0.0442 0.0458 0.0440 0.0446 0.0108 0.0154

2 1.5 0.0538 0.0548 0.0714 0.0598 0.1100 0.1104

2 3 0.0460 0.0504 0.2006 0.1106 0.4968 0.2102

2 6 0.0470 0.0542 0.3882 0.1606 0.7736 0.1344
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Table 6 Rejection frequencies of the LR test

Nominal level

β22 = 1 β22 = 0.1 β22 = 0.0001

γ1 γ2 N 10% 5% 1% 10% 5% 1% 10% 5% 1%

0 −3 2000 0.1010 0.0494 0.0100 0.0960 0.0464 0.0082 0.0654 0.0283 0.0048

400 0.0992 0.0518 0.0128 0.0798 0.0388 0.0090 0.0698 0.0324 0.0066

0 −1.5 2000 0.1000 0.0492 0.0106 0.0998 0.0490 0.0104 0.0828 0.0366 0.0062

400 0.1000 0.0514 0.0118 0.0946 0.0476 0.0108 0.0834 0.0408 0.0072

0 −0.5 2000 0.0986 0.0488 0.0120 0.0986 0.0488 0.0120 0.0958 0.0478 0.0108

400 0.0996 0.0522 0.0112 0.0996 0.0520 0.0110 0.0956 0.0510 0.0110

0 0.5 2000 0.1000 0.0488 0.0112 0.1000 0.0488 0.0112 0.0966 0.0484 0.0098

400 0.0996 0.0534 0.0116 0.0992 0.0530 0.0114 0.0962 0.0518 0.0110

0 1.5 2000 0.0988 0.0538 0.0110 0.0986 0.0536 0.0106 0.0810 0.0410 0.0080

400 0.0990 0.0510 0.0106 0.0948 0.0434 0.0086 0.0806 0.0414 0.0070

0 3 2000 0.0998 0.0548 0.0106 0.0956 0.0488 0.0076 0.0664 0.0340 0.0054

400 0.0962 0.0496 0.0102 0.0732 0.0324 0.0042 0.0676 0.0298 0.0050

2 −6 2000 0.1014 0.0536 0.0100 0.0648 0.0312 0.0066 0.0510 0.0240 0.0042

400 0.0956 0.0514 0.0114 0.0482 0.0244 0.0058 0.0456 0.0238 0.0044

2 −3 2000 0.0974 0.0520 0.0092 0.0942 0.0482 0.0092 0.0554 0.0240 0.0046

400 0.0990 0.0504 0.0106 0.0620 0.0300 0.0068 0.0498 0.0248 0.0050

2 −1.5 2000 0.0940 0.0466 0.0096 0.0978 0.0514 0.0114 0.0740 0.0350 0.0056

400 0.0972 0.0524 0.0078 0.0826 0.0416 0.0070 0.0682 0.0328 0.0066

2 0.5 2000 0.0974 0.0478 0.0104 0.0968 0.0478 0.0124 0.0936 0.0472 0.0102

400 0.1010 0.0462 0.0078 0.0954 0.0486 0.0086 0.0950 0.0456 0.0092

2 1.5 2000 0.0990 0.0514 0.0100 0.0994 0.0522 0.0096 0.0808 0.0404 0.0084

400 0.0922 0.0496 0.0092 0.0914 0.0474 0.0062 0.0814 0.0380 0.0072

2 3 2000 0.0996 0.0492 0.0104 0.0926 0.0454 0.0062 0.0588 0.0284 0.0056

400 0.0940 0.0476 0.0074 0.0708 0.0302 0.0020 0.0538 0.0258 0.0046

2 6 2000 0.0994 0.0492 0.0106 0.0678 0.0276 0.0046 0.0492 0.0268 0.0062

400 0.0894 0.0462 0.0084 0.0492 0.0218 0.0036 0.0462 0.0238 0.0052
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Fig. 1 Rejection frequencies of the z-test under weak identification, H0 : γ1 = 0, nominal level 5%, N = 2000
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Fig. 2 Rejection frequencies of the z-test under weak identification, H0 : γ1 = 2, nominal level 5%, N = 2000
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Appendix: Simulation results for model (5) with β11 = π21 = 0
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Table 7 Rejection frequencies of the z-test, H0 : γ1 = 0

Nominal level

β22 = 1 β22 = 0.1 β22 = 0.0001

γ2 N 10% 5% 1% 10% 5% 1% 10% 5% 1%

−6 2000 0.0888 0.0482 0.0178 0.1586 0.1118 0.0516 0.1724 0.1172 0.0474

400 0.0982 0.0668 0.0308 0.1774 0.1188 0.0544 0.1776 0.1232 0.0498

−3 2000 0.0982 0.0470 0.0120 0.1248 0.0894 0.0408 0.1508 0.0942 0.0350

400 0.0866 0.0478 0.0190 0.1516 0.1012 0.0396 0.1534 0.1010 0.0350

−1.5 2000 0.0998 0.0484 0.0090 0.0930 0.0636 0.0242 0.0892 0.0490 0.0140

400 0.0960 0.0468 0.0126 0.1042 0.0608 0.0214 0.0940 0.0528 0.0132

−0.5 2000 0.1002 0.0502 0.0098 0.0714 0.0340 0.0078 0.0128 0.0030 0.0000

400 0.0958 0.0470 0.0110 0.0456 0.0188 0.0018 0.0144 0.0050 0.0002

0.5 2000 0.1018 0.0510 0.0074 0.0712 0.0330 0.0096 0.0116 0.0042 0.0002

400 0.0948 0.0478 0.0096 0.0398 0.0172 0.0026 0.0132 0.0046 0.0004

1.5 2000 0.0992 0.0492 0.0088 0.0956 0.0618 0.0242 0.0860 0.0488 0.0132

400 0.0916 0.0482 0.0100 0.0972 0.0602 0.0194 0.0904 0.0508 0.0124

3 2000 0.0964 0.0492 0.0094 0.1264 0.0888 0.0392 0.1494 0.0942 0.0342

400 0.0862 0.0464 0.0152 0.1438 0.0956 0.0370 0.1556 0.1004 0.0360

6 2000 0.0902 0.0482 0.0136 0.1596 0.1108 0.0504 0.1736 0.1192 0.0486

400 0.0944 0.0626 0.0280 0.1706 0.1166 0.0486 0.1800 0.1236 0.0482

Table 8 Rejection frequencies of the z-test, H0 : γ1 = 2

Nominal level

β22 = 1 β22 = 0.1 β22 = 0.0001

γ2 N 10% 5% 1% 10% 5% 1% 10% 5% 1%

−6 2000 0.0874 0.0542 0.0216 0.2668 0.2282 0.1668 0.5634 0.5166 0.4388

400 0.1036 0.0702 0.0406 0.4466 0.4058 0.3358 0.5700 0.5276 0.4510

−3 2000 0.0968 0.0486 0.0128 0.1588 0.1248 0.0802 0.3724 0.3128 0.2164

400 0.0826 0.0520 0.0198 0.2818 0.2362 0.1602 0.3756 0.3162 0.2214

−1.5 2000 0.0922 0.0462 0.0104 0.1058 0.0726 0.0330 0.1584 0.1020 0.0408

400 0.0976 0.0500 0.0110 0.1422 0.0946 0.0416 0.1628 0.1046 0.0408

−0.5 2000 0.0938 0.0464 0.0100 0.0676 0.0318 0.0062 0.0124 0.0034 0.0000

400 0.1004 0.0486 0.0078 0.0412 0.0148 0.0016 0.0142 0.0044 0.0002

1.5 2000 0.0994 0.0514 0.0102 0.0904 0.0580 0.0230 0.0712 0.0368 0.0078

400 0.0956 0.0412 0.0096 0.0840 0.0510 0.0174 0.0736 0.0406 0.0092

3 2000 0.0986 0.0510 0.0106 0.1558 0.1214 0.0758 0.3184 0.2576 0.1604

400 0.0830 0.0436 0.0154 0.2488 0.1966 0.1208 0.3266 0.2670 0.1630

6 2000 0.0922 0.0510 0.0188 0.2648 0.2252 0.1654 0.5490 0.5020 0.4210

400 0.1044 0.0702 0.0324 0.4402 0.3968 0.3240 0.5604 0.5144 0.4304
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