Practical Methods for Modelling Weak VARMA Processes:
|dentification, Estimation and Specification
with a Macroeconomic Application

Jean-Marie Dufouf Denis Pelletier
McGill University North Carolina State University

November 15, 2013
November 15, 2013, 13:34

*This work was supported by the William Dow Chair in Political Economy (McGitikérsity), the Bank of Canada (Research Fellowship), the Toulocisedbof Economics (Pierre-de-Fermat Chair
of excellence), the Universitad Carlos Il de Madrid (Banco SantaddeéMadrid Chair of excellence), a Guggenheim Fellowship, a KonmekRAuer Fellowship (Alexander-von-Humboldt Foundation,
Germany), the Canadian Network of Centres of Excellence [prograliathematics of Information Technology and Complex Systems (MITACS)], the Natural Sciences and Engineering Research Council
of Canada, the Social Sciences and Humanities Research Councih@fi&and the Fonds de recherche sur la société et la culture (Québec)

T William Dow Professor of Economics, McGill University, Centre inter@tsitaire de recherche en analyse des organisations (CIRANO), emtdeGnteruniversitaire de recherche en économie
quantitative (CIREQ). Mailing address: Department of Economics, iMt@iversity, Leacock Building, Room 519, 855 Sherbrooke StreestWglontréal, Québec H3A 2T7, Canada. TEL: (1) 514 398
4400 ext. 09156; FAX: (1) 514 398 4800; e-mail: jean-marie.du@nncgill.ca . Web page: http://www.jeanmariedufour.com



1. Introduction

Motivation

* VAR models are widely used to do forecasting and policy ysial

— Estimation is easy (least squares).
—VAR models are relatively easy to specify: choose the order.
— Forecasting and (Granger) causality analysis are stfamvdrd.



e Shortcomings of VAR modelling

1. The number of parameters tend to go up quickly,
leading to imprecision in estimation and low power in tegtin
Dimension reduction methods often used:
Bayesian, methods, shrinking, factor models

2. VAR modelling is logically incoherent, because the VARSH of
models is not closed under marginalization and temporaiegggion:

—If a vector time serie¥; follows a finite-order VAR,
Its subvectors do not typically follow a VAR,
iInstead they follow VARMA models;

—Iif a VAR process is temporally aggregated,
the aggregated process is not typically a VAR,;
the aggregated process is a VARMA.



* This suggests to replace VAR models by VARMA models.
» Advantages of VARMA models:

1. considerably more parsimonious than VAR models;
aVMA(1) is a VAR(e) model, so a long VAR model may be required
to approximate it reasonably well;
alternative (or complement) to other dimension reducti@hods;

2. closed under marginalization and temporal aggregation,;

3. regularly follow from structural macroeconomic mod@&sSGE mod-
els),
not VAR models. [Komunjer and Ng (201Econometrica)].



e Difficulties associated with VARMA models

1. Raise identification problems not present in VAR models:
—restrictions must be imposed to make sure a VARMA model has

unique representation;
—the echelon form (Hannan, Deistler) is the most well known:
not intuitive, difficult to specify.
2. VARMA models are difficult to estimate and require nonlinegeth-
ods (maximum likelihood assuming Gaussian errors).



Contributions

The general goal of this paper is to develop a practical VARM#dglling
methodology.

1. Identification — We propose new identified representations which al
more intuitive and easier to specify and use than earlies ¢ag., the
echelon form].diagonal MA equation form especially attractive.

2. Estimation — We propose linear estimation methods which can be a
plied by using least squares (involving estimated iInnovex).

(a) Weak VARMA — Consistency and asymptotic normality undér re
atively weak assumptions on the model innovations (unige,
strong mixing).

(b) Asymptotic efficiency in the case of Gaussian innovai@symptotic
equivalence with ML when innovations are Gaussian).
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3. Model selection— We present an information criterion for choosing the
orders of the different operators in the proposed VARMA medel

4. Simulation results showing that the VARMA modelling does improve
estimation efficiencyd.g., for impulse response coefficients).

5. Application to a small macroeconomic model of monetary polic)
[Bernanke and Mihov (1998), McMillin (2001)]. Results showprmve-
ments in the estimation of impulse responses.
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2. VARMA representations
K-variate VARMA(p,q) model in standard representation:
ALY = B(L)U,
where
AL) = Ik — AL — - — ApLP,
B(L) = Ik —BjL —--- — BgLY

* The standard representation is not identified. We can Adve+ A(L),
B(L) # B(L) while A(L)'B(L) = A(L)'B(L).
» Two identified representations:

— Echelon form: restrictions on the order of the elementé\(@f) and
B(L).
— Final equation formA(L) is scalar.



Echelon form: all operatorsa;;(L) andbi;(L) in thei-th row of A(L) and
B(L) have the same degrg@eand have the form

P
gi(L) = 1— Z gimL", fori=1....K
m=1
pi
gjL) =— Y ajnl”, forj#i
m=pj—pjj+1
Fi
bij(L) = Z bijmL™ fori,j=1,...,K, with By=A,.
m=0
Further, in the VAR operatas;(L),

) min(pi+1,p;) fori> ] ij=1 K
) min(p;, pj) fori<j 770 T

.e., pij specifies the number of free coefficients in the operatoL) for
] #1. The row ordergp;,..., pk) are theKronecker indices.
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e The Echelon form is hard to use, not intuitive.
* The final equation form puts the restrictions on the VAR ap&t
* Focus is on restricting the VAR operator.
* We propose new identified VARMA representations
— Final MA equation form: B(L) is scalarB(L) = b(L)lk.
— Diagonal MA equation form: B(L) is diagonal.
— Diagonal AR equation form: A(L) is diagonal.
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3. ldentification

®(L)Y: =O(L)U;
where
OL) = Ik—61L—---— Q4L
Then, under stationarity,
Y. =W (L)U;
Y(L)=o(L) o)
The impulse respons&4(L) are identifiable. We must impose restrictions
on (L) andB(L) to ensure a unique factorization.
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3.1 AssumptionThe matricesb(z) and©(z) have the following form:
P(2)=Ilx—P1z— - — P2’ O(z)=Ix—0O1z—---—OyZ".
3.2 Assumption©(z) is diagonal:
O(2) = diag(6ii(2)
whereb;i(z) = 1— 6ii 12— - - - — Bii 2% andB;; o, # 0.

3.3 AssumptionFor eachi = 1, ..., K, there are no roots common to
®,.(z) and 06ii(z), i.e. there is no valueg  such that®,(z) = 0 and
9“(2*) — 0.
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3.1 LemmalLet [®(2),0(2)] and[®(2),0(2)] be two pairs of polynomial
matrices which satisfy the Assumptions 3.1 to 3.3RJfis a positive con-
stant such that

®(2)'0(2) = ®(2) O(2)
for 0 < |7| < Ry, then

P(z) = P(z) andO(z) = O(2),Vz
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3.1 Definition (Diagonal MA equation form) The VARMA model is said
to be indiagonal MA equation form if O(L) = diag8;i(L)] = Ik — ©1L —
ree — @qu where Gii(L) =1 Gii,ll— — e — Qii,qiLQi, eii,qi 75 0, andq =
maX<i<k (0f)-

3.2 Theorem (ldentification of diagonal MA equation form) Suppose

the VARMA model satisfies the Assumptions 3.1-3.3 hold. If\VAd&RMA
model is in diagonal MA equation form, then it is identified.

Invertibility of the model is not required.

If invertibility is imposed, a similar result holds for theagjonal AR form
(more difficult to use).
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4. Regression-based estimation method

Generalization of Hannan and Rissanen (1982), presentednnah and
Kavalieris (1984).
Estimation in three steps.
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Step 1: Estimate a long VAR and keep the residuals
U =%—$ M"Y

with n; growing at a rate faster than ldgandn?/T — O.
Step 2: Replace the lagged innovations by the lagged residuals dRd e
mate by GLS

AL)Y; = (B(L) — Ik)U: + &
Step 3: UsingU;, the residuals from the second step, define

whereZ; is the matrix of regressors from step 2, except that we refac
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by U:. ) )
Regress by GLY; + X —W onV,_;.
—> Same asymptotic distribution as MLE/NLLS.
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« We do not assume that the innovation process is I.i.d. oran.d
* We only assume that it is uncorrelated and strongly mixing.

o Let {U;} be a strictly stationary process, thenatsnixing coefficient of
orderh is defined as

a(hy= sup |Pr(BNC)—Pr(B)PrC)| , h> 1.
cooUabtih

e The strong mixing condition that we impose is

Za h)%/(2+9) < 0 for some & > 0.

 Why? We can then study linear representations of nonlipgaresses.
 Looking at quadratic mean convergence

- Need to study elements likéar [£ 5 ;v r(K)Wt—s(K)]
oi.e.,Cov|u_r(K)u_s(K); Ur_r (K)uy_g(K')]
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e Davydov (1968): LelU andV be random variables measurable with
respect taZ#°  and.Z2, respectively. Lety, r, r3 be positive numbers.
Assume that|U||;, < « and||V||;, <  where|U|; = (E[JU]|]")Y". If
r;t+r,t+r;t =1, then there exists a positive const@rindependent
of U, V andn, such that

E[UV] — E[UIEN]| < CJlU IV [, (ar (m)

e [bragimov (1962): Central Limit Theorem for alpha-mixingppesses
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5. Information criterion

* We propose the following information criterion for choogip; andg;:
(|Og-|-)1+5

T ;
« We minimize it overp; < P andg; < Q in the second step.

log(det>) + codim(y) Co>0,0>0

 For the diagonal representations, the criterion can benmued equa-
tion by equation [;,q) fori=1,2,...,K].

A(L)Y: = B(L)U

 Diagnostic: check for uncorrelated residuals using tisalts in Francq,
Roy and Zakoian (2005).
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6. Monte Carlo results

* We simulate strong VARMA models with i.i.d. Gaussian innias.

* We simulate weak VARMA models where the innovations are teco
lated but not a m.d.s. [Francq and Zakoian (1998), timeegdion of
GARCH models].

e Results:

— RMSESs of our three-step estimator is usually less than 15 %ehig
than of nonlinear estimator.

— Information criterion: in most cases, the most frequentigsen or-
ders are the true ones.
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Weak diagonal MA equation form VARMA(1,1). The simulated nabd
Is a weak VARMA(1,1) in diagonal MA equation form witi{1,1) = 0.5,
a(l,2) =-0.6,a(2,1) =0.7,a(2,2) = 0.3, by(1) = 0.9 andb;(1) = 0.7.
The variance of the innovations is 1.3 and the covariancedis. GGample
size is 250, the length of the long ARmg = 20, the number of repetition
IS 1000. The parameters in the criterion are- 0.3 andcy = 1.
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(p,a1,02) | Frequency (p, a1, Gp) | Frequency
111 0.588 113 0.026
121 0.123 211 |0.014
112 0.062 141 0.014
1,31 0.045 151 0.012
222 0.043 1,15 0.010



Value Average Std.dev. RMSE 5% 95% Median
Second step
a(1,1) O 5 0.4277 0.0601 0.0940 0.3284 0.5233 0.4303
a(1,2) - -0.6439 0.0507 0.0671 -0.7291 -0.5594 -0.6444
a(2,1) O 7 0.6732 0.0514 0.0579 0.5863 0.7550 0.6729
a(2,2) 0.3 0.2314 0.0526 0.0865 0.1446 0.3193 0.2309
b (1) 0.9 0.8130 0.0707 0.1122 0.6976 0.9266 0.8150
bi(2) 0.7 0.6364 0.0708 0.0952 0.5185 0.7476 0.6393
Third step
a(1,1) O 5 0.5064 0.0469 0.0473 0.4324 0.5845 0.5062
a(1,2) - -0.5960 0.0552 0.0554 -0.6762 -0.5183 -0.5969
a(2,1) O 7 0.6988 0.0418 0.0418 0.6314 0.7659 0.6997
a(2,2) 0.3 0.3021 0.0469 0.0469 0.2272 0.3830 0.3032
b;(1) 0.9 0.8885 0.0442 0.0456 0.8100 0.9531 0.8910
bi(2) 0.7 0.6967 0.0522 0.0523 0.6092 0.7843 0.6969
NLLS
a(1,1) O 5 0.4973 0.0453 0.0453 0.4222 0.5703 0.4972
a(1,2) - -0.6116 0.0443 0.0458 -0.6864 -0.5371 -0.6114
a(2,1) O 7 0.7009 0.0411 0.0411 0.6334 0.7683 0.7006
a(2,2) 0.3 0.2897 0.0441 0.0453 0.2185 0.3645 0.2893
b (1) 0.9 0.8874 0.0349 0.0371 0.8260 0.9385 0.8894
bi(2) 0.7 0.6950 0.0446 0.0449 0.6198 0.7673 0.6955
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7. Macroeconomic application

e One use of VAR and VARMA models is the computation of impulse
response functions (IRFs).

* Macroeconomists typically use VARSs to get the infinite mgvaverage
representation.

* The confidence bands around the IRFs are big! Quite oftem, izer
within the bands at every horizon.

» Some of this must be due to the high number of parametemna&stn
when using a VAR.

e Could a VARMA model do better?
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* Our example is based on McMillin (2001).

— Take the first difference of the series, in order, log of reBIRGlog
of spot commodity price minus log of the GDP deflator, fed&ratls
rate, nonborrowed reserves, total bank reserves, log ¢otcgmomod-
Ity price.

— Using the ordering of the variables the Choleski decompmsibased
on long-run macroeconomic restrictions, will identify teguctural
effects.

—Use a VAR(12).

« We fit VARMA models.
e Impact of a one standard deviation shock to nonborrowestves.
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Figure 1. IRFs for VAR(12) model
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Figure 2. IRFs for VARMA(3,10) model in final MA equation form
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RMSE of out-of-sample forecasts with VAR and VARMA models
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Step aheab VAR VARMA diag. MA VARMA final MA

1 0.0834 0.0764 0.0743
p=1 p=0 p=0
qg=(1,2,2,1,1,1) gq=12
3 0.0799 0.07/88 0.0744
p=1 p=1 p=1
qg=(1,1,1,1,0,1) g=12
6 0.0826 0.0767 0.0790
p=7 p=3 p=1
q= (4,4,1,40,4) q=12
9 0.0871 0.0774 0.0829
Pp=2 p=4 p=~0
qg=(5,5,3,4,55) q=12
12 0.0819 0.0728 0.0803
P=4 p=4 p=1
qg=(3,53,4,55) gq=12
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8. Conclusion
We present a modelling method for VARMA models

* We present new VARMA identified representations which asyda
use.

 We present a regression-based estimation method in theps $for
VARMA models which has the same asymptotic efficiency as MLE ¢
NLLS.

 We present an information criterion for choosing the osdfar the
VARMA representation we proposed.

* SO as to broaden the class of processes to which this methode
applied, we only assume that innovations are uncorrelated.
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