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1. Introduction

Motivation

• VAR models are widely used to do forecasting and policy analysis.

– Estimation is easy (least squares).
– VAR models are relatively easy to specify: choose the order.
– Forecasting and (Granger) causality analysis are straightforward.
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• Shortcomings of VAR modelling

1. The number of parameters tend to go up quickly,
leading to imprecision in estimation and low power in testing.
Dimension reduction methods often used:
Bayesian, methods, shrinking, factor models

2. VAR modelling is logically incoherent, because the VAR class of
models is not closed under marginalization and temporal aggregation:

– if a vector time seriesYt follows a finite-order VAR,
its subvectors do not typically follow a VAR;
instead they follow VARMA models;

– if a VAR process is temporally aggregated,
the aggregated process is not typically a VAR;
the aggregated process is a VARMA.
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• This suggests to replace VAR models by VARMA models.

• Advantages of VARMA models:

1. considerably more parsimonious than VAR models;
a VMA(1) is a VAR(∞) model, so a long VAR model may be required
to approximate it reasonably well;
alternative (or complement) to other dimension reduction methods;

2. closed under marginalization and temporal aggregation;
3. regularly follow from structural macroeconomic models (DSGE mod-

els),
not VAR models. [Komunjer and Ng (2011,Econometrica)].
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• Difficulties associated with VARMA models

1. Raise identification problems not present in VAR models:

– restrictions must be imposed to make sure a VARMA model has a
unique representation;

– the echelon form (Hannan, Deistler) is the most well known:
not intuitive, difficult to specify.

2. VARMA models are difficult to estimate and require nonlinear meth-
ods (maximum likelihood assuming Gaussian errors).
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Contributions

The general goal of this paper is to develop a practical VARMA modelling
methodology.

1. Identification – We propose new identified representations which are
more intuitive and easier to specify and use than earlier ones [e.g., the
echelon form]:diagonal MA equation form especially attractive.

2.Estimation – We propose linear estimation methods which can be ap-
plied by using least squares (involving estimated innovations).

(a) Weak VARMA – Consistency and asymptotic normality under rel-
atively weak assumptions on the model innovations (uncorrelated,
strong mixing).

(b) Asymptotic efficiency in the case of Gaussian innovations (asymptotic
equivalence with ML when innovations are Gaussian).
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3.Model selection– We present an information criterion for choosing the
orders of the different operators in the proposed VARMA models.

4.Simulation results showing that the VARMA modelling does improve
estimation efficiency (e.g., for impulse response coefficients).

5.Application to a small macroeconomic model of monetary policy
[Bernanke and Mihov (1998), McMillin (2001)]. Results show improve-
ments in the estimation of impulse responses.
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2. VARMA representations

K-variate VARMA(p,q) model in standard representation:

A(L)Yt = B(L)Ut

where

A(L) = IK −A1L−·· ·−ApLp,

B(L) = IK −B1L−·· ·−BqLq.

• The standard representation is not identified. We can haveA(L) 6= Ã(L),
B(L) 6= B̃(L) while A(L)−1B(L) = Ã(L)−1B̃(L).

• Two identified representations:

– Echelon form: restrictions on the order of the elements ofA(L) and
B(L).

– Final equation form:A(L) is scalar.
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Echelon form: all operatorsai j(L) andbi j(L) in the i-th row of A(L) and
B(L) have the same degreepi and have the form

aii(L) = 1−
pi

∑
m=1

aii,mLm, for i = 1, . . . ,K

ai j(L) = −
pi

∑
m=pi−pi j+1

ai j,mLm, for j 6= i

bi j(L) =
pi

∑
m=0

bi j,mLm for i, j = 1, . . . ,K, with B0 = A0.

Further, in the VAR operatorai j(L),

pi j =

{

min(pi +1, p j) for i ≥ j
min(pi, p j) for i < j

i, j = 1, . . . ,K.

i.e., pi j specifies the number of free coefficients in the operatorai j(L) for
j 6= i. The row orders(p1, . . . , pK) are theKronecker indices.
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• The Echelon form is hard to use, not intuitive.

• The final equation form puts the restrictions on the VAR operator.

• Focus is on restricting the VAR operator.

• We propose new identified VARMA representations

– Final MA equation form : B(L) is scalar,B(L) = b(L)IK.
– Diagonal MA equation form: B(L) is diagonal.
– Diagonal AR equation form: A(L) is diagonal.
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3. Identification

Φ(L)Yt = Θ(L)Ut

where

Φ(L) = IK −Φ1L−·· ·−ΦpLp,

Θ(L) = IK −Θ1L−·· ·−ΘqLq.

Then, under stationarity,
Yt = Ψ(L)Ut

Ψ(L) = Φ(L)−1Θ(L)

The impulse responsesΨ(L) are identifiable. We must impose restrictions
on Φ(L) andB(L) to ensure a unique factorization.
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3.1 AssumptionThe matricesΦ(z) andΘ(z) have the following form:

Φ(z) = IK −Φ1z−·· ·−Φpzp , Θ(z) = IK −Θ1z−·· ·−Θqzq.

3.2 AssumptionΘ(z) is diagonal:

Θ(z) = diag[θ ii(z)]

whereθ ii(z) = 1−θ ii,1z−·· ·−θ ii,qiz
qi andθ ii,qi 6= 0.

3.3 AssumptionFor eachi = 1, . . . , K, there are no roots common to
Φi•(z) and θ ii(z), i.e. there is no valuez⋆ such thatΦi•(z⋆) = 0 and
θ ii(z⋆) = 0.
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3.1 LemmaLet [Φ(z),Θ(z)] and
[

Φ̄(z),Θ̄(z)
]

be two pairs of polynomial
matrices which satisfy the Assumptions 3.1 to 3.3. IfR0 is a positive con-
stant such that

Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z)

for 0≤ |z| < R0, then

Φ(z) = Φ̄(z) andΘ(z) = Θ̄(z),∀z.
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3.1 Definition (Diagonal MA equation form) The VARMA model is said
to be indiagonal MA equation form if Θ(L) = diag[θ ii(L)] = IK −Θ1L−
·· · −ΘqLq whereθ ii(L) = 1− θ ii,1L − ·· · − θ ii,qiL

qi, θ ii,qi 6= 0, and q =
max1≤i≤K(qi).

3.2 Theorem (Identification of diagonal MA equation form)Suppose
the VARMA model satisfies the Assumptions 3.1-3.3 hold. If theVARMA
model is in diagonal MA equation form, then it is identified.

Invertibility of the model is not required.
If invertibility is imposed, a similar result holds for the diagonal AR form
(more difficult to use).
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4. Regression-based estimation method

Generalization of Hannan and Rissanen (1982), presented in Hannan and
Kavalieris (1984).

Estimation in three steps.

15



Step 1: Estimate a long VAR and keep the residuals

Ût = Yt −
nT

∑
i=i

Π̂ nT
i Yt−i

with nt growing at a rate faster than logT andn2
t /T → 0.

Step 2: Replace the lagged innovations by the lagged residuals and esti-
mate by GLS

A(L)Yt = (B(L)− IK)Ût + et

Step 3: UsingŨt, the residuals from the second step, define

Xt =
q

∑
j=1

B̃ jXt− j +Yt, Wt =
q

∑
j=1

B̃ jWt− j +Ũt

Ṽt =
q

∑
j=1

B̃ jṼt− j + Z̃t

whereZ̃t is the matrix of regressors from step 2, except that we replace Ût
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by Ũt.
Regress by GLS̃Ut +Xt −Wt onṼt−1.
=⇒ Same asymptotic distribution as MLE/NLLS.
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• We do not assume that the innovation process is i.i.d. or m.d.s.

• We only assume that it is uncorrelated and strongly mixing.

• Let {Ut} be a strictly stationary process, then itsα-mixing coefficient of
orderh is defined as

α(h) = sup
B∈σ(Us,s≤t)

C∈σ(Us,s≥t+h)

|Pr(B∩C)−Pr(B)Pr(C)| , h ≥ 1.

• The strong mixing condition that we impose is
∞

∑
h=1

α(h)δ/(2+δ ) < ∞ for some δ > 0.

• Why? We can then study linear representations of nonlinearprocesses.

• Looking at quadratic mean convergence

• Need to study elements likeVar
[

1
T ∑T

t=1yt−r(k)yt−s(k′)
]

• i.e.,Cov [ut−r(k)ut−s(k′) ; ut′−r(k)ut′−s(k′)]
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• Davydov (1968): LetU andV be random variables measurable with
respect toF 0

−∞ andF ∞
n , respectively. Letr1, r2, r3 be positive numbers.

Assume that‖U‖r1 < ∞ and‖V‖r2 < ∞ where‖U‖r = (E[|U |]r)1/r. If
r−1

1 + r−1
2 + r−1

3 = 1, then there exists a positive constantC independent
of U , V andn, such that

|E[UV ]−E[U ]E[V ]| ≤C‖U‖r1‖V‖r2(α(n))1/r3.

• Ibragimov (1962): Central Limit Theorem for alpha-mixing processes
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5. Information criterion

• We propose the following information criterion for choosing pi andqi:

log(detΣ̃)+ c0dim(γ)
(logT )1+δ

T
, c0 > 0,δ > 0

• We minimize it overpi ≤ P andqi ≤ Q in the second step.

• For the diagonal representations, the criterion can be minimized equa-
tion by equation [(pi,qi) for i = 1,2, . . . ,K].

A(L)Yt = B(L)Ut

• Diagnostic: check for uncorrelated residuals using the results in Francq,
Roy and Zakoïan (2005).
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6. Monte Carlo results

• We simulate strong VARMA models with i.i.d. Gaussian innovations.

• We simulate weak VARMA models where the innovations are uncorre-
lated but not a m.d.s. [Francq and Zakoïan (1998), time-aggregation of
GARCH models].

• Results:

– RMSEs of our three-step estimator is usually less than 15 % higher
than of nonlinear estimator.

– Information criterion: in most cases, the most frequently chosen or-
ders are the true ones.
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Weak diagonal MA equation form VARMA(1,1). The simulated model
is a weak VARMA(1,1) in diagonal MA equation form witha(1,1) = 0.5,
a(1,2) = −0.6, a(2,1) = 0.7, a(2,2) = 0.3, b1(1) = 0.9 andb1(1) = 0.7.
The variance of the innovations is 1.3 and the covariance is 0.91. Sample
size is 250, the length of the long AR isnT = 20, the number of repetition
is 1000. The parameters in the criterion areδ = 0.3 andc0 = 1.

(p,q1,q2) Frequency(p,q1,q2) Frequency
1,1,1 0.588 1,1,3 0.026
1,2,1 0.123 2,1,1 0.014
1,1,2 0.062 1,4,1 0.014
1,3,1 0.045 1,5,1 0.012
2,2,2 0.043 1,1,5 0.010
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Value Average Std. dev. RMSE 5% 95% Median
Second step
a1(1,1) 0.5 0.4277 0.0601 0.0940 0.3284 0.5233 0.4303
a1(1,2) -0.6 -0.6439 0.0507 0.0671 -0.7291 -0.5594 -0.6444
a1(2,1) 0.7 0.6732 0.0514 0.0579 0.5863 0.7550 0.6729
a1(2,2) 0.3 0.2314 0.0526 0.0865 0.1446 0.3193 0.2309
b1(1) 0.9 0.8130 0.0707 0.1122 0.6976 0.9266 0.8150
b1(2) 0.7 0.6364 0.0708 0.0952 0.5185 0.7476 0.6393

Third step
a1(1,1) 0.5 0.5064 0.0469 0.0473 0.4324 0.5845 0.5062
a1(1,2) -0.6 -0.5960 0.0552 0.0554 -0.6762 -0.5183 -0.5969
a1(2,1) 0.7 0.6988 0.0418 0.0418 0.6314 0.7659 0.6997
a1(2,2) 0.3 0.3021 0.0469 0.0469 0.2272 0.3830 0.3032
b1(1) 0.9 0.8885 0.0442 0.0456 0.8100 0.9531 0.8910
b1(2) 0.7 0.6967 0.0522 0.0523 0.6092 0.7843 0.6969

NLLS
a1(1,1) 0.5 0.4973 0.0453 0.0453 0.4222 0.5703 0.4972
a1(1,2) -0.6 -0.6116 0.0443 0.0458 -0.6864 -0.5371 -0.6114
a1(2,1) 0.7 0.7009 0.0411 0.0411 0.6334 0.7683 0.7006
a1(2,2) 0.3 0.2897 0.0441 0.0453 0.2185 0.3645 0.2893
b1(1) 0.9 0.8874 0.0349 0.0371 0.8260 0.9385 0.8894
b1(2) 0.7 0.6950 0.0446 0.0449 0.6198 0.7673 0.6955
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7. Macroeconomic application

• One use of VAR and VARMA models is the computation of impulse-
response functions (IRFs).

• Macroeconomists typically use VARs to get the infinite moving average
representation.

• The confidence bands around the IRFs are big! Quite often, zero is
within the bands at every horizon.

• Some of this must be due to the high number of parameters estimated
when using a VAR.

• Could a VARMA model do better?

24



• Our example is based on McMillin (2001).

– Take the first difference of the series, in order, log of real GDP, log
of spot commodity price minus log of the GDP deflator, federalfunds
rate, nonborrowed reserves, total bank reserves, log of spot commod-
ity price.

– Using the ordering of the variables the Choleski decomposition, based
on long-run macroeconomic restrictions, will identify thestructural
effects.

– Use a VAR(12).

• We fit VARMA models.

• Impact of a one standard deviation shock to nonborrowed reserves.
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Figure 1. IRFs for VAR(12) model
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Figure 2. IRFs for VARMA(3,10) model in final MA equation form

27



RMSE of out-of-sample forecasts with VAR and VARMA models
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Step ahead VAR VARMA diag. MA VARMA final MA
1 0.0834 0.0764 0.0743

p = 1 p = 0 p = 0
q = (1,2,2,1,1,1) q = 12

3 0.0799 0.0788 0.0744
p = 1 p = 1 p = 1

q = (1,1,1,1,0,1) q = 12
6 0.0826 0.0767 0.0790

p = 7 p = 3 p = 1
q = (4,4,1,4,0,4) q = 12

9 0.0871 0.0774 0.0829
p = 2 p = 4 p = 0

q = (5,5,3,4,5,5) q = 12
12 0.0819 0.0728 0.0803

p = 4 p = 4 p = 1
q = (3,5,3,4,5,5) q = 12
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8. Conclusion

We present a modelling method for VARMA models

• We present new VARMA identified representations which are easy to
use.

• We present a regression-based estimation method in three steps for
VARMA models which has the same asymptotic efficiency as MLE or
NLLS.

• We present an information criterion for choosing the orders for the
VARMA representation we proposed.

• So as to broaden the class of processes to which this method can be
applied, we only assume that innovations are uncorrelated.
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