Projection-based statistical inference in linear structural models with possibly weak instruments *

Jean-Marie Dufour †
Université de Montréal

Mohamed Taamouti ‡
Université de Montréal and INSEA

First version: August 1999
This version: May 2003
Compiled: August 26, 2005, 6:10pm

This paper has been published in Econometrica, Vol. 73 (2005), no. 4, 1351-1365.

* The authors thank Craig Burnside for providing us his data, as well as Laurence Broze, John Cragg, Jean-Pierre Florens, Christian Gouriéroux, Joanna Jasiak, Frédéric Jouneau, Lynda Khalaf, Nour Meddahi, Benoît Perron, Tim Vogelsang and Eric Zivot for several useful comments. This work was supported by the Canada Research Chair Program (Chair in Econometrics, Université de Montréal), the Alexander-von-Humboldt Foundation (Germany), the Canadian Network of Centres of Excellence [program on Mathematics of Information Technology and Complex Systems (MITACS)], the Canada Council for the Arts (Killam Fellowship), the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, the Fonds de recherche sur la société et la culture (Québec), and the Fonds de recherche sur la nature et les technologies (Québec). One of the authors (Taamouti) was also supported by a Fellowship of the Canadian International Development Agency (CIDA).

† Canada Research Chair Holder (Econometrics). Centre interuniversitaire de recherche en analyse des organisations (CIRANO), Centre interuniversitaire de recherche en économie quantitative (CIREQ), and Département de sciences économiques, Université de Montréal. Mailing address: Département de sciences économiques, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, Québec, Canada H3C 3J7. TEL: 1 (514) 343 2400; FAX: 1 (514) 343 5831; e-mail: jean.marie.dufour@umontreal.ca. Web page: http://www.fas.umontreal.ca/SCECO/Dufour

‡ INSEA, Rabat and CIREQ, Université de Montréal. Mailing address: INSEA., B.P. 6217, Rabat-Instituts, Rabat, Morocco. TEL: 212 7 77 09 26; FAX: 212 7 77 94 57. e-mail: taamouti@insea.ac.ma.
ABSTRACT

It is well known that standard asymptotic theory is not applicable or is very unreliable in models with identification problems or weak instruments. One possible way out consists here in using a variant of the Anderson-Rubin (1949, AR) procedure. The latter allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, but not for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997), Dufour and Jasiak (2001)]. At first sight, however, these techniques can be implemented only by using costly numerical methods. In this paper, we give a general necessary and sufficient condition which allows one to check whether an AR-type confidence set is bounded. Further, we also provide an analytic solution to the problem of building projection-based confidence sets from AR-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building confidence intervals.

Key words: Simultaneous equations; structural model; instrumental variable; weak instrument; confidence interval; testing; projection; exact inference; asymptotic theory.
Contents

1. Introduction .. 1
2. Framework .. 2
3. Anderson-Rubin-type confidence sets 3
4. Geometry of quadric confidence sets 4
 4.1. Nonsingular concentration matrix 5
 4.2. Singular concentration matrix 6
 4.3. Necessary and sufficient condition for bounded quadric confidence set 6
5. Confidence sets for transformations of \(\beta \) 7
6. Conclusion ... 8
A. Appendix: Proofs .. 9

List of Propositions and Theorems

<table>
<thead>
<tr>
<th>Proof of Theorem</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>9</td>
</tr>
<tr>
<td>5.2</td>
<td>9</td>
</tr>
<tr>
<td>5.3</td>
<td>11</td>
</tr>
</tbody>
</table>
1. Introduction

One of the classic problems of econometrics consists in making inference on the coefficients of structural models. Recently, the statistical problems raised by such models have received new attention in view of the observation that proposed instruments are often “weak”, i.e. poorly correlated with the relevant endogenous variables, which corresponds to situations where the structural parameters are close to being not identifiable (given the instruments used). The literature on this topic is now considerable; see the reviews of Stock, Wright, and Yogo (2002) and Dufour (2003).

In view of the unreliability of asymptotic arguments in such setups, we focus here on procedures for which finite-sample pivotality obtains under standard assumptions. The oldest one appears to be the statistic proposed by Anderson and Rubin (1949, henceforth AR). The latter is a limited-information method which allows one to test an hypothesis setting the full vector of the endogenous explanatory variable coefficients in a linear structural equation; under usual parametric assumptions (error Gaussianity, instrument strict exogeneity) the distribution of the statistic is a central Fisher distribution, while under weaker (standard) assumptions it is asymptotically chi-square. It is completely robust to the presence of weak instruments. Other potential pivots aimed at being robust to weak instruments have recently been suggested by Wang and Zivot (1998), Kleibergen (2002) and Moreira (2003). However, only asymptotic distributional theories have been supplied for these statistics, so that the level of the procedures may not be controlled in finite samples.\(^1\)

An important practical shortcoming of the above methods is that they are designed to test hypotheses of the form \(H_0 : \beta = \beta_0\), where \(\beta\) is the coefficient vector for all the endogenous explanatory variables. In particular, these statistics do not allow one to test linear restrictions on the vector \(\beta\). A general solution to this problem is the projection technique described in Dufour (1990, 1997), Wang and Zivot (1998) and Dufour and Jasiak (2001). A drawback of the projection approach comes from the fact that it can be numerically costly: for example, in Dufour and Jasiak (2001), such confidence intervals were derived for an empirical example, but nonlinear optimization methods [based on Fortran IMSL routines] had to be used.

In this paper, we study some general geometric features of AR-type confidence sets and we provide a close-form solution to the problem of building projection-based confidence sets from such sets. First, we observe that AR-type confidence sets can be described as quadrics, a class of geometric figures which covers as special cases the usual confidence intervals and ellipsoids, but also includes hyperboloids and paraboloids. In particular, we give a simple necessary and sufficient condition under which such confidence sets are bounded (which indicates identifiability). Second, we derive simple explicit expressions for projection-based confidence intervals in the case of coefficient linear transformations, so that no search by nonlinear methods is anymore required.

In Section 2, we present the background model and the basic statistical method considered. Section 3 presents the quadric confidence sets. In Section 4, we discuss some general properties of

\(^1\) As a limited-information method, the AR procedure may involve an efficiency loss with respect to full-information methods, but does allow for a less complete specification of the model and more robustness [for further discussion of this point, see Dufour and Taamouti (2004)]. Note also that proposed exact or asymptotic pivots in this context typically take for granted a number of structural restrictions which characterize the specification of the structural equation. If the assumptions suggested by the structural model are relaxed, e.g. by considering the corresponding unrestricted reduced form, the AR statistic as well as most other pivots may cease to be pivotal [see Forchini and Hillier (2003)]. Here, as in most of the literature on weak instruments, we focus on the situation where the structural restrictions are maintained.
quadric confidence sets and provide a simple necessary and sufficient condition under which such sets are bounded. Section 5 provides explicit projection-based confidence intervals for individual structural parameters and linear transformations of these parameters. We conclude in Section 6.

2. Framework

We consider here a standard simultaneous equations model (SEM):

\[y = Y \beta + X_1 \gamma + u, \]
\[Y = X_1 \Pi_1 + X_2 \Pi_2 + V, \]

where \(y \) and \(Y \) are \(T \times 1 \) and \(T \times G \) matrices of endogenous variables, \(X_1 \) and \(X_2 \) are \(T \times k_1 \) and \(T \times k_2 \) matrices of exogenous variables, \(\beta \) and \(\gamma \) are \(G \times 1 \) and \(k_1 \times 1 \) vectors of unknown coefficients, \(\Pi_1 \) and \(\Pi_2 \) are \(k_1 \times G \) and \(k_2 \times G \) matrices of unknown coefficients, \(u = (u_1, \ldots, u_T)' \) is a vector of structural disturbances, and \(V = [V_1', \ldots, V_T']' \) is a \(T \times G \) matrix of reduced-form disturbances. Further,

\(X = [X_1, X_2] \) is a full-column rank \(T \times k \) matrix

where \(k = k_1 + k_2 \). Finally, to get a finite-sample distributional theory for the test statistics, we shall use the following standard assumptions:

1. \(u \) and \(X \) are independent;
2. \(u \sim N[0, \sigma^2_u I_T] \).

In such a model, we are generally interested in making inference on \(\beta \) and \(\gamma \). In Dufour (1997), it is shown that, if the model is unidentified (i.e., the matrix \(\Pi_2 \) does not have maximal rank), any valid confidence set for \(\beta \) or \(\gamma \) must be unbounded with positive probability. This is due to the fact that such a model may be unidentified and holds indeed even if identification restrictions are imposed. This result explains many recent findings on the performance of standard asymptotic statistics when the instruments \(X_2 \) are weakly correlated with the endogenous explanatory variables \(Y \). The usual approach, which consists in inverting Wald-type statistics to obtain confidence sets, is not valid in these situations since the resulting confidence sets are bounded with probability 1. This is related to the fact that such statistics are not pivotal and follow distributions which depend heavily on nuisance parameters.

A first solution to this problem [see Dufour (1997) and Staiger and Stock (1997)] consists in using the Anderson-Rubin statistic [Anderson and Rubin (1949)]. To test \(H_0 : \beta = \beta_0 \) in equation (2.1), the test statistic is given by:

\[AR(\beta_0) = \frac{(y - Y \beta_0)'[M(X_1) - M(X)](y - Y \beta_0)/k_2}{(y - Y \beta_0)'M(X)(y - Y \beta_0)/(T - k)} \]

where for any full rank matrix \(B \), \(M(B) = I - P(B) \) and \(P(B) = B(B'B)^{-1}B' \) is the projection
matrix on the space spanned by the columns of B. Under the assumptions (2.3) - (2.5), we have under $H_0 : AR(\beta_0) \sim F(k_2, T - k)$. This test also remains asymptotically valid under weaker distributional assumptions, in the sense that the asymptotic null distribution of $AR(\beta_0)$ is $\chi^2(k_2)/k_2$ [see Dufour and Jasiak (2001) and Staiger and Stock (1997)]. The distributional result in (2.6) holds irrespective on the rank of the matrix Π_2, which means that tests based on $AR(\beta_0)$ are robust to weak instruments. A confidence set for β with level $1 - \alpha$ can also be obtained by inverting the above test:

$$C_\beta(\alpha) = \{\beta_0 : AR(\beta_0) \leq F_\alpha(k_2, T - k)\}$$

(2.7)

where $F_\alpha(k_2, T - k)$ is the $1 - \alpha$ quantile of the F distribution with $(k_2, T - k)$ degrees of freedom.

Below, we shall also consider two alternative statistics proposed by Wang and Zivot (1998). The first one is an LR–type statistic and the second is an LM–type statistic. Under the assumptions (2.1) - (2.5) and additional regularity conditions on the asymptotic behavior of the instruments [described by Wang and Zivot (1998)], these two statistics follow $\chi^2(k_2)$ distributions asymptotically when the model is exactly identified ($k_2 = G$), and are bounded by a $\chi^2(k_2)$ distribution when the model is over-identified ($k_2 > G$). To test $H_0 : \beta = \beta_0$, these statistics are:

$$LR_{\text{LIML}}(\beta_0) = T[\ln(k(\beta_0)) - \ln[k(\hat{\beta}_{\text{LIML}})]] ,$$

(2.8)

$$LM_{\text{2SLS}}(\beta_0) = \frac{T(y - Y\beta_0)'P[P[M(X_1)X_2]Y](y - Y\beta_0)}{(y - Y\beta_0)'M(X_1)(y - Y\beta_0)} ,$$

(2.9)

where $k(\beta_0) = (y - Y\beta_0)'M(X_1)(y - Y\beta_0)/(y - Y\beta_0)'M(X)(y - Y\beta_0)$. Asymptotic and conservative confidence sets for β can be obtained by inverting the latter tests.

A common shortcoming of all these tests is that they require one to specify the entire vector β. In particular, they do not allow for general hypotheses of the form $H_0 : g(\beta) = 0$, where $g(\beta)$ may be any transformation of β, such as $g(\beta) = \beta - \beta_0$, where β_i is any scalar component of β. In this paper, we deal with this problem by studying the characteristics of the confidence sets obtained by inverting such statistics, and we use them to derive confidence sets for the components of β or linear combinations of these components. We will show that confidence sets based on the statistics AR, LR and LM can be expressed in terms of a quadratic-linear form involving a matrix A, a vector b and a scalar c. These sets (replacing the inequality by an equality) are known as quadrics; see Shilov (1961, Chapter 11) and Pettorezzo and Marcoantonio (1970, Chapters 9-10). We will then classify possible cases as functions of A, b and c, and we will derive analytic expressions for projection-based confidence sets (or intervals) on linear transformations of model parameters.2

3. Anderson-Rubin-type confidence sets

Let us first consider the AR statistic. A simple algebraic calculation shows that the inequality $AR(\beta_0) \leq F_\alpha(k_2, T - k)$ may be written in the following simple form:

$$\beta_0' A\beta_0 + b' \beta_0 + c \leq 0$$

(3.1)

2This problem was also considered by Stock and Wright (2000), Kleibergen (2001) and Startz, Zivot, and Nelson (2003), but the solutions provided rely on large-sample approximations and require additional identification assumptions.
where \(A = Y'HY \), \(b = -2Y'Hy \), \(c = y'Hy \) and
\[
H = H_{AR} = M(X_1) - \left[1 + \frac{k_2F_\alpha(k_2, T-k)}{T-k} \right] M(X) .
\] (3.2)

We can thus write:
\[
C_\beta(\alpha) = \{ \beta_0 : \beta_0A\beta_0 + b'\beta_0 + c \leq 0 \} .
\] (3.3)

If we use the statistic \(LR_{LIML}(\beta_0) \) or \(LM_{2SLS}(\beta_0) \) instead of \(AR \), we get analogous confidence sets which only differ through the \(H \) matrix. For \(LR_{LIML}(\beta_0) \), this matrix takes the form
\[
H_{LR} = M(X_1) - M(X) k(\hat{\beta}_{LIML}) \exp[\chi^2_\alpha(k_2)/T]
\] (3.4)
while, for \(LM_{2SLS}(\beta_0) \), it is
\[
H_{LM} = P[M(X_1)X_2] - M(X_1)[\chi^2_\alpha(k_2)/T] .
\] (3.5)

For the \(AR \) and \(LR \) statistics, the matrix \(A \) can be written:
\[
A = Y'M(X_1)Y - Y'M(X)Y(1 + f_\alpha)
\]
where \(f_\alpha = k_2F_\alpha(k_2, T-k)/(T-k) \) for \(AR \) and \(f_\alpha = \exp[\chi^2_\alpha(k_2)/T]k(\hat{\beta}_{LIML}) - 1 \) for the \(LR \) statistic. Clearly \(A \) is symmetric with diagonal elements of the form \(A_{ii} = Y'_iM(X_1)Y_i - Y'_iM(X)Y_i(1 + f_\alpha) \), where \(A_{ii} \) is a corrected difference between the sum of squared residuals from the regression of \(Y_i \) on \(X_1 \) and the sum of squared residuals from the regression of \(Y_i \) on \(X = [X_1, X_2] \). This difference can be viewed as a measure of the importance of \(X_2 \) in explaining \(Y_i \), i.e. the relevance of \(X_2 \) as an instrument for \(Y_i \). Similarly, \(c = y'Hy \) is a corrected difference between the sum of squared residuals from the regression of \(y \) on \(X_1 \) and the sum of squared residuals from the regression of \(y \) on \(X = [X_1, X_2] \). For the vector \(b \), a typical element is given by \(b_i = -2\{[M(X_1)Y][M(X_1)y] - [M(X)Y][M(X)y](1 + f_\alpha)\} \). The first term [multiplied by \(-1/(2T)\)] is the sample covariance between the residuals of the regression of \(Y_i \) on \(X_1 \) and the residuals of the regression of \(y \) on \(X_1 \), while the second term gives the same covariance with \(X_1 \) replaced by \(X = [X_1, X_2] \).

4. Geometry of quadric confidence sets

The locus of points that satisfy an equation of the form \(\beta' A\beta + b'\beta + c = 0 \), where \(A \) is a symmetric \(G \times G \) matrix, \(b \) is a \(G \times 1 \) vector and \(c \) is a scalar, constitutes a quadric surface. These include as special cases various figures such as ellipsoids, paraboloids, hyperboloids, cones, etc. Consequently, we shall call a confidence set of the form
\[
C_\beta = \{ \beta_0 : \beta_0A\beta_0 + b'\beta_0 + c \leq 0 \}
\] (4.1)
a quadric confidence set. A quadric is characterized by the sum a quadratic form \((\beta'_0A\beta_0) \) and an affine transformation \((b'\beta_0 + c) \). Depending on the values of \(A, b \) and \(c \), it may take several
forms. In this section, we examine some general properties of quadric confidence sets, especially the conditions under which such sets are bounded or unbounded. In particular, we will see that the eigenvalues of the \(A \) matrix play a central role in these properties and that larger eigenvalues are associated with more “concentrated” (or “smaller”) confidence sets. For these reasons, we call \(A \) the concentration matrix at level \(\alpha \) (or the \(\alpha \)-concentration matrix) associated with \(\beta \). It will be convenient here to distinguish between two basic cases: the one where \(A \) is nonsingular, and the one where it is singular. We adopt the convention that an empty set is bounded.

4.1. Nonsingular concentration matrix

If \(A \) is nonsingular, we can write:

\[
\beta_0^t A \beta_0 + b' \beta_0 + c = (\beta_0 - \tilde{\beta})^t A (\beta_0 - \tilde{\beta}) - d
\]

(4.2)

where \(\tilde{\beta} = -\frac{1}{2} A^{-1} b \) and \(d = \frac{1}{2} b' A^{-1} b - c \). Since \(A \) is a real symmetric matrix, we have

\[
A = P' D P
\]

(4.3)

where \(P \) is an orthogonal matrix and \(D \) is a diagonal matrix whose elements are the eigenvalues of \(A \). The inequality \(\beta_0^t A \beta_0 + b' \beta_0 + c \leq 0 \) may then be reexpressed as

\[
\lambda_1 z_1^2 + \lambda_2 z_2^2 + \cdots + \lambda_G z_G^2 \leq d
\]

(4.4)

where the \(\lambda_i \)'s are the eigenvalues of \(A \) and \(z = P (\beta - \tilde{\beta}) \). The transformation \(z = P (\beta - \tilde{\beta}) \) represents a translation followed by a rotation of \(\beta \), so it is clear that \(C_\beta \) is bounded if and only if (iff) \(C_z \) is bounded, where \(C_\beta = \{ \beta : \lambda_1 z_1^2 + \lambda_2 z_2^2 + \cdots + \lambda_G z_G^2 \leq d \} \) and \(C_z = \{ z : \lambda_1 z_1^2 + \lambda_2 z_2^2 + \cdots + \lambda_G z_G^2 \leq d \} \). Again it will be convenient to distinguish between three cases according to the signs of the eigenvalues of \(A \), namely: (a) all the eigenvalues of \(A \) are positive (\(\lambda_i > 0, i = 1, \ldots, G \)), i.e. \(A \) is positive definite; (b) all the eigenvalues of \(A \) are negative (\(\lambda_i < 0, i = 1, \ldots, G \)), i.e. \(A \) is negative definite; (c) \(A \) has both positive and negative eigenvalues, i.e. \(A \) is neither positive nor negative definite.

(a) Positive definite concentration matrix

If \(\lambda_i > 0, i = 1, \ldots, G \), the inequality (4.4) can be reexpressed as

\[
\left(\frac{z_1}{\gamma_1} \right)^2 + \cdots + \left(\frac{z_G}{\gamma_G} \right)^2 \leq d
\]

(4.5)

where \(\gamma_i = \sqrt{1/\lambda_i}, i = 1, \ldots, G \). If \(d = 0 \), we have \(C_z = \{ 0 \} \) and \(C_\beta = \{ \tilde{\beta} \} \). If \(d < 0 \), \(C_z \) and \(C_\beta \) are empty. If \(d > 0 \), \(C_z \) is the area inside or on an ellipsoid. Thus, \(C_z \) and \(C_\beta \) are bounded.

(b) Negative definite concentration matrix

If \(\lambda_i < 0, i = 1, \ldots, G \), the set \(C_z \) is the set of all values of \(z \) that satisfy

\[
\left(\frac{z_1}{\gamma_1} \right)^2 + \cdots + \left(\frac{z_G}{\gamma_G} \right)^2 \geq -d
\]

(4.6)

where \(\gamma_i = \sqrt{-1/\lambda_i} \). Since (4.6) holds as soon any \(|z_i| \) is large enough, \(C_z \) and \(C_\beta \) are unbounded.
sets. In particular, if \(d \geq 0 \), we have \(C_\beta = C_z = \mathbb{R}^G \).

(c) **Concentration matrix not positive or negative definite.** If \(A \) has both positive and negative eigenvalues, we can assume, without loss of generality, that \(\lambda_i > 0 \) for \(i = 1, \ldots, p \), and \(\lambda_i < 0 \), for \(i = p + 1, \ldots, G \), where \(1 \leq p < G \). Inequality (4.4) may then be rewritten:

\[
\left(\frac{z_1}{\gamma_1} \right)^2 + \cdots + \left(\frac{z_p}{\gamma_p} \right)^2 - \left(\frac{z_{p+1}}{\gamma_{p+1}} \right)^2 - \cdots - \left(\frac{z_G}{\gamma_G} \right)^2 \leq d \tag{4.7}
\]

where \(p \) is the number of positive eigenvalues of \(A \), \(\gamma_i = \sqrt{1/\lambda_i} \) for \(i = 1, \ldots, p \), and \(\gamma_i = \sqrt{-1/\lambda_i} \) for \(i = p + 1, \ldots, G \). Then, for arbitrary given values of \(z_1, \ldots, z_p \) and \(d \), it is clear that inequality (4.7) will hold if any of the values \(z_i, p+1 \leq i \leq G \), is small enough (as \(|z_i| \to \infty \)). Consequently, each component of \(z \) is unbounded in \(C_z \), and similarly for each component of \(\beta \) in \(C_\beta \). This entails that \(C_z \) and \(C_\beta \) are unbounded.

4.2. **Singular concentration matrix**

We now consider the case where \(A \) is singular with rank \(r \) \((r < G) \). First, if \(A = 0 \) (i.e., \(r = 0 \)), it is easy to see that the only situation where \(C_\beta \) can be bounded is the one where \(b = 0 \) and \(c > 0 \) (in which case \(C_\beta \) is empty). So we can focus on the case where \(A \neq 0 \), hence \(r \geq 1 \) and \(G - r \geq 1 \). Without loss of generality, we can assume that the first \(r \) diagonal elements of \(D \) in the decomposition \(A = P'DP \) (the first \(r \) eigenvalues of \(A \)) used in (4.3) are different from zero, while the \(G - r \) other ones are equal to zero. Then we can write:

\[
Q(\beta) \equiv \beta'A\beta + b'\beta + c = \sum_{i=1}^{r} \lambda_i z_i^2 + \sum_{i=r+1}^{G} \delta_i z_i - d \tag{4.8}
\]

where the \(\lambda_i \) are the non-zero eigenvalues of \(A \) \((\lambda_i \neq 0, i = 1, \ldots, r) \), \(\delta = Pb \), \(z = P\beta + \mu \) and

\[
d = -c + \sum_{i=1}^{r} \frac{\delta_i^2}{4\lambda_i}, \quad \mu_i = \begin{cases} \frac{\delta_i}{2\lambda_i}, & \text{if } \lambda_i \neq 0, \\ 0, & \text{otherwise}. \end{cases} \tag{4.9}
\]

If \(b = 0 \), we have \(Q(\beta) = \sum_{i=1}^{r} \lambda_i z_i^2 + c \) and the values of \(z_{r+1}, \ldots, z_G \) can be as big as we wish without affecting the value of \(Q(\beta) \). Then, \(C_\beta \) is either empty (when \(c > 0 \) and \(\lambda_i > 0 \), \(i = 1, \ldots, r \)) or unbounded (in all the other cases). If \(b \neq 0 \), there is at least one \(k \in \{r+1, \ldots, G\} \) such that \(\delta_k \neq 0 \). Then, we can set \(z_j = 0 \) for \(j \neq k \), and choose \(z_k \) such that \(|z_k| \) is arbitrarily large and the inequality (4.4) be satisfied. This entails that \(C_\beta \) is unbounded.

4.3. **Necessary and sufficient condition for bounded quadric confidence set**

Following Gleser and Hwang (1987) and Dufour (1997), a valid confidence set \(C_\beta \) for \(\beta \) (with level \(1 - \alpha \)) in model (2.1)-(2.5) must be unbounded with positive probability for any parameter configuration, a probability that should be large (close to \(1 - \alpha \)) when the matrix \(H_2 \) does not
have full rank (or is close to have full column rank). Given the complicated expressions of the random matrix A, the random vector b and the random scalar c, it seems difficult to evaluate this probability. On putting together the different cases discussed above, we get the following easy-to-verify necessary and sufficient condition for a quadric confidence set to be bounded.

Theorem 4.1 If the matrix A is nonsingular, the set C_{β} in (4.1) is bounded if and only if the matrix A is positive definite. If A is singular, the set C_{β} is bounded only when it is empty, and C_{β} is empty if and only if A is positive semidefinite, $b = 0$ and $c > 0$.

It is of interest to note here that the case where A is singular is unlikely to be met with AR-type confidence sets such as those described in Section 3, because in this case we have $A = Y'HY$, where Y and H are $T \times G$ and $T \times T$ matrices respectively. If Y follows an absolutely continuous distribution (as assumed in Section 2), A will be nonsingular with probability one as soon as the rank of H is greater than or equal to G. In the rest of this paper, we will thus focus on the case of a nonsingular concentration matrix.3

5. Confidence sets for transformations of β

We consider now a general confidence set of the form

$$C_{\beta} = \{ \beta_0 : \beta_0 A \beta_0 + b' \beta_0 + c \leq 0 \}$$

(5.1)

where c is a real scalar, A is a symmetric $G \times G$ matrix, and b is a $G \times 1$ vector. By definition, the associated projection-based confidence interval for the scalar function $g(\beta) = w' \beta$ is:

$$C_{w'\beta} \equiv g[C_{\beta}] = \{ \delta_0 : \delta_0 = w' \beta_0 \text{ where } \beta_0 A \beta_0 + b' \beta_0 + c \leq 0 \}$$

(5.2)

where w is a nonzero $G \times 1$ vector. When the concentration matrix is nonsingular, all the eigenvalues of A are different from 0. Using the transformation $z = P(\beta - \tilde{\beta})$, $C_{w'\beta}$ may then be written:

$$C_{w'\beta} = \{ w' \beta_0 : \lambda_1 z_1^2 + \lambda_2 z_2^2 + \cdots + \lambda_G z_G^2 \leq d \text{ and } z = P(\beta_0 - \tilde{\beta}) \}.$$

Further,

$$w' \beta = w' P' P \beta = w' P' P(\beta - \tilde{\beta}) + w' P' \tilde{\beta} = a' z + w' \tilde{\beta}$$

(5.3)

where $a = Pw$. Setting

$$C_{a' z} = \{ a' z : \lambda_1 z_1^2 + \lambda_2 z_2^2 + \cdots + \lambda_G z_G^2 \leq d \},$$

(5.4)

it is then easy to see that, for $x \in \mathbb{R}$,

$$x \in C_{w'\beta} \iff x - w' \tilde{\beta} \in C_{a' z},$$

(5.5)

3The case where the concentration matrix is singular is discussed in a companion working paper [Dufour and Taamouti (2004)].
hence: $C_{w'\beta} = \mathbb{R} \iff C_{A'} = \mathbb{R}$. We will now distinguish three cases depending on the number of negative eigenvalues: (1) all the eigenvalues of A are positive (i.e., A is positive-definite); (2) A has exactly one negative eigenvalue; (3) A has at least two negative eigenvalues.

When A is positive definite, C_{β} is a bounded set and, correspondingly, its image $g[C_{\beta}]$ by the continuous function $g(\beta) = w'\beta$ is also bounded. The following proposition provides an explicit form for the projection-based confidence set $C_{w'\beta}$.

Theorem 5.1 Let C_{β} be the set defined in (5.1), $d \equiv \frac{1}{4}b'A^{-1}b - c$, let w be a nonzero vector in \mathbb{R}^G, and suppose the matrix A is positive definite. If $d \geq 0$, then

$$C_{w'\beta} = \left[w'\tilde{\beta} - \sqrt{d(w'A^{-1}w)}, \ w'\tilde{\beta} + \sqrt{d(w'A^{-1}w)}\right]$$

where $\tilde{\beta} = -\frac{1}{2}A^{-1}b$. If $d < 0$, then $C_{w'\beta}$ is empty.

Proofs are provided in the Appendix. Note the case where A is positive definite is one where the instruments X_2 provide additional explanatory power for Y (with respect to X_1): the number of strong instruments is sufficient to pin down all parameters (which suggests a traditional identification condition holds). Let us now consider the case where A has exactly one negative eigenvalue.

Theorem 5.2 Let C_{β} be the set defined in (5.1), $d \equiv \frac{1}{4}b'A^{-1}b - c$, $w \in \mathbb{R}^G\setminus\{0\}$, and suppose the matrix A is nonsingular with exactly one negative eigenvalue. If $w'A^{-1}w < 0$ and $d < 0$, then

$$C_{w'\beta} = \left[-\infty, \ w'\tilde{\beta} - \sqrt{d(w'A^{-1}w)}\right] \cup \left[w'\tilde{\beta} + \sqrt{d(w'A^{-1}w)}, \ +\infty\right].$$

If $w'A^{-1}w > 0$ or if $w'A^{-1}w \leq 0$ and $d \geq 0$, then $C_{w'\beta} = \mathbb{R}$. If $w'A^{-1}w = 0$ and $d < 0$, then $C_{w'\beta} = \mathbb{R}\setminus\{w'\tilde{\beta}\}$.

It is interesting to note here that $C_{w'\beta}$ can remain informative, even if it is unbounded. In particular, if we want to test $H_0: w'\beta = r$ and consider a decision rule which rejects H_0 when $r \notin C_{w'\beta}$, H_0 will be rejected for all values of r outside the interval (5.7). This can be viewed as a case where components (or linear transformations) of β are identifiable while others are not: this suggests that the rank condition for identification fails, but some parameters may be identified. Finally, we consider the case where A has at least two negative eigenvalues.

Theorem 5.3 Let C_{β} be the set defined in (5.1) and $w \in \mathbb{R}^G\setminus\{0\}$. If the matrix A in (5.1) is nonsingular and has at least two negative eigenvalues, then $C_{w'\beta} = \mathbb{R}$.

In the latter case, the projection-based confidence set for $w'\beta$ is equal to the real line, thus uninformative. No linear combination of the elements of β appears to be identifiable.

6. Conclusion

Recent research in econometrics has shown that weak instruments are quite widespread and should be carefully addressed. Techniques which are robust to weak instruments typically require one to
consider first joint inference problem on all or, at least, some subvector of model parameters. This leads to the problem of drawing inference on individual coefficients (or lower dimensional subvectors). In this paper, we studied this problem from a finite-sample limited-information viewpoint and focused on AR-type tests and confidence sets.

We observed that AR-type confidence sets belong to a class of sets defined by quadric curves (which include ellipsoids as a special case). A simple condition for deciding whether such confidence sets are bounded was derived. On observing that a projection technique does provide finite-sample confidence sets for individual coefficients in such contexts (indeed, the only procedure for which a finite-sample theory is currently available), we derived a close-from solution to the problem of building projection-based confidence sets for individual structural coefficients (or linear combinations of the latter) when the joint confidence set has a quadric structure in the case where the quadratic form in the quadric (i.e., the concentration matrix) is nonsingular. The confidence sets so obtained turn out to be as easy to compute as standard Wald-type 2SLS-based confidence intervals. Simulation evidence on the performance of projection-based confidence sets as well as empirical illustrations are available in Dufour and Taamouti (2004).

A. Appendix: Proofs

PROOF OF THEOREM 5.1 Consider again the decomposition \(A = P'DP \) as in (4.3). By (5.5), we have, for any \(x_0 \in \mathbb{R}, x_0 \in C_{w'\beta} \iff x_0 - w'\tilde{\beta} \in C_{a'z} \), where \(a = Pw \). Let \(x = x_0 - w'\tilde{\beta} \). By definition, \(x \in C_{a'z} \) iff there is a vector \(z \in \mathbb{R}^G \) such that

\[
 z'Dz \leq d \quad \text{and} \quad a'z = x. \tag{A.1}
\]

Further, there is a \(z \) verifying (A.1) iff the solution of the problem

\[
 \min_z z'Dz \quad \text{s.c.} \quad a'z = x \tag{A.2}
\]

verifies the constraint (A.1). If \(d < 0 \), it is clear there is no solution verifying (A.1) – for \(D \) is positive definite – and consequently \(C_{a'z} = C_{w'\beta} = \emptyset \). Let \(d \geq 0 \). The Lagrangian of the problem (A.2) is \(\mathcal{L} = z'Dz + \mu(x - a'z) \). Since \(D \) is positive definite, the first order conditions are necessary and sufficient. These are: \(2Dz = \mu a \) and \(a'z = x \), hence \(\mu = 2x/(a'D^{-1}a) \), \(z = x/(a'D^{-1}a) \) and \(z'Dz = \mu x/2 = x^2/(a'D^{-1}a) \). Thus

\[
 x \in C_{a'z} \iff \frac{x^2}{a'D^{-1}a} \leq d \iff |x| \leq \sqrt{d(a'D^{-1}a)} \iff |x_0 - w'\tilde{\beta}| \leq \sqrt{d(a'D^{-1}a)}. \]

On noting that \(a'D^{-1}a = w'A^{-1}w \), this entails that the confidence set for \(w'\hat{\beta} \) is given by (5.6).

PROOF OF THEOREM 5.2 As in the proof of Proposition 5.1, let us consider again the decomposition (4.3), the equivalence \(x_0 \in C_{w'\beta} \iff x_0 - w'\tilde{\beta} \in C_{a'z} \), and set \(x = x_0 - w'\tilde{\beta} \) and \(a = Pw \). Now, \(x \in C_{a'z} \) iff there is a value of \(z \in \mathbb{R}^G \) such that

\[
 a'z = \ a_1z_1 + \cdots + a_{G-1}z_{G-1} + a_Gz_G = x, \tag{A.3}
\]
\[z'Dz = \lambda_1 z_1^2 + \cdots + \lambda_{G-1} z_{G-1}^2 - |\lambda_G|z_G^2 \leq d, \]
(A.4)

where (without loss of generality) we assume that \(\lambda_G \) is the negative eigenvalue. Let \(a_{(G)} = (a_1, a_2, \ldots, a_{G-1})' \), \(z_{(G)} = (z_1, z_2, \ldots, z_{G-1})' \), and \(D_{(G)} = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_{G-1})' \).

If \(a_G = 0 \), then \(a_{(G)} \neq 0 \) (because \(w \neq 0 \) entails \(a \neq 0 \)), and \(w'A^{-1}w = a'D^{-1}a > 0 \). In this case, for any \(x \in \mathbb{R} \), we can choose \(z \) such that \(a_1 z_1 + \cdots + a_{G-1} z_{G-1} = x \) and \(z_G \) is sufficiently large to ensure that (A.4) holds. Hence \(C_{a'z} = \mathbb{R} \) and \(C_{w'\beta} = \mathbb{R} \).

We will now suppose that \(a_G \neq 0 \). Then, the conditions (A.3) - (A.4) are equivalent to:

\[z_G = (x - a_{(G)}'z_{(G)})/a_G, \]
(A.5)

\[|\lambda_G| \left(\frac{x - a_{(G)}'z_{(G)}}{a_G} \right)^2 \geq -d + z_{(G)}'D_{(G)}z_{(G)}, \]
(A.6)

where the latter inequality can also be written as

\[\left[|\lambda_G|s_{(G)}^2 - \alpha_{(G)}^2(z_{(G)}'D_{(G)}z_{(G)}) \right] - 2|\lambda_G|s_{(G)}x + \left[|\lambda_G|x^2 + da_{(G)}^2 \right] \geq 0 \]
(A.7)

where \(s_{(G)} = a_{(G)}'z_{(G)} \). Since (A.5) always allows one to obtain (A.3) once the vector \(z_{(G)} \) is given, a necessary and sufficient condition for \(x \in C_{a'z} \) is the existence of a vector \(z_{(G)} \) which satisfies inequality (A.7). Further, such a vector \(z_{(G)} \) does exist iff we can find a value \(s \) such that the supremum (with respect to \(z_{(G)} \)) of the left-hand side of (A.7) subject to the restriction \(a_{(G)}'z_{(G)} = s \) is larger than zero. Consequently, we consider the problem:

\[\min_{z_{(G)}} z_{(G)}'D_{(G)}z_{(G)} \quad \text{s.c.} \quad a_{(G)}'z_{(G)} = s \]
(A.8)

where \(s \) is some real number. Since \(D_{(G)} \) is positive definite, the first order conditions are necessary and sufficient to characterize a solution of (A.8). The Lagrangian for this problem is given by \(\mathcal{L} = z_{(G)}'D_{(G)}z_{(G)} - \mu(a_{(G)}'z_{(G)} - s) \) and the corresponding first order conditions are: \(2D_{(G)}z_{(G)} = \mu a_{(G)} \) and \(a_{(G)}'D_{(G)}z_{(G)} = s \), hence

\[\mu = \frac{2s}{a_{(G)}'D_{(G)}^{-1}a_{(G)}}, \quad z_{(G)} = \frac{s}{a_{(G)}'D_{(G)}^{-1}a_{(G)}}D_{(G)}^{-1}a_{(G)}, \quad z_{(G)}'D_{(G)}z_{(G)} = \frac{s^2}{a_{(G)}'D_{(G)}^{-1}a_{(G)}} \]

where \(a_{(G)}'D_{(G)}^{-1}a_{(G)} > 0 \). Substituting the solution of (A.8) into (A.7), we get:

\[q s^2 - (2|\lambda_G|x)s + \left(|\lambda_G| x^2 + da_{(G)}^2 \right) \geq 0 \]
(A.9)

where \(q = |\lambda_G| - \left[a_{(G)}^2/a_{(G)}'D_{(G)}^{-1}a_{(G)} \right] = \delta_G(w'A^{-1}w) \) and \(\delta_G \equiv |\lambda_G|/a_{(G)}'D_{(G)}^{-1}a_{(G)} > 0 \). Thus, \(x \in C_{a'z} \) iff there is a value of \(s \) such that (A.9) holds. The discriminant of this second degree equation is:

\[\Delta = 4\lambda_G^2 x^2 - 4q(|\lambda_G| x^2 + da_{(G)}^2) = 4\delta_G a_{(G)}^2 \left[x^2 - d(w'A^{-1}w) \right] \]

We will now consider in turn each possible case for the signs of \(w'A^{-1}w \) and \(d \).

(1) If \(w'A^{-1}w > 0 \), then \(q > 0 \) and, for any \(x \), we can find a (sufficiently large) value of \(s \) such that
(A.9) will hold. Consequently, $C_{a'z} = C_{w'\beta} = \mathbb{R}$. Thus, $w' A^{-1} w > 0$ entails $C_{a'z} = C_{w'\beta} = \mathbb{R}$, irrespective of the value of a_G (the case $a_G = 0$ was considered at the beginning of the proof).

(2) If $w' A^{-1} w < 0$ and $d < 0$, then $q < 0$ and (A.9) has a (real) solution iff $\Delta \geq 0$ or, equivalently, $x^2 \geq d (w' A^{-1} w) > 0$. Consequently,

$$C_{a'z} =] - \infty, -\sqrt{d (w' A^{-1} w)} [\cup [\sqrt{d (w' A^{-1} w)}, +\infty] ,$$

$$C_{w'\beta} =] - \infty, w' \beta - \sqrt{d (w' A^{-1} w)} [\cup [w' \beta + \sqrt{d (w' A^{-1} w)}, +\infty[.$$

(3) If $w' A^{-1} w = 0$ and $d < 0$, (A.9) can be satisfied for any $x \neq 0$, hence $C_{a'z} = \mathbb{R} \setminus \{0\}$ and $C_{w'\beta} = \mathbb{R} \setminus \{w' \beta\}$. (4) Finally, if $d \geq 0$, (A.9) is satisfied for any x (on taking $s = 0$), and we have $C_{a'z} = C_{w'\beta} = \mathbb{R}$. All possible cases have been covered.

Proof of Theorem 5.3 We need to show that $C_{a'z} = \mathbb{R}$. To see this, let λ_{i_1} and λ_{i_2} be the two negative eigenvalues of the matrix A, and (without loss of generality) suppose $a_1 \neq 0$. For any real x , we will show that $x \in C_{a'z}$, which entails that $C_{w'\beta} = C_{a'z} = \mathbb{R}$.

If λ_{i_1} or λ_{i_2} is associated with z_1 (say it is λ_{i_1}), we can set the components of z such that:

1. $z_1 = (x - a_{i_2} z_{i_2}) / a_1$;
2. $z_i = 0$, for $i > 1, i \neq i_2$;
3. $\lambda_1 z_{i_1}^2 + \lambda_2 z_{i_2}^2 \leq d$. Since λ_{i_1} and λ_{i_2} are negative, z_{i_2} does exist. The vector z verifies (4.4) and $d' z = x$, hence $x \in C_{a'z}$.

If none of λ_{i_1} and λ_{i_2} is associated with z_1 , we can set z so that:

1. $z_1 = x / a_1$;
2. $z_i = 0$, for $i \neq i_1, i \neq i_2$ and $i > 1$;
3. $\lambda_1 z_{i_1}^2 + \lambda_2 z_{i_2}^2 \leq d - \lambda_1 (x / a_1)^2$ and $a_{i_1} z_{i_1} + a_{i_2} z_{i_2} = 0$. Since λ_{i_1} and λ_{i_2} are negative, appropriate values of z_{i_1} and z_{i_2} always exist, hence $x \in C_{a'z}$.
References

