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Motivation

» We look into identification conditions of a general nonlinear

func
whic
func

tion ((0) in terms of another nonlinear function ()
h is identifiable in nonlinear models called parametric
tion identification. The literature on this topic is surpris-

ingly scarce.

>

This paper focuses on point identification of parametric func-
tions which is an extension to the partial identification in the
sense of Phillips (1989) and Bekker and Wansbeek (2003) but
is different from set-valued identification by Manski (2003) and
Tamer (2010).

It covers moment conditions as a special case:

v(0) = E[g(Ys:0), ~(0) = Elg(Ye: 0)|Z];

It includes semiparametric setups where the distribution of ob-
served variables depends also on nuisance parameters which have
an infinite number.

It includes known results on identification of the simultaneous
equations models (SEMs), the dynamic stochastic general equi-
librium (DSGE) models and the likelihood models as special
cases.



Motivation (continued)

» The earliest known studies on identification problem is attributed
to Lenoir (1913); see Fox (1968), Christ (1985) and Stock and
Trebbi (2003). If there is a one-to-one function between the
parameter 0 and the probability distribution Py, then 6 is (glob-
ally) identifiable.

» The classical papers usually investigate complete identification
of 6 in the simultaneous equations models; see Fisher (1959,
1961, 1963, 1965, 1966), Rothenberg (1971), Bowden (1973),
Richmond (1974), Bekker and Wansbeek (2003), etc. However,
the assumptions under which their results hold differ.



Motivation (continued)

» Bekker and Wansbeek (2003) look into identification of a scalar
parameter in the likelihood framework; see also Rothenberg
(1971). Fisher (1966) considers identification of a single equa-
tion in the SEMs and Richmond (1974) focuses on global identi-
fication of linear SEMs. But none of them studies identification
of a general nonlinear function of 6.

» The research on identification of the New Keynesian Phillips
Curves (NKPC) is numerous but no paper focuses on identi-
fication of a function of deep parameters [see Dufour, Kha-
laf and Kichian (2006), Nason and Smith (2008), Kleibergen
and Mavroeidis (2008), Ravenna aand Walsh (2008), Calstrom,
Fuerst and Paustian (2009), Dees, Pesaran, Smith and Smith
(2009), etc.]:

Tt = YeEeTep1 + Yome—1 + Aye + Ug.



Motivation (continued)

» Komunjer and Ng (2011) study identification of the parameter
vector # and a subvector of € in the DSGE models by An and
Schorfheide (2007):

Xt+]_ = A(H)Xt + B(O)qu
Yt+1 = C(H)Xt + D(G)Ut+1.

» The rank conditions by Iskrev (2010) in the DSGE models look
into identification of # and hold under different assumptions in
comparison to Komunjer and Ng (2011); see also Kim (2003),
Cochrane (2007), Canova and Sala (2009) for identification
issues of the DSGE models. But it does not study identification
of a function of 6.

» Existing literature investigates local identification only at given
parameter values. We introduce local identification around a
point to justify the existence of a consistent estimator.
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Motivation (continued)

» Chen, Chernozhukov, Lee and Newey (2011) consider only suf-
ficient condition through the rank of the Jacobian matrix of the
moment equations.

» ldentification of nonparametric models is not covered in the pa-
per and related literature includes Brown and Matzkin (1998),
Chesher (2003), Newey and Powell (2003), Chernozhukov, Im-
bens and Newey (2007), Imbens and Newey (2009), Florens,
Johannes and Van(2012), Matzkin (2012), etc.



Simple illustrations on identification failure

The following linear SEMs are just given for illustration purpose
and our paper considers a more general and complicated framework
focusing on identification of nonlinear functions of parameters in
nonlinear models.

Example I: Simple simultaneous equations models (Maddala
(1977))

» ldentified supply and demand functions

Qt = a1 + f1P: + 71 Yt + u1 (demand function),
Q: = a2 + (2Pt + 2 R: + ur2 (supply function).
The reduced form equations become
Qr = m +mYe + 3Ry + va1,
Pt = w4 + 75 Yy + e Re + ve2,

18—l _ Bom _ _ By
52*51 r 2= B 7T3 P
_ 01—y

T4 = 3,=p ﬂz /81 6 = — Bz 51
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Simple illustrations on identification failure (continued)

» Identified supply function but unidentified demand function

Q: = a1 + B1Pt + 11 Ye + un (demand function),
Q: = a2 + (2P + us (supply function).

The reduced form then becomes

Qr = m +mYe + v,
Py =4+ 75 Y: + vio.

We cannot identify all 5 structural parameters. Specifically,
a and (B are identifiable but there is no unique solution to

a1, f1 and 1.



Simple illustrations on identification failure (continued)

» Identified demand function but unidentified supply function

Q: = a1 + 1Pt + up1 (demand function),
Q: = ap + (2Pt + 2Ry + usp (supply function).

The reduced form is

Qt = m1 + M3 R: + vi1,
Pt = T4 +7T6Rt + ViD.

Now a1 and (31 become identifiable but there is no unique
solution to ap, B2 and ~».



Simple illustrations on identification failure (continued)

» Example Il: Local and global identification failure
Consider a random variable X ~ N(u,1). Suppose that the ob-
served data is X2 which follows x2(1, \) with the noncentrality
parameter A = i and E(X2) =1+ \.

The Graph of Noncentrality of Parameter
40 T T T
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Simple illustrations on identification failure (continued)

» Example llI: Identification failure in MA(1) model
Consider a MA(1) process:

Yt — €t + 961»_1, €t N[O,UZ].
Since
Var(Y:) = 02(1+ 6?), Cov(Y:Yi 1) = 026,

we have
2 Var( Yt)

- COV( Yt Yt—l)
We cannot identify 6 from 671, since both parameters are so-

lutions for (1). However, we can identify autocorrelation which
is a nonlinear function of 6

f+1=0 (1)

6

ST
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Questions of interest

The questions of interest are as follows:

>

Does there exist a general condition that can include the es-
tablished results on local (or global) identification as special
cases?

What are the necessary and sufficient conditions for parametric
function identification?

What are the necessary and sufficient conditions for local iden-
tification at and around a point?

How to apply such conditions to nonlinear models, such as the
Dynamic Stochastic General Equilibrium models (DSGE)?
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Contributions

» Propose a general necessary and sufficient condition for local
identification of parametric functions.

» Establish both necessary and sufficient conditions for parametric
function identification and provide such conditions subject to
restrictions.

» Distinguish between the concept of local identification around
0o and the usual definition of local identification at 6.

» Give alternative equivalent conditions for parametric function
identification using vector space properties.

» Apply our general identification conditions to widely-used sta-
tistical and macroeconomic models.
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Fundamental concepts

Definition (Global identification of a parametric function at
6o)

The parametric function v : © — T is globally identifiable at 8y € ©
if and only if

(7(0) # 7(60)) = (P(o,1) # Poosn)) » Y0 € ©, Vi, 1 € =.

Definition (Global identification of a parametric function
over O)

The parametric function v : © — I is globally identifiable over © if
and only if

(7(61) # 7(02)) = (P(y,n) # P(oan)) > V01, 02 € ©, Vi1, 1 € =,
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Fundamental concepts (continued)

Definition (Local identification of a parametric function at
6o)

The parametric function v : © — T is locally identifiable at g € ©
iff there exists an open neighborhood V(6p) of 6y such that

(7(0) # ¥(60)) = (P(o,1) # Pown)) > V0 € V(bo), Vi1, 12 € =.

Definition (Local identification of a parametric function
around 0,)

The parametric function v : © — T is locally identifiable around
0o € © iff there exists an open neighborhood V(6) of 6y such that

(7(91) # 7(92)) = (P(91,V1) 7& P(GQ,VQ)) ) vela 92 S V(QO)) Vl/l; NS =
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Fundamental concepts (continued)

Definition (Local identification in terms of another parametric
function at and around 6y)

Let 5:© — B and v:© — I be two parametric functions. (3(0)
is locally identifiable in terms of () at 6y € © iff

(B(0) # B(6o)) = (7v(0) # ~v(60)), VO € V(o).

B(0) is locally identifiable in terms of v(#) around 6 € © iff

(B(61) # B(02)) = (v(01) #¥(62)), Vb1, 62 € V().
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The advantages of introducing the concept of local
identification around a point

» Known results on local identification at 6 are still restrictive
and maybe unsatisfactory for statistical inference. Given the
conditions for local identification only at a specific point, we
are not sure whether or not an estimator is locally identifiable.

» Global identification over the parameter space is desirable but
very difficult to achieve, especially for nonlinear models.

» Local identification around a point lies between the above two
identifications. It helps justify that a consistent estimator could
be locally identifiable.
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Relationships among different concepts of identifications

global
identification
ata point

local

global
identification

identification at

over parameter a point

space

local
identification

around a point
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lllustration of different identification concepts

The Graph of Noncentrality of Parameter
40 T T \




Necessary and sufficient conditions for local identification
at 0,

Theorem

Let §y € © and v : © +— R be a parametric function which is
locally identifiable at 6y. Suppose (0) is differentiable at 6y with
Jacobian matrix J(0p). Then the condition

rank[J,(6o)] = k

implies that 0 is locally identifiable at 0y. Furthermore, suppose
v(0) is continuously differentiable in some open neighborhood
of 6 with Jacobian matrix J,(0) and 6y is a regular point of J,(6).
Then 8 is locally identifiable at 6y iff rank[J,(60)] = k.
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lllustration of the theorem on local identification at a point

The Graph of Noncentrality Parameter
40 T T T
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Necessary and sufficient conditions for local identification
around 6,

Theorem

Let g € © and v : © — RC be a parametric function which
is locally identifiable around 6y. Suppose v(6) is differentiable in
some open neighborhood of 6y with continuous differentiability
at 0y. Then the condition

rank[J,(6o)] = k

implies that @ is locally identifiable around 6y. Furthermore, suppose
v(0) is continuously differentiable in some open neighborhood
of 0y and 0y is a regular point of J, (). Then 0 is locally identifiable
around g iff rank[J,(6p)] = k.
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[llustration of the theorem on local identification around a
point

The Graph of a Cubic Parameter
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|dentification of general parametric functions

» Parametric function identification means that the vector 6 may
not be identifiable but a function of € can still be identified.

» It is an extension to the identification of a subvector; see Phillips
(1989) and Bekker and Wansbeek (2003).

» It differs from set-valued identification by Manski (2003) and
Tamer (2010).

Recall a column space of an m x n matrix A is defined as
Im(A) = {y € R™: Ax = y for some x € R"}.
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|dentification of general parametric functions (continued)

Theorem (Sufficient conditions for local parametric function
identification around 6)

Let v : R — RE and 8 : Rk — R be two parametric functions.
Assume ~(0) is locally identifiable around 6. Suppose ~(6) and
B(0) are differentiable in some neighborhood of 6, with con-
tinuous differentiability at 6y. Then the condition Im(Jg(6o)’) C
Im (Jy(6o)") implies that 3(8) is locally identifiable in terms of v(0)
around 0g.
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|dentification of general parametric functions (continued)

Theorem (Necessary and sufficient conditions for local
parametric function identification around 6;)

Let v : R = R® and 8 : Rk — R" be two parametric functions.
Assume ~(0) is locally identifiable around 6y. Suppose ~(6) and
(3(0) are continuously differentiable in an open neighborhood
of 0y and 0y is a regular point of both J,(0) and J3(0). Then
(3(0) is locally identifiable in terms of ~(0) around 0y if and only if
Im(J3(60)") € Im(J5(60)").
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A simple case on parametric function identification

A SEMs setup with one IV and one endogenous regressor
y =BY +u, (2)

Y=nZ+v, (3)

where both 8 and 7 are scalars. Plugging (3) into (2) gives
y =M+ (Bv + u),

where A = B7. Hence ( is identifiable if and only if 7 # 0. Let

o= 2] 0= ser-s
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A simple case on parametric function identification
(continued)

s =2 L] =11 0],

lileels) o

<~ (m#0).

Hence

[ 6 n ] is a regular point of both J,(0) and Js(6), Vr # 0. (4)
is both necessary and sufficient for identification of 3.
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Alternative formulae for function identification

Suppose v(6) and (3(0) are continuously differentiable in V() and
6o is a regular point of J,(6) and J3(6). Given () is locally iden-
tifiable around 6y, we give a group of equivalent conditions for local
identification of 3(#) around 6y, some of which are listed for demon-
stration purpose.

Im (Jﬁ(go)/) CIm (JW(Q())/) ;

Js(00) = F(00)J,(0o), for some matrix F(6p); (5)
S(00) | _ ran
rank[ J5(60) ] = rank(J,(6p)). (6)
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Alternative formulae for function identification (continued)
ker[,(60)] € ker[Js(60)];

Jy(6o) _
rank[ J5(60) + Vi (60): (60) ] = rank(J, (o)),

for any g x p matrix Vi(6p);

J4(6o) + V2(00)Js(00) | _
rank[ v J5(60) ] = rank(J,(6o)),

for any p x g matrix V2(6p);

Js(0o) = J3(60)J~(60) ~ J1(0),
for some g-inverse J, ().

29 /45



Two examples on alternative formulae

» One IV simple SEMs setup with m # 0
Then

= rank(J,(0)).

(6) holds.
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Two examples (continued)

> Identified supply function but unidentified demand function

Q: = a1 + 1Pt + 71 Ye + ug1 (demand function),
Q: = ap + (2P + upp (supply function).

The reduced form equations

Qe =m1 +m2 Y + Va1,

Pt =m3+maYe + vio,
= %’ = ﬂzlﬂfﬁ 3= %; 212 52 51
Hence0=[ a1 61 m ax B ],
YO =[m m m m ], Ba®)=[c1 B m ],
Bo(0)=[ 02 B2]"
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Two examples (continued)
6 is a regular point of J,(0) if 81 # (2, f1 # 0 and 1 # 0.
271 171
P2 O C PP ,

1 0
Jy(e) == r—Q¢ ax—o
PRI = N
0 B2—PB1 1 0 T Ba—p
1 0 0 0O
0 0010
Jgd(e) =01 0 0O JBS(G) = { 000 0 1 ] .
001 0O

Then
rank (J, (0)) = 4 = rank[ JJ;S((GH)) } rank[ j;i((%)) ] _s.

» The demand function is unidentified.

» The supply function is identified.
» We can identify a3 and ~; but not (1 in demand function.

32/45



Discussions on alternative formulae

> All the equivalent conditions hold for local identification at 6g.

» The connections among these alternative conditions and the
meaning of each condition are discussed in detail in Dufour
and Liang (2012).

> The elements of J,(6) and J3(@) are generally nonlinear trans-
formations of 6.

» In some cases, these elements can be independent of # or linear
functions of 6. Then the equivalent conditions become global.
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Parametric function identification with restrictions

Suppose the parameters are restricted as £(6p) = ¢, where
£: Rk — RR.

Corollary (Conditions for local identification with restrictions)

Suppose v(0), 5(0) and £(0) are continuously differentiable in an
open neighborhood of 6y and 0y is a regular point of J,(6), J(f)
and Jg(0). Suppose v(0) and £(8) are locally identifiable around 6.
Then

Im(Jﬂ(GO)/) c Im[ Jw(eo)/ JE(QO)/ ]

is both necessary and sufficient for 3(0) to be locally identifiable
around 0g.
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An illustration on parametric function identification with
restrictions

Consider again

Q: = a1 + B1P: + 71 Yt + up1 (demand function),
Q: = an + (2Pt + uro (supply function).

Impose {(f) =1+ B2 =c. Then Je(§)=[0 0 1 0 1]and
ran =5 =ran 7 :
] el

The demand function becomes identifiable.

~—
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The simultaneous equations models (SEMs)

We provide the general rank condition for local identification of the
(restricted) structural parameters 6 around a given point. In con-
trast, the known results in the literature are concerned with local
identification at a point and may not be very useful for statistical
inference.

Consider a system of G simultaneous equations:
YB + XI' = U,

where Y is endogenous, X is exogenous and B and I are matrices
of unknown coefficients. Denote the vector of all the structural
parameters

0= ( (vec(B)) (vec(N)) (n) (vec(X)) )/.
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SEMs (continued)

Suppose there exist M continuously differentiable constraints on 6

¢(0) =0
whose Jacobian matrix is denoted J,(6). Define the moment func-
tions
m@)=[B8 T “Yf]— =0
-2 1]
and

_ Yy, Xv.x B
=18 ] E T (8] rea

We obtain the necessary and sufficient condition for identification of
an arbitrary parametric function 3(#) according to the general rank
condition (6) is as follows:

Im(6o)
rank | Jy(fo) | = rank [ _ij((eo) } . (7)
J3(00) ¢
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Generalization of Rothenberg (1971)'s SEMs

Rothenberg assumes E(U;) = 0 for simplicity and X has full column
rank and B is nonsingular. Denote the G2 + GK reduced form

parameters as
_ ( vee(N(9))
o0 = (Lesaty )
and the Jacobian matrix as Jy(6). Set

(0) = 4(0), &(0) =¢(0), B(0) = 0.
Applying our rank condition (6) or (7), we achieve the necessary
and sufficient condition for the local identification of 6 at 6y

Jy (o)
_ Jy(6o)
rank { IJd)(Ho) = rank [ J5(60)
2G2+GK
which implies the result of Rothenberg (1971, Theorem 9):

Jw(%) _ 2
rank[J¢(90) =2G* + GK.

38/45



Generalization of Fisher (1966)'s SEMs

Identification for a scalar parameter in SEMs of Fisher can be checked
by using our established conclusions. Without loss of generality, we
can identify the first structural parameter 67 and set

The necessary and sufficient condition for local identification of 6
is

Jy (o)
rank | Jy(6o) | = rank [ Jy(0o) ] .
e} ¢

Fisher (1966, Theorem 6.4.1) proposes a similar condition under
the stronger assumption that g is a normal point rather than a
regular point.
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Generalization of Bekker and Wansbeek (2003)'s SEMs

Suppose
AK(6y) =0,
where (00)
Juy (0o
A= it
o

and K(6p) is a basis of ker(A). If e;KC(6p) = 0, then K(6p) is also
the basis of ker [ ;4, ] The result of Bekker and Wansbeek (2003,

1
Corollary 1) reduces to

ker[ A, ] = ker(A),
&

which is a special case of our general rank condition.
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The Dynamic Stochastic General Equilibrium (DSGE)
models

Consider the state-space form of the DSGE models:
Xt+1 = A(H)Xt + B(H)qu

and
Yer1 = C(0)Xe + D(0)ury1,

where 6 is a k x 1 vector of deep or structural parameters, u is the
structural shocks, Ais nx n, Bisnx m, Cis pxnand D is px m.

Applying our general rank condition to the DSGE models, we can
show that it generalizes the major local identification conditions by
Iskrev (2010) and Komunjer and Ng (2011).
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The DSGE models (continued)

Denote A(f) as the Jacobian of the vector

vec(SA()S™)
vec(SB(0)T)

A0, S, T) = vec(C(0)S™1)
n vee(D(8) T)

vech(T—lz(e)T—l’)

S and T are non-singular matrices that link two sets of coefficients
ABCD in a similar transformation so that g(a;01) = g(a;602)T.
For notation purpose, denote

Y [ S O

vecS
W = OT]’ VGCW—|: ],

vecT
where vecW is a j x 1 vector.
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The DSGE models (continued)

Let's set ;
50)= | veew |

it follows from the general rank condition (6) that the necessary and
sufficient condition for local identification of 6 is

Ho(0o, 1)  Iw(bo, 1)
rank /k (0] = rank[ J)\,g(ao, /J) J,\7W(00, /J) ]
0 j
which entails that

rank[ J)\79(90, /J) J)\7w((90, IJ) ] =k+]. (8)
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The DSGE models (continued)

Furthermore, denote ¢, as a g dimension subvector of 6 and 6;_,
the rest of the elements of 6 and the partial derivatives Jj g, () and
I\ 0., (0) respectively. If we set

B0) = [ Vef:qW } ’

the necessary and sufficient condition for identification of 6, be-
comes

Ino,(00, 1) Ino_y(O0s 1) Inw(bo, 1)
rank I (0] (0]
0 0 I

= rank[ Inog (00, 1) Ingy (00 1) Ixw(bo, 1) }
= (q +j) + rank (S0, (60, 1)) - 9)
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Conclusion

» We establish both necessary and sufficient conditions for nonlin-
ear parametric function identification of nonlinear models sub-
ject to restrictions.

> We define local identification around 6y, which is important for
statistical inference.

» We demonstrate the generality of the proposed necessary and
sufficient conditions by applying them to statistical and macroe-
conomic models, namely the SEMs, the DSGE models and the
likelihood models.
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