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1. Introduction

In time series analysis and econometrics, VARMA mod-
els are scarcely used to represent multivariate time series.
VAR models are much more widely employed because
they are easier to implement: the latter models can be es-
timated by least squares methods, while VARMA models
typically require nonlinear methods (such as maximum
likelihood).

VAR models, however, have important drawbacks.
First, they are typically much less parsimonious than
VARMA models. Second, the family of VAR models
is not closed under marginalization and temporal aggre-
gation. If a vector satisfies a VAR model, subvectors do
not typically satisfy VAR models (but VARMA models).
Similarly, if the variables of a VAR process are observed
at a different frequency, the resulting process is not a
VAR process. In contrast, the class of (weak) VARMA
models is closed under such operations. We say that a
VARMA model is strong if the innovations are indepen-
dent, and it is weak if they are merely uncorrelated.

It follows that VARMA models appear to be prefer-
able from a theoretical viewpoint, but their adoption is
complicated by estimation difficulties. Standard estima-
tion methods for VARMA models (maximum likelihood,
nonlinear least squares) require nonlinear optimization
which may not be feasible as soon as the model involves
a few time series, because the number of parameters can
increase quickly.

The authors thank Marine Carasco, John Galbraith, Nour Meddahi
and Rui Castro for several useful comments. The second author grate-
fully acknowledges financial assistance from the Social Sciences and
Humanities Research Council of Canada, the Government of Québec
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In this paper, we consider the problem of estimat-
ing VARMA models by relatively simple methods which
only require linear regressions. For that purpose, we
consider a generalization of the regression-based estima-
tion method proposed by Hannan and Rissanen (1982)
for univariate ARMA models. In this method, lagged
innovations are replaced by the corresponding residuals
from a long autoregression and a regression is performed
on the resulting equation. Extension of this method to
VARMA models was also proposed by Koreisha and
Pukkila (1989), but these authors did not provide a de-
tailed asymptotic theory for their proposed extension.

Here, we first provide such a theory by showing that
the linear-regression-based estimators are consistent and
have the same asymptotic distribution as their nonlinear
counterparts (maximum likelihood if the innovations are
i.i.d., or nonlinear least squares if they are merely uncor-
related). In the non i.i.d. case, we consider strong mix-
ing conditions [Doukhan (1995), Bosq (1998)], rather
than the usual martingale difference sequence (m.d.s) as-
sumption.

Second, in order to avoid identification problems, we
study how the method can be applied to VARMA models
in final equation form.

Thirdly, we suggest a modified information criterion
to choose the ordersp andq of the VARMA models in
this representation.

Fourth, the method is applied to U.S. macroeconomic
data previously studied by Bernanke and Mihov (1998).

We only summarize our results here. Detailed results,
assumptions and proofs are presented in a discussion pa-
per [Dufour and Pelletier (2002)].

The rest of the paper is organized as follow. Our no-
tation and the VARMA representation are introduced in
section 2. In section 3, we present the estimation method.
In section 4, we describe the information criterion used
for choosing the ordersp andq of the VARMA models in
final equation form. Section 5 contains results of Monte
Carlo simulations which illustrate the properties of our
method. Section 6 presents the macroeconomic applica-
tion. Section 7 contains a few concluding remarks.
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2. VARMA representations

Consider the following K-variate zero mean
VARMA (p, q) model in standard representation:

Yt =
p∑

i=1

AiYt−i + Ut −
q∑

j=1

BjUt−j (1)

where Ut is a sequence of uncorrelated ran-
dom variables defined on some probability space
(Ω,A,P), Yt = [yt(1), yt(2), . . . , yt(K)]′ and
Ut = [ut(1), ut(2), . . . , ut(K)]′. We can also write the
above equation using lag operators:

A(L)Yt = B(L)Ut

where

A(L) = IK −A1L− · · · −ApL
p , (2)

B(L) = IK −B1L− · · · −BqL
q . (3)

We also denote byAl(i, j) the element on rowi and col-
umnj of the matrixAl.

Let Ht be the Hilbert space generated by(Ys, s < t).
The process(Ut) can be interpreted as the linear innova-
tion of Yt:

Ut = Yt − EL[Yt|Ht].

We also assume thatYt is a strictly stationary and er-
godic process, while the innovationsUt have common
variance [V ar[Ut] = ΣU ] and finite fourth moment
(E[|ut(i)|4+2δ] < ∞ for someδ > 0 ). The zero mean
hypothesis is only used to simplify notation.

Assuming the processYt is stable( det[A(z)] 6= 0 for
|z| ≤ 1 ) and invertible( det[B(z)] 6= 0 for |z| ≤ 1 ), it
can be represented as an infinite VAR

Π(L)Yt = Ut,

where

Π(L) = B(L)−1A(L) = IK −
∞∑

i=1

ΠiL
i ,

or an infinite VMA

Yt = Ψ(L)Ut,

where

Ψ(L) = A(L)−1B(L) = IK −
∞∑

j=1

ΨjL
j .

The matricesΠi andΨj could be zero past a finite or-
der if det[B(L)] or det[A(L)] respectively is a non-zero
constant.

We need to impose a minimum of structure on the in-
novation processUt because stating that it is uncorre-
lated is not sufficient to get useful results. The typical
assumption in the time series literature is that theUt’s
are either independent and identically distributed (i.i.d.)
or a martingale difference sequence (m.d.s). Here, we
shall consider weaker assumptions because we wish to
broaden the class of models considered. We only as-
sume that it satisfies a strong mixing condition [Doukhan
(1995), Bosq (1998)]. LetUt be a strictly stationary pro-
cess, then itsα-mixing coefficient of orderh, h ≥ 1, is
defined as

α(h) = sup
B∈σ(Us,s≤t)

C∈σ(Us,s≥t+h)

|P (B ∩ C)− P (B)P (C)| .

The strong mixing condition that we impose is

∞∑

h=1

α(h)δ/(2+δ) < ∞ for some δ > 0 .

This is a fairly minimal condition that will be satisfied by
many processes of interest.

It is important to note that we cannot work with the
standard representation (1) because it is not identified
[see L̈utkepohl (1993)]. The identified representation
that we use in this work is the final equation form.

Definition 1 (Final Equation Form) The VARMA rep-
resentation(1) is said to be in final equation form if
A(L) = a(L)IK , wherea(L) = 1 − a1L − · · · − apL

p

is a scalar operator withap 6= 0.

This representation is quite similar to a univariate
ARMA representation. An alternative representation that
we could use is the echelon form, but we prefer the for-
mer for the sake of simplicity.

3. Estimation method

We now introduce elements of notation for the parame-
ters of our model. Assuming a VARMA model in final
equation form, we split the parameter vectorγ into two
subvectorsγ1 (the parameters for the VAR operator) and
γ2 (the VMA operator):

γ = [γ′1, γ′2]
′
,

γ1 = [a1, . . . , ap]
′
,

γ2 = vec
[
B1, . . . , BK

]
,

Bi = [B1(i, 1), . . . , B1(1,K), . . . ,

Bq(i, 1), . . . , Bq(i,K)]′ ,

wherevec is the operator that stack the columns of a ma-
trix.
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The estimation method considered involves three
steps.
Step 1. Estimate a VAR(nT ) to approximate the
VARMA(p, q) and recuperate the residuals

Ût = Yt −
nT∑

l=1

Π̂nT

l Yt−l

with T > 2×K × nT .
Step 2.From the residuals of step 1, compute an estimate
of the covariance matrix ofUt, Σ̂U =

∑T
t=nT +1 ÛtÛ

′
t/T

and estimate by GLS the following multivariate regres-
sion

a(L)Yt = (B(L)− IK)Ût + et

to get estimates̃a(L) andB̃(L) of a(L) andB(L). This
yields the estimator

γ̃ =

[
T∑

t=l

Ẑ ′t−1Σ̂
−1
U Ẑt−1

]−1 [
T∑

t=l

Ẑ ′t−1Σ̂
−1
U Yt

]

with

l = nT + max(p, q) + 1 ,

Ẑt−1 =
[
Yt−1, . . . , Yt−p, IK ⊗ Û′

t−1

]
,

Ût−1 = [ût−1(1), . . . , ût−1(K), . . . ,

ût−q(1), . . . , ût−q(K)]′

where⊗ is the Kronecker product operator.
Step 3.Using the estimates obtained in step 2, we form

Ũt = Yt −
p∑

i=1

ãiYt−i +
q∑

j=1

B̃jŨt−j

initiating with Ũt = 0, t ≤ max(p, q), and we define

Xt =
q∑

j=1

B̃jXt−j + Yt ,

Wt =
q∑

j=1

B̃jWt−j + Ũt ,

initiating with Xt = Wt = 0 for t ≤ max(p, q).
We also compute a new estimate ofΣU , Σ̃U =∑T

t=max(p,q)+1 ŨtŨ
′
t/T . Then we regress̃Ut +Xt−Wt

on Ṽt−1 (using GLS), where

Ṽt =
q∑

j=1

B̃j Ṽt−j + Z̃t ,

and Z̃t is just likeẐt from step 2 except that it is com-
puted withŨt instead ofÛt to obtain regression coeffi-

cients that we call̂ai andB̂j . This yields the estimator

γ̂ =




T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Ṽt−1



−1

×



T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U [Ũt + Xt −Wt]


 .

The properties of this estimation method are summa-
rized in the following theorem.

Theorem 1 (Third step estimates)If nT grows at a
rate faster thanlog T with nT

4/T → 0, then the third
stage estimates converge in quadratic mean to their true
value. The asymptotic distribution ofγ̂ is given by

√
T (γ̂ − γ) d−→ N

[
0, Ĵ−1Î Ĵ−1

]

where

Î =
∞∑

j=−∞
E

[{
V ′

t−1Σ
−1
U Ut

}{
V ′

t−1−jΣ
−1Ut−j

}′]
,

Ĵ = E
[
V ′

t−1Σ
−1
U Vt−1

]

andVt−1 is equal to the matrix̃Vt−1 whereŨt is replaced
by Ut. If furthermorem4

T /T → 0 with mT → ∞, then
the matriceŝI andĴ can be consistently estimated by

ÎT =
mT∑

j=−mT

ω(j,mT )
T

T∑
t

{
Ṽ ′

t−1Σ̃
−1
U Ūt

}
×

{
Ṽ ′

t−1−jΣ̃
−1
U Ūt−j

}′
,

ĴT =
1
T

T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Ṽt−1

whereω(j,mT ) = 1 − |j|/(mT + 1) and Ūt are the
filtered residuals computed witĥγ.

The simplicity of this estimation method is remark-
able. Only three linear multivariate regressions are
needed, and we meet none of the problems associated
with the maximization of the likelihood (local optima,
optimization over many parameters, non-uniqueness of
the VMA operator).

As for the asymptotic variance of our estimators, we
can show that the asymptotic covariance matrix of the
third step estimator is the same as the one of: (i) the
Gaussian maximum likelihood estimator, if the inno-
vations are i.i.d or follow a m.d.s.; (ii) nonlinear least
squares, if the innovations are merely uncorrelated. In a
later section, Monte Carlo simulations will illustrate the
good finite sample properties of our method for relevant
sample sizes.
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4. Estimation of the orders p and q for
VARMA models in final equation form

We still have two unknowns in our model, the ordersp
andq. If no theory specifies these parameters, we have to
use a statistical procedure to choose them. We propose
the following method to choose the orderp̂ andq̂ of the
VARMA( p,q) model. In the second step of the estimation
we compute for allp ≤ P and q ≤ Q the following
information criterion:

log |det Σ̃U |+ (p + q K)
(log T )1+δ

T

with δ > 0 and we choose(p̂, q̂) as the pair which min-
imizes the information criterion. We assume that the up-
per boundP andQ on the order of the VAR and VMA
operator are bigger than the true value ofp andq (or that
they slowly grow with the sample size). The property of
p̂ andq̂ are summarized in the following theorem.

Theorem 2 (Estimation ofp and q) If nT grows at a
rate faster thanlog T with nT

4/T → 0 then p̂ and q̂
converge in probability to their true value.

This criterion is a generalization of the information
criterion proposed by Hannan and Rissanen (1982) and
later modified in Hannan and Rissanen (1983).

The earlier method for choosingp andq of VARMA
model in final equation form was first to fit an ARMA(pi,
qi) for each univariate seriesyi. Because the VAR op-
erator is the same for each equation, we would take
p =

∑K
i=1 pi for the order of the VAR operator (the

product of each univariate AR operator). Accordingly
we would get\q = maxk{qk +

∑K
i=1,i 6=k pi}. This pro-

cedure will obviously give bloated values forp andq and
this is certainly a reason why the final equation form is
rarely used.

5. Monte Carlo simulations

To evaluate the performance of our estimation method,
we ran two sets of Monte Carlo simulations. In the
first set, strong VARMA models (Gaussian i.i.d. inno-
vations) are simulated and we compare our method to
maximum likelihood. In the second set, weak VARMA
models (uncorrelated innovations) are simulated and
our method is compared to generalized nonlinear least
squares. The weak VARMA models are simulated by
time-aggregating strong VARMA processes. We also use
our information criterion to choose the orderp andq for
both set of simulations. The results for only one weak
VARMA experiment are reported here.

The simulated model is a weak VARMA(1, 1) in final
equation form witha1 = 0.729, b(1, 1) = 0.0593618,
b(1, 2) = −0.14134, b(2, 1) = 0.20598, b(2, 2) =

0.296472. The variance of the innovations is 2.64155 and
1.70611 and the covariance is 0.650962. The sample size
is 200 which would correspond to a bit less than 17 years
of monthly data, a reasonable sample size in macroeco-
nomics. The length of the long AR in the first step is
nT = 15 and the number of repetitions is 1000. The pa-
rameter in the information criterion isδ = 0.5. The re-
sults for the information criterion appear in Table1 and
the results for the parameter estimation in Table2.

Table 1:Estimation ofp andq

p \ q 0 1 2 3 4

0 0.000 0.000 0.000 0.000 0.000
1 0.135 0.791 0.000 0.000 0.000
2 0.033 0.033 0.000 0.000 0.000
3 0.002 0.004 0.000 0.000 0.000
4 0.000 0.001 0.000 0.000 0.000
5 0.000 0.001 0.000 0.000 0.000

From the results of Table1, we see that the perfor-
mance of the information criterion is pretty good. The
criterion chooses the true order almost80% of the time.
When the criterion does not choose the true order it will
more often choose a lower order for the VMA operator.

The performance of our regression-based estimation
method when compared to its corresponding nonlinear
counterpart (nonlinear least squares) is excellent (see Ta-
ble2). The root mean squared errors over the 1000 simu-
lations of the third step estimates is basically the same as
those of NLLS. In this simulation the generalized NLLS
are computed in two steps. In a first step, the variance
of the innovations is taken to be an identity matrix and
in the second step the identity matrix is replaced by the
variance of the first step residuals. It is very interesting
that we get the same efficiency with a regression-based
estimation method that with a nonlinear method which
come with all its caveats enumerated previously.

6. Application to macroeconomic time se-
ries

To illustrate the impact of using a VARMA model instead
of a VAR model, we consider the following macroeco-
nomic application. One common analysis of macroeco-
nomic time series is to study the impulse-response func-
tions, i.e. the effect of a change in a variable on the future
values of another. The usual procedure to obtain the im-
pulse responses consists in fitting a VAR model to the
time series, from which the implied infinite VMA rep-
resentation is obtained. When one fits a VAR model to
macroeconomic time series, a high value for the order
p is often needed to get uncorrelated residuals. For ex-
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Table 2:Estimation of the VAR and MA operators

Value Average Std. dev. RMSE Min Max Median
Third step

a1 0.7290 0.7229 0.0547 0.0550 0.5347 0.8534 0.7266
b1(1, 1) 0.0594 0.0607 0.0831 0.0831 -0.2312 0.3392 0.0613
b1(1, 2) -0.1413 -0.1462 0.0909 0.0910 -0.4173 0.1763 -0.1454
b1(2, 1) 0.2060 0.2061 0.0599 0.0599 0.0092 0.4079 0.2069
b1(2, 2) 0.2965 0.2914 0.0954 0.0955 -0.0300 0.5718 0.2943

NLLS
a1 0.7290 0.7242 0.0543 0.0545 0.5352 0.8518 0.7281

b1(1, 1) 0.0594 0.0642 0.0835 0.0836 -0.2250 0.3316 0.0640
b1(1, 2) -0.1413 -0.1481 0.0909 0.0912 -0.4252 0.1729 -0.1484
b1(2, 1) 0.2060 0.2076 0.0603 0.0603 0.0072 0.4073 0.2088
b1(2, 2) 0.2965 0.2953 0.0953 0.0953 -0.0284 0.5666 0.2937

ample, Bernanke and Mihov (1998) uses a VAR(13) to
model six monthly macroeconomic time series (log of
the real GDP (gdpm), total bank reserves (tr1), nonbor-
rowed reserves (nbrec1), federal funds rate (fyff), log of
the GDP deflator (pgdpm), log of the Dow-Jones index
of spot commodity prices (psccom)) when about 30 years
of data are available (January 1962 to December 1996),
hardly a parsimonious model.

A typical impulse-response analysis can be found in
McMillin (2001). In this work the author uses the six
time series of Bernanke and Mihov (1998) to study the
impact of a change in the nonborrowed reserves on the
variablesgdpm, pgdpm, fyff. The do this he fits a VAR
to the first difference of the series, in order,gdpm, (pss-
com-pgdpm), fyff, nbrec1, tr1, psscom. With an argument
based on Keating (1999), the author states that using this
ordering, the Choleski decomposition, based on long-run
macroeconomic restrictions, of the variance matrix of the
innovations will identify the structural effect of the pol-
icy variablenbrec1.

Fitting a VAR(12) to the same dataset we can replicate
McMillin’s experiment. The resulting impulse-responses
are plotted in Figure1 with one standard deviation confi-
dence band (derived from Monte Carlo simulations with
1000 draws). These figures are typical in the macroe-
conomic literature. An increase of the nonborrowed re-
serves raises the output in the short run, increases per-
manently the price level, and decreases the level of the
federal funds rate in the short run. A frequent result in
this kind of analysis is that the confidence bands, i.e. the
degree of uncertainty around these impulse-responses is
quite large. We can wonder how much of this uncertainty
is due to the use of such non-parsimonious models. Note
that a VAR(12) operator with six time series contains 432
parameters.

To answer this question, we performed the same exer-

cise with a VARMA model instead of a VAR to get the
infinite VMA representation. Using our information cri-
terion, with a VAR(15) in the first step estimation and
with δ = 0.5 in the information criterion, we identified
a VARMA(9, 3) model for these series. This particular
model contains 119 parameters in the VAR and VMA op-
erators. The impulse-response functions from this model
and their one standard deviation confidence band (Monte
Carlo simulations with 1000 draws) are plotted in Figure
2. The shape of the impulse-responses for the three se-
ries are similar. What is very different is the width of the
confidence bands, which are now much smaller. An in-
teresting result is that for the two variables which should
not be affected in the long run by a change in the non-
borrowed reserves according to the long-run restrictions,
the confidence band shrinks as we move forward in time.
It is natural that we get this result since the level of un-
certainty should diminish if the restrictions are true. In
contrast, for the price level, a variable which can be af-
fected in the long-run by a change in the nonborrowed
reserves, the level of uncertainty increases with the hori-
zon. Note that we are not getting this result when the
analysis is performed with a VAR, presumably because
the uncertainty due the non-parsimonious representation
is masking everything else.

7. Conclusion

In this paper, we have presented a regression-based esti-
mation method in three steps for weak VARMA mod-
els. The estimates from the third step have the same
asymptotic variance than the corresponding (i) Gaussian
maximum likelihood estimates if we assume that the
innovations are i.i.d. or follow a m.d.s. or (ii) gen-
eralized nonlinear least squaresif we merely assume
that the innovations are uncorrelated. This estimation
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Figure 1:Impulse-response functions for VAR model
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Figure 2: Impulse-response functions for VARMA
model
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method is a generalization of the method presented in
Hannan and Rissanen (1982) for univariate ARMA mod-
els. Our results are derived under weaker assumptions
than those usually considered in this literature (an alpha
mixing condition instead of i.i.d. or m.d.s. conditions).

To make the implementation of the VARMA models
easier, we chose the final equation form representation
as the identified VARMA representation. An informa-
tion criterion for choosing the orderp andq of VARMA
models under this representation was also presented.

A small Monte Carlo simulation showed the very good
performance of our estimation method for small sam-
ple sizes when compared to their nonlinear counterparts.
The performance of the information criterion also ap-
pears to be good.

Finally, to demonstrate the importance of using
VARMA models instead of only relying on VAR models,
we compared the impulse-responses generated by both
models when applied to U.S. macroeconomic data. The

results indicate that the impulse-responses obtained from
the more parsimonious VARMA representation are more
precisely estimated.
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