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Abstract 

We derive a general characterization of Granger non-causality between two vectors, X, and X,, in terms of impulse 

responses, when a third vector of auxiliary variables, X,, is also used to forecast. It is observed that the usual 
characterizations of non-causality in terms of impulse responses or variance decompositions can be misleading in such 

situations. A numerical illustration is also provided. 

1. Introduction 

Since the classical contributions of Sims (1980a, b, 1982), vector autoregressive models (VAR) 
have been wjdely used to study the dynamic structure of economic time series. Especially 
important properties that are analyzed from such models include causality in the sense of Wiener 
(1956) and Granger (1969), impulse responses (coefficients of moving average representations) 
and innovation accounting (variance decompositions). These properties are linked. In particular, it 
is often argued that non-zero impulse responses (after an appropriate orthogonalization, if 
required) indicate the presence of Granger causality, while variance decompositions yield natural 
measures of Granger causal priority. For example, while discussing VAR systems with three and 
six variables, Sims (1982, pp. 131-132) states: ‘A natural measure of the degree to which Granger 
causal priority holds is the percentage of forecast error variance accounted for by a variable’s own 
future disturbances in a multivariate linear autoregressive model . . . . A variable that is optimally 
forecast from its own lagged values will have all its forecast error variance accounted for by its 
own disturbances’; see also Sims (1980b, pp. 251-2.52) for a similar statement. Several other 
authors who have analyzed multivariate VAR models with more than two variables have also used 
the same relationship between variance decompositions and Granger causality; see, for example, 
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McMillin (1988, pp. 325-326), Faroque and Veloce (1990, p. 281), Kyereme (1991, pp. 1807- 
1808), Stam et al. (1991, pp. 214 and 225), and Tegene (1991, p. 1374). 

The bivariate stationary systems, the equivalence between Granger non-causality from a 
variable X, to a variable X, (X, 4X,) and the nullity of the coefficients of the innovations of X, 
in the bivariate moving average (MA) representation of X, has been established by Sims (1972); 
see also Pierce and Haugh (1977, Theorem 4.2). It is then straightforward to see that the 
proportion of the variance of X, accounted for by the innovations of X, must be zero. 
Furthermore, it is easy to obtain a similar result when X, and XZ are vectors; see Caines and Chan 
(1975) and Liitkepohl (1991, section 2.3). Consequently, whenever a stationary process has an 
autoregressive (AR) representation, there is a simple duality between characterizations of non- 
causality based on AR coefficients and those based on MA coefficients. On the other hand, as the 
quotes and references given above clearly show, it is not widely recognized that the simple linear 
MA characterization of non-causality holding in bivariate systems does not extend to multivariate 
systems which include variables other than X, and X,. In particular, no general MA characteriza- 
tion of non-causality for such systems appears to be available. 

The main purpose of this paper is to give a general necessary and sufficient condition for 
non-causality in terms of MA coefficients between two vectors (or variables) inside a larger system 
that may include other variables as well. The setup considered is the class of second-order 
stationary and invertible (strictly indeterministic) stochastic processes, i.e. stationary indeterminis- 
tic processes possessing an autoregressive representation (possibly of infinite order). The condition 
given involves non-linear restrictions on the MA coefficients and clearly shows that the duality 
between AR and MA characterizations of non-causality, which occurs in bivariate systems, does 
not generally hold in multivariate systems, and why it is so. In particular, even if X, does not 
cause X1 in the sense of Granger, the innovations of X, may account for a sizeable proportion of 
the variance of X,. Conversely, even if the latter proportion is zero, it is quite possible that X, 
causes X,. A simple numerical example illustrating such situations is given below. These 
complications occur irrespective of whether the innovations of the process are contemporaneously 
correlated (or not) and so are quite distinct from the familiar problems associated with the choice 
of an orthogonalization for the innovations of the model. We also deduce from our characteriza- 
tion a number of simpler (linear) sufficient conditions based on MA coefficients (or impulse 
responses) as well as a necessary condition which only depends on the first impulse coefficient. 

In section 2 we give the required definitions and describe the setup considered. In section 3 we 
derive the conditions for non-causality proposed. A numerical illustration is presented in section 
4. We conclude in section 5 by discussing some practical implications of our results. 

2. Framework 

Let {X(t) : t E Z} be an m x 1 discrete-time vector stochastic process which possesses a moving 
average representation of the form 

t E 27 3 (1) 

where I+!J~, k 20, are m x m matrices such that C~+,]]I/Q,~~’ is finite and I+!+, = I,, ]]4k]]2 = tr(&$L), 

9(B) = %, &B k is a matrix of formal series in the lag operator B, {a(t) : t E Z} is a white noise 
process with non-singular covariance matrix, i.e. the vectors a(t) are mutually uncorrelated such 
that E[a(t)] = 0 and det(V[a(t)]) # 0; we also suppose that a(t) is the innovation process of X(t). 



‘1 z %u uaqM ‘(I) uopewasaldal vm aql 30 sluar3y3aoD aq$ 30 stulal us (“I+- lx) “1 01 Ix 
LLIOJJ dl!IESnwUOU .Ia%clf) 30 uo!lez!lal~e_wq~ Ielaua$l 1? aA$? aM uop!sodold %I!MO[~O~ aql UI 

aIdw!s E qDns <laAaA$; cur) ’ 
uasald ale saIqepeA iCrwI!xne uaqM spIoq Ja8uol ou uoge]aldlalu! 

.yTz# swa!3y3aoD asuodsal asIndw! aql30 uoge~a~d~a~u! iCuIesne3 IDa_up B 
SMOI~ pue [(s’z uopDas ‘1661) Iqodaylg aas] u~ouy IIaM sl /C~gesneJ-uou 30 (L) uoyez!law2eq~ 

(L) 
.‘...‘ z‘T=y ‘~=~‘~~~~I~(z~1OJ(Z)~~~~~~tr~~ 

wyl 0s ‘[(I ucq!sodoq ‘2661) 
.le Ia eqeIIa[pnogg aas] ‘1 tr Ix 103 luaIDy3ns pue &ssaDau s! 1 5 121 103 0 = (Z)‘“JJ uog!puon 
aql ‘a.~ou~~aq~m+~ ‘15 121 103 0 = (z)lz* se qDns ‘u1.103 awes aql 30 suo~~~puo~ lay30 103 ICI.I~I!LLI!S 

pue ‘ . . . ‘z ‘1 = y ~03 0 = y’zu ‘a.! ‘olaz s! yzylz~ ‘=zz SaIlas laMod aql u! luapy3aoD q3ea leql . 
%uyw 01 luaIeA!nba sl 9 5 Iz( 103 0 = (z) ‘“JJ uop!puo2 aql ‘( 1 5 g > 0)s ~ue~suo~ Ieal aAg!sod ~CUF 
JOJ ‘1 5 1zI alay& ‘0 = (z)Iz# 3’ lcIuo pue 3’ 0 = (z)‘“,JJ 1eq1 aas 01 ha sr 11 ‘(0 = “zu) luasald aJe 
saIqcpeA LwI~xne ou pue aIqglaAu! s! (I)X ssaD,old aql uaqM ..f+ ? 3~ 0 = o’~$ pue ‘L= T 31 ‘“I= “%f~ 
‘(E ‘z ‘1 = ., ‘?) J ZU X ‘2~4 SUO!SUaUUp aAT?q (g)“,TJ pU?Z (g)‘@ “%f~ a.IaqM ‘,g”$ “=~~ = (g)“$ qJ!M 

(9) 
‘ E‘z’1=e[(8 hu] = (& ‘ ‘“‘z”=“?[(s)!!~] = (&4 

:(1)X Put (J)n 30 suo!l!lled aql WY ~lqerulo3uo3 ( ~),JJ pw (a)$ ‘%/I uog!wd MOU sn la? 
‘(2661) .Ie ia eqeIIa[pnog aas :,[zzu ‘ . . ‘1 = f : ( . I(1 + ~)%)3] 

= (. I(1 + I)“X)3 pue ,[zuI ‘ . . . ‘I = I : (J)‘z4 = (7)‘X ‘[ . I(l)“X]d - (l)‘X = ( . I(1 + I)“X)3 alaqk 

(s) ‘rIIe.103 ‘zu,4‘...s 1 = .1 ‘MO% ‘(VXI(I + lp+,lA = [((j)xI(r + J)‘Z43]A 

(v) ‘ JI1” -I03 ‘[(Wg ‘(J)zxI(T + l>“X)3]A = [((&I([ + #x)3]n 

:suo~l~puo3 %U!MOIIO3 0~1 aql 30 au0 .Iaqi!a 01 lualeA!nba 
s! (E) wq$ aas 01 ha s! 11 .(lowado uogsa[old .wauy aql .a.!) ‘1, .wq aql lal3c kgeaddr! 
saIqey.wA 30 lsq aqi uo pawq (I + 1)‘~ 30 swauodtuo3 aqi 30 (asuas alnbs ueaw aql u!) slowpald 

leau!I isaq aqi 30 loi2aA aqi s! [. I(r + l)“x]d pue (I 5 L : (J)‘x) = (3)!x ‘(I 6 L : (L)x) = (J)X alaqM 

(El 1 IP JO3 ‘[(J)‘j( ‘(@“xl(r + 4ZXld = [(1)x1(1 + j)“X]~ 
:I hwqeqo~d qi!M SpIoq iCi!iuap! %u!MoIIo3 aqi 3~ (“x+ ‘X paiou) 

la%r?lg 30 asuas aqi u! “x asrz~~ iou saop ‘x icyi iCes aM ‘(I) IapouI 30 ixaiuo:, aql u! ‘alou 
-~aqw-g .(a 3 z) aID+ l!un aql ap!slno ~100.1 sl! II” seq 0 = [(z)$]lap uoyenba aql leql awnsse 

aM pue ‘30 > Il”ull ‘=2x ‘,a”u ‘=~~ - “z = ,_(a>4 = (a>u hq pauyap s! (a)~ xgew aql alaqM 

(z) ‘ z 3 1 ‘(a = (J)X(8)LI 

:LI.IJO~ aA!ssa.Ga.xolne LIT uall!lM aq LIED $1 J! a~qgmtu? s! (1)~ ssazold aql leql /Ces aM 

.slo$DaAqns 0~1 LIuo SaAIoAu! uogywd aql ‘0 = ‘~1 uaqM ‘2.~ = Ed + ‘I_U + ‘2.u put? 0 7 Ed 
‘1 7 zu4 ‘17 ‘2~4 qi!M 1 X h4 uo!suauup aAeq (3)‘o pue (3)‘~ alaqm ‘,(,(J)% ‘,(J)~o ‘,(~)‘YJ) = (1)~ 

pun ,( ,(J)~x ‘,(I)~x ‘,(I)‘x) = (1)~ :slovaAqns aalql owy (3)~ pue (3)~ uog!wd sn laI ‘a~our~aqlm~ 



330 J.-M. Dufour and D. Tessier I Economics Letters 42 (1993) 327-333 

Proposition 1. Let X(t) be a second-order stationary process which satisfies (l), let m3 2 1, and let 6 
be any real constant such that 0 < 6 5 1 and det[&(z)] # 0 for IzI < 6. Then X, +X2 if and only v 

G%,(z) - Mz)1cr33(z)-‘~31(4 = 03 for IZI <a . (8) 

Proof. By the invertibility condition, the process X(t) satisfies Eq. (2) where ZZ(z) = (cl(z))’ for 
Iz] 5 1. Furthermore, by Proposition 1 of Boudjellaba et al. (1992) we have 

X,-+X,eZ&,(z)=O, for 1~151. 

Let A,,(z) = M,(41;,,=z,~ and h&4 = do&) - llr23(z)~~,,,(2>-‘1cI,20. Since h,(O) = L 7 i = 
1,2,3, and I&(O) = 0 for z #j, the matrices I+&(Z), i = 1,2,3, A,,(z) and I,&.,(Z) are all invertible 

for (z\ sufficiently small, say for ]zI <S,, where 0<6,, < 1. Let A,,(z)-’ = [si’(z)], ,=2 3, where 
s”(z) is an m, x mj matrix (Iz] < 6,). By standard formulas for the inversion of partitioned 
matrices [see Graybill (1983, section 8.2)], we see that, for ]z] (6, (dropping the symbol z to 
simplify the notation), 

Thus, ZZz, = 0 for Iz] ~6, if and only if I&, - (c123$yd&, = 0 for IzI <a,,. Furthermore, by the 
unicity of the coefficients of convergent power series, identity (8) holds for ]z] < 6, if and only if it 
also holds for ]z( ~6, where 6 is any constant such that 0~6 5 1 and det[t,&(z)] f0. Q.E.D. 

In Proposition 1, it is clear (by continuity) that the constant 6 always exists because +&(O) = I,_ # 
0. The relevant restrictions on the matrices &,, k 2 1, are obtained by setting equal to zero the 
coefficients of the formal series expansion of I,!J~,(z) - ~CI,,(Z)I,&(Z)-~&,(Z). Condition (8) implies 
that &r(z) = 0 is neither necessary nor sufficient for X, +X2. Causality from X, to X2 also 
depends on the impulse responses of the innovations of Xi on X3(&,), those of X, on X2 ($23), 
and the own impulse responses of X, (I,&): causality from X, to X, may be due to (or cancelled 
by) the joint effect of the innovations of X, on X, and the innovations of X, on X2. However, it is 
easy to derive from (8) relatively simple sufficient conditions for X-+X,. The following corollary 
provides such conditions. 

Corollary 1. Under the assumptions of Proposition 1, each one of the three following conditions is 
sufficient for X, If X2: 

(4 +2I(z) = 0 and &(z)~&-~~CI~~(Z) = 0, for IzI<6 ; (9) 

(b) &i(z) = 0 and $*3(z) = 0, for Iz] < 6 ; (10) 

(c) I+&(Z) = 0 and I+&(Z) = 0, for Iz] < 6 . (11) 
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Condition (10) can be interpreted as the case where the innovations of both X, and X, have no 
effect on X,, while condition( 11) is the case where the innovations of X, have no effect on both 
X, and X,. In these cases, the matrix $(B) can be put in a block-triangular form (after permuting 
either X, and X,, or X, and X,). Conversely, if we observe that 

we can see from (8) that ~&ii, the coefficient of a,(t - 1) in the MA representation of X2(t), must 

be zero to have X, + X, : I,!J~~~ = 0 is a necessary condition for X, -+X2 (but &ik = 0, for k 2 2, is 
not). 

Corollary 2. Under the assumptions of Proposition 1, the condition q!tzI1 = 0 is necessary for 
x, -tx*. 

Since the condition &i(z) = 0 is neither necessary nor sufficient for X, + X,, it remains of interest 
to know which restrictions on n(z) are equivalent to r,&i(z) = 0. These can be obtained easily if we 

replace $(B) by Zi’(B) = 4(B)- ’ in model (l), yielding the following proposition. 

Proposition 2. Let the assumptions of Proposition 1 hold, and let 6, be any real constant such that 
0 < 6,~ 1 and det[&(z)] # 0 for ]z] < 6,. Then q!rzI(z) = 0 for Iz] <a,, if and only if 

G,(z) - LUz)&(Z)-‘~,, (z) = 0, for IA < 6, . 

4. Numerical example 

To illustrate that AR and MA coefficients can suggest very different ‘causality’ interpretations, 
consider the following simple trivariate AR(l) model: 

X(t) - IL,X(t - 1) = a(t), t E Z , (12) 

where X(t) = (X,(t), X2(t), X3(t))’ and u(t) = (a,(t), a,(t), a,(t))’ are vectors of dimension 3, and 

L 

0.7 -0.5 0.2 
ZZ, = 0.0 -0.1 0.6 , 

I 
E[a(t)a(t)‘] = Z, . (13) 

-0.8 -0.1 0.5 

It is easy to see that all the roots of the equation det(Z, - ZZ,z) = 0 are outside the unit circle, so 
that the model is stationary. Furthermore, the innovations u(t) have an identity covariance matrix 
so that there is no need to orthogonalize them to obtain a variance decomposition. 

Since 

X2(t) = 0.1 X2(t - 1) - 0.6 X3(t - 1) + a,(t) , 

it is clear that X, does not cause X, in the sense of Granger. On the other hand, when we look at 
the MA representation of X2(t), 

P 

X2(t) = ‘,@) + k;l [hlk I a (t - k) + +22ka& - k) + &3k a,@ - k)l 3 
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Table 1 

Impulse responses I&,, and variance proportions p,,(k) from X, to X, in the trivariate AR(l) model (12) 

k 1 2 3 4 5 10 25 50 100 

* Zlk 0 -0.480 -0.528 -0.365 -0.275 -0.166 -0.027 -0.001 0.000 
p>,(k) 0 0.139 0.256 0.295 0.314 0.369 0.388 0.389 0.389 

where & = ZZ: = [+ij;ik]l,,=1,2,3, we see that the coefficients +l,k of the innovations a,(t - k), k 2 1, 
are quite sizeable; see Table 1. Correspondingly, the proportion of the k-step-ahead forecast error 
variance of X2(t) due to the innovations al(t), i.e. 

p,,(k) = i +i,,/(i i +ij,) T 
h=O j=l h=O 

is different from zero; for example, for k = 50, it is equal to 0.389, clearly an important proportion 
of the total variance of X2(f). 

Conversely, if we consider the trivariate MA(l) model, 

X(t) = u(t) - qa(t - l), t E z ) 

where II, and a(t) satisfy (13), the impulse responses of u,(t - k), k L 0, on X2(f) are all zero so 
that the proportion p,,(k) of the k-step-ahead forecast error variance of X2(t) is zero, irrespective 
of the value of k(k Z- 1). On the other hand, it is clear that X, causes X, in the sense of Granger. 

5. Concluding remarks 

In general, the characterization of non-causality from X, to X, given in Proposition 1 [condition 
(S)] leads one to consider non-linear restrictions on the MA coefficients of the model. It is easy to 
see that these restrictions involve multilinear forms in the MA coefficients (i.e. quadratic or higher 
order forms). In special cases, such as MA models of finite order (with possibly other restrictions 
on their coefficients), condition (8) may lead to relatively simple restrictions, which may be tested 
fairly easily with Wald-type or likelihood-ratio tests (under appropriate regularity conditions). It is 
also worthwhile noting that the sufficient conditions (10) or (11) and the necessary condition 
I,&~, = 0 are also linear in the MA coefficients, hence relatively easy to test. For AR models of 
finite order, however, such simplifications are unlikely to occur. Furthermore, it is well known 
that standard asymptotic theory may not work for tests of multilinear restrictions; for an 
illustration, see Boudjellaba et al. (1992). 

In contrast with (8), the equivalent characterization II,,(z) = 0 always involves linear restric- 
tions (on the AR coefficients). Consequently, when the model is estimated in autoregressive form, 
which is typically the case for VAR models of finite order, the characterization I&,(z) = 0 clearly 
provides a simpler and more natural parameterization for testing Granger non-causality. Even 
though the asymptotic distribution of estimated impulse responses derived from VAR models can 
be established under general regularity conditions [see, for example, Baillie (1987) and Lutkepohl 
(1990, 1991)], the impulse responses are non-linear transformations of the autoregressive 
coefficients I&, k 2 1, and there is no advantage in considering such impulses to test Granger 
causality. It is also important to remember that the often-used characterization t&i(z) = 0 can be 
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misleading when a third vector of variable is used to forecast: it is neither necessary nor sufficient 
to have Granger non-causality from X, to X2. Furthermore, in this case, the proportion of the 
variance of X2 accounted for by the innovations of X, is not a measure of Granger causal priority 
from X, to X2. If it is related to ‘causality’, the characterization &,21(z) = 0 must involve a different 
notion of causality. 
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