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Abstract

This paper proposes 1nite-sample procedures for testing the SURE speci1cation in
multi-equation regression models, i.e. whether the disturbances in di5erent equations
are contemporaneously uncorrelated or not. We apply the technique of Monte Carlo
(MC) tests, see Dwass and Barnard, respectively (Ann. Math. Statist. 28 (1957) 181;
J.R. Statist. Soc. Ser. B 25 (1963) 294) to obtain exact tests based on standard LR
and LM zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on
feasible generalized least squares (FGLS). We show that the latter statistics are pivotal
under the null, which provides the justi1cation for applying MC tests. Furthermore, we
extend the exact independence test proposed by Harvey and Phillips (Bull. Econ. Res.
34 (2) (1982) 79) to the multi-equation framework. Speci1cally, we introduce several
induced tests based on a set of simultaneous Harvey=Phillips-type tests and suggest
a simulation-based solution to the associated combination problem. The properties of
the proposed tests are studied in a Monte Carlo experiment which shows that standard
asymptotic tests exhibit important size distortions, while MC tests achieve complete
size control and display good power. Moreover, MC-QLR tests performed best in
terms of power, a result of interest from the point of view of simulation-based tests.
The power of the MC induced tests improves appreciably in comparison to standard
Bonferroni tests and in certain cases outperform the likelihood-based MC tests. The
tests are applied to data used by Fischer (J. Monetary Econ. 32, 485) (1993) to
analyze the macroeconomic determinants of growth. ? 2002 Elsevier Science S.A.
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1. Introduction

Multi-equation models which use both cross-section and time series data
are common in econometric studies. These include, in particular, the seem-
ingly unrelated regressions (SURE) model introduced by Zellner (1962). The
SURE speci1cation is expressed as a set of linear regressions where the dis-
turbances in the di5erent equations are correlated. The non-diagonality of
the error covariance matrix usually entails that individual equation estimates
are sub-optimal; hence, generalized least squares (GLS) estimation which
exploits the correlations across equations may improve inference. However,
the implementation of GLS requires estimating the error covariance from the
data. Further the cross-equation dependence must be taken into account when
testing cross-equation parameter restrictions. As it is well known, feasible
generalized least squares (FGLS) estimators need not be more eIcient than
ordinary least squares (OLS); see Srivastava and Giles (1987, Chapter 2).
Indeed, the closer the error covariance comes to being spherical, the more
likely it is that OLS estimates will be superior. This has extensively been dis-
cussed in the SURE literature; see, for example, Zellner (1962, 1963), Mehta
and Swamy (1976), Kmenta and Gilbert (1968), Revankar (1974, 1976),
Kunitomo (1977), Kariya (1981a), and Srivastava and Dwivedi (1979). In
this sense, choosing between GLS and OLS estimation in the SURE model
corresponds to the problem of testing for sphericity of the error covariance
matrix.
This paper studies and proposes 1nite-sample tests for independence against

contemporaneous correlation of disturbances in a SURE model. Indepen-
dence tests in multivariate models have been discussed in both the econo-
metric and statistical literatures. In particular, Breusch and Pagan (1980)
derived a Lagrange multiplier (LM) test for the diagonality of the error
covariance matrix. Kariya (1981c) derived locally best invariant tests in a
two-equation framework. Shiba and Tsurumi (1988) proposed Wald, like-
lihood ratio (LR), LM and Bayesian tests for the hypothesis that the er-
ror covariance is block-diagonal. Related results are also available in Kariya
(1981b), Kariya et al. (1984) and Cameron and Trivedi (1993). Except for
one special case, these test procedures are only justi1ed by asymptotic argu-
ments. The exception is Harvey and Phillips (1982, Section 3) who proposed
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exact independence tests between the errors of an equation and those of the
other equations of the system. These tests (which we will denote EFT) in-
volve conventional F statistics for testing whether the (estimated) residuals
added to each equation have zero coeIcients. EFT tests may be applied in
the context of general diagonality tests; for example, one may assess in turn
whether the disturbances in each equation are independent of the disturbances
in all other equations. Such a sequence of tests however raises the problem
of taking into account the dependence between multiple tests, a problem not
solved by Harvey and Phillips (1982).
A major problem in the SURE context comes from the fact that relevant

null distributions are either diIcult to derive or too complicated for practical
use. This is true even in the case of identical regressor matrices. Hence the
applicable procedures rely heavily on asymptotic approximations whose accu-
racy can be quite poor. This is evident from the Monte Carlo results reported
in Harvey and Phillips (1982) and Shiba and Tsurumi (1988), among others.
In any case, it is widely acknowledged by now that standard multivariate
LR-based asymptotic tests are unreliable in 1nite samples, in the sense that
test sizes deviate from the nominal signi1cance levels; see Dufour and Khalaf
(1998) for related simulation evidence.
In this paper, we reemphasize this fact and propose to use the technique

of Monte Carlo (MC) tests (Dwass, 1957; Barnard, 1963) in order to obtain
provably exact procedures. We apply the MC test technique to (i) the standard
likelihood ratio (LR) and Lagrange multiplier (LM) criteria, and (ii) OLS and
FGLS-based quasi-LR (QLR) statistics. We also introduce several induced
tests based on a set of simultaneous Harvey=Phillips-type tests and suggest a
simulation-based solution to the associated combination problem. The critical
regions of conventional induced tests are usually computed using probability
inequalities (e.g., the well known Boole–Bonferroni inequality) which yields
conservative p-values whenever non-independent tests are combined (see, for
example, Savin, 1984; Folks, 1984; Dufour, 1990; Dufour and TorrJes, 1998).
Here, we propose to construct the induced tests such that size-correct p-values
can be readily obtained by simulation.
The 1rst step towards an exact test procedure involves deriving nuisance-

parameter-free null distributions. In the context of standard independence
tests, invariance results are known given two univariate or multivariate re-
gression equations (Kariya, 1981b, c; Kariya et al., 1984). The problem of
nuisance parameters is yet unresolved in models involving more than two re-
gression equations. Here, we show that the LR, LM and QLR independence
test statistics are pivotal under the null, for multi-equation SURE systems.
Though the proof of this result is not complex, it does not appear to be
known in the literature. Of course, existing work in this area has typically
focused on deriving p-values analytically. By contrast, the approach taken in
this article does not require extracting exact distributions; the technique of
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MC tests allows one to obtain provably exact randomized tests in 1nite sam-
ples using very small numbers of MC replications of the original test statistic
under the null hypothesis. In the present context, this technique can easily be
applied whenever the distribution of the errors is continuous and speci1ed up
to an unknown covariance matrix (or linear transformation). Note this dis-
tribution does not have to be Gaussian. For further references regarding MC
tests, see Dufour (1995), Dufour and Kiviet (1996, 1998) Kiviet and Dufour
(1997), Dufour et al. (1998), and Dufour and Khalaf (2001). We investigate
the size and power of suggested tests in a Monte Carlo study. The results
show that, while the asymptotic LR and LM tests seriously overreject, the MC
versions of these tests achieve perfect size control and have good power. The
power of the MC induced tests improves appreciably in comparison to the
standard Bonferroni tests and in several cases outperform the corresponding
MC-LR and LM tests.
The outline of this study is as follows. In Section 2, we present the model

and the estimators used, while the test statistics are described in Section 3. In
Section 4, we show that the proposed test statistics have nuisance-parameter
free distributions under the null hypothesis and describe how exact MC tests
can be implemented. In Section 5, we report the simulation results. In Sec-
tion 6, we apply the tests to data used by Fischer (1993) to analyze the
macroeconomic determinants of growth. We conclude in Section 7.

2. Framework

Consider the seemingly unrelated regression model

Yi=Xi�i + ui; i=1; : : : ; p; (2.1)

where Yi is a vector of n observations on a dependent variable, Xi a full-column
rank n× ki matrix of regressors, �i a vector of ki unknown coeIcients, and
ui=(u1i ; u2i ; : : :, uni)′ a n×1 vector of random disturbances. When Xi=Xj; i;
j=1; : : : ; p, we have a multivariate linear regression (MLR) model; see An-
derson (1984, Chapters 8 and 13), Berndt and Savin (1977), and Kariya
(1985). The system (2.1) may be rewritten in the stacked form

y=X�+ u; (2.2)

where

y=



Y1
Y2
...
Yp


 ; X =



X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xp


 ; u=



u1
u2
...
up


 ; �=



�1
�2
...
�p



(2.3)
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so that X is a (np)× k matrix, y and u each have dimension (np)× 1 and
� has dimension k × 1, with k=

∑p
i=1 ki. Set

U =[u1 u2 · · · up]=



U ′

1·
U ′

2·
...
U ′
n·


 ; (2.4)

where Ut·=(ut1; ut2; : : : ; utp)′ is the disturbance vector for the tth observation.
In the sequel, we shall also use, when required, some or all of the following
assumptions and notations:

Ut·= JWt; t=1; : : : ; n; (2.5)

where J is a 1xed lower triangular p× p matrix such that

� ≡ JJ ′=[�ij]i; j=1; :::;p is non-singular; (2.6)

where we set �i ≡ �1=2ii ; i=1; : : : ; p;

W1; : : : ; Wn are p× 1 random vectors

whose joint distribution is completely speci1ed; (2.7)

u is independent of X: (2.8)

Assumption (2.8) is a strict exogeneity assumption, which clearly holds
when X is 1xed. Assumptions (2.5)–(2.7) mean that the disturbance distri-
bution is completely speci1ed up to an unknown linear transformation that can
modify the scaling and dependence properties of the disturbances in di5erent
equations. Note (2.5)–(2.7) do not necessarily entail that � is the covariance
matrix of Ut·. However, if we make the additional assumption that

W1; : : : ; Wn are uncorrelated with

E(Wt)=0; E(WtW ′
t )= Ip; t=1; : : : ; n;

(2.9)

or, more restrictively,

W1; : : : ; Wn
i:i:d:∼ N[0; Ip]; (2.10)

we have

E(Ut·)=0; E(Ut·U ′
t·)=�; t=1; : : : ; n; (2.11)

E(u)=0; E(uiu′j)=�ijIn; i; j=1; : : : ; p (2.12)
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and

E(uu′)=�⊗ Ip: (2.13)

The coeIcients of the regression equations can be estimated by several
methods among which the most well known are: (i) ordinary least squares
(OLS) applied to each equation, (ii) two-step feasible generalized least squares
(FGLS), (iii) iterative FGLS (IFGLS), and (iv) maximum likelihood (ML)
assuming u follows a multinormal distribution. The OLS estimator of � is

�̂OLS = (�̂
′
1; : : : ; �̂

′
p)

′; �̂i=(X ′
i Xi)

−1X ′
i Yi; i=1; : : : ; p: (2.14)

An associated estimate �̂ for � can be obtained from the OLS residuals

û i=Yi − Xi�̂i=M (Xi)ui; M (Xi)= In − Xi(X ′
i Xi)

−1X ′
i ; i=1; : : : ; p:

(2.15)

The two-step FGLS estimate based on any consistent estimate S of �, is
given by

�̃FGLS = [X ′(S−1 ⊗ In)X ]−1X ′(S−1 ⊗ In)y: (2.16)

If the disturbances are normally distributed, we have the log-likelihood
function

L=− np
2

ln(2�)− n
2
ln(|�|)− 1

2
(y − X�)′(�−1 ⊗ In)(y − X�): (2.17)

The corresponding maximum likelihood (ML) estimators �̃ and �̃ of � and
� satisfy the following normal equations:

X ′(�̃
−1 ⊗ In)X �̃=X ′(�̃

−1 ⊗ In)y; �̃=
1
n
Ũ

′
Ũ =[�̃ij]i; j=1; :::;p; (2.18)

where �̃=(�̃
′
1; : : : ; �̃

′
p)

′ and

Ũ =[ũ 1; : : : ; ũ p]; ũ i=Yi − Xi�̃i; �̃ij= ũ
′
iũ j=n:

(2.19)

Of course, the estimators in (2.18) are well de1ned provided the matrix �̃
has full column rank, an assumption we shall make in the sequel.
Iterative procedures are typically applied to obtain the ML estimates. Sup-

pose �̃
(0)

is an initial estimate of �. Using (2.18), we can solve for a 1rst
GLS estimate of �,

�̃
(0)

= [X ′(�̃
(0) ⊗ In)−1X ]−1X ′(�̃

(0) ⊗ In)−1y (2.20)

from which a new estimate of u may be obtained:

ũ (1) =y − X �̃(0) : (2.21)
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This residual leads to further estimators �̃
(1)

and �̃
(1)

of � and �. Pursuing
this iterative process, we see that the estimators at the hth iteration take the
form

�̃
(h)

= [X ′(�̃
(h) ⊗ In)−1X ]−1X ′(�̃

(h) ⊗ In)−1y; (2.22)

�̃
(h)

=
1
n
Ũ

(h)′
Ũ

(h)
= [�̃(h)ij ]i; j=1; :::;p; (2.23)

h=1; 2; : : :, where

Ũ
(h)

= [ũ(h)1 ; : : : ; ũ
(h)
p ]; ũ(h)i =Yi − Xi�̃

(h−1)
i ; �̃(h)ij = ũ(h)i

′
ũ(h)j =n: (2.24)

Under standard assumptions, iterating this procedure to convergence yields
the ML estimates (see Oberhofer and Kmenta, 1974). For a more general
discussion of the properties of such partially iterated estimators, the reader
may consult Robinson (1988).

3. Test statistics for cross-equation disturbance correlation

3.1. Likelihood-based tests

Given the setup described above, we consider the problem of testing the
hypothesis H0 that � is diagonal. For any vector d = (d1; : : : ; dN )′, let us
denote DN (di) the diagonal matrix whose diagonal elements are d1; : : : ; dN :

DN (di)=diag(d1; : : : ; dN ): (3.1)

Then H0 may be expressed as

H0: �=Dp(�2i ): (3.2)

Since J is lower triangular, it is easy to see that �=Dp(�2i ) if and only if
J =Dp(�i). Thus, under H0; uti=�iWti, i=1; : : : ; p, where Wt =(Wt1; Wt2; : : : ;
Wtp)′. If (2.9) holds, H0 is equivalent to the absence of contemporaneous
correlation between the components of Ut·. If the components of Wt are
independent, H0 is equivalent to the independence between the components
of ut·; when W1; : : : ; Wn are independent, the latter condition entails that the
disturbance vectors u1; : : : ; up are independent.
In the sequel, we will frequently refer to the standardized disturbances

w=(w′
1; : : : ; w

′
p)

′; where wi=(1=�i)ui; i=1; : : : ; p: (3.3)

Under the assumptions (2.5)–(2.7), the vector w has a completely speci1ed
distribution if H0 holds.
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Let us now consider the case where, in addition to (2.5)–(2.7), we make
the normality assumption (2.10). Then the disturbance vectors Ut·= JWt;
t=1; : : : ; n, are i.i.d. N[0; �] where �= JJ ′ and we have the log-likelihood
function (2.17). In this case, the LR and LM statistics for testing H0 take
relatively simple forms. The LR statistic is �LR = n ln( ̃) where

 ̃= |Dp(�̂2i )|=|�̃|; (3.4)

while the LM criterion is

�LM = n
p∑
i=2

i−1∑
j=1

r2ij ; (3.5)

where rij= û
′
iû j=[(û

′
iû i)(û

′
jû j)]

1=2. Under standard regularity conditions, both
�LR and �LM follow a "2(p(p − 1)=2) distribution asymptotically under H0

(see Breusch and Pagan, 1980).

In the sequel, we shall also consider quasi-LR statistics �(h)LR = n ln( ̃
(h)
)

where �̃
(h)

is used instead of the unrestricted ML estimator �̃:

 ̃
(h)

= |Dp(�̂2i )|=|�̃
(h)|: (3.6)

Since unrestricted ML estimators of the SURE model parameters are usually
obtained through iterative numerical methods, such QLR statistics are easier
to compute than the fully-iterated LR statistic.

3.2. Induced Harvey–Phillips tests

A 1nite-sample exact independence test was developed by Harvey and
Phillips (1980). Their procedure is applicable under the assumptions (2.5)–
(2.10) to test a null hypothesis of the form

H01: �=

[
�21 0
0 �11

]
(3.7)

where �11 is a (p−1)×(p−1) matrix. Speci1cally, they propose the following
statistic:

EFT=
û′1V̂ 1(V̂

′
1M1V̂ 1)−1V̂

′
1û 1=(p− 1)

û′1[I − V̂ 1(V̂
′
1M1V̂ 1)−1V̂

′
1]û 1=(n− k1 − p+ 1)

; (3.8)

where V̂ 1 = [&̂2; : : : ; &̂p], which follows an F distribution with (p−1; n−k1−
p+ 1) degrees of freedom under H01. The EFT statistic can be obtained as
the usual F-statistic for testing whether the coeIcients on V̂ 1 are zero in the
regression of Y1 on X1 and V̂ 1.
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More generally, we can consider any particular disturbance vector ui (or
equation) from the p regressions in (2.1) and test in this way whether ui
is independent of VK(i) ≡ [uj]j∈K(i)

, where K(i) is some non-empty subset of
{ j: 16 j6p; j 	= i}. This can be done by estimating an extended regression
of the form

Yi=Xi�i +
∑
j∈K(i)

û j(ij + ui (3.9)

and testing the hypothesis H0[K(i)]: (ij=0 for j∈K(i). Under the null hypoth-
esis H0 of independence (see (3.2)), the corresponding F-statistic

Fi[K(i)]=
(û′iû i − SS(K(i)))= Qpi
SS(K(i))=(n− ki − Qpi)

(3.10)

follows an F( Qpi, n−ki− Qpi), where Qpi is the number of elements in K(i) and
SS(K(i)) is the unrestricted residual sum of squares from regression (3.9).

As things stand, the latter procedures only test the independence of one dis-
turbance vector ui with respect to the other disturbance vectors. It is straight-
forward to see that the test of H0 based on Fi[K(i)] can only detect correlations
between ui and the other disturbances. In order to test H0 against all possi-
ble covariance matrices �, we need a di5erent procedure. A simple way to
do this, which still exploits the Harvey–Phillips procedure, consists in using
induced tests that combine several tests of the form Fi[K(i)]: Here we shall
consider two methods for combining tests.
Denote GF [x|+1; +2] the survival function of the Fisher distribution with

(+1; +2) degrees of freedom; i.e., if F is a random variable that follows an
F(+1; +2) distribution, we have GF [x|+1; +2]=P[F¿ x]. We consider the test
statistics

EFTi ≡ Fi[Ki]; where Ki ≡ { j: 16 j6 n; j 	= i}; i=1; : : : ; p;
(3.11)

each of which tests whether ui is independent of all the other disturbance
vectors. The p-value associated with EFTi is

pvi[Ki]=GF [EFTi |p− 1; n− ki − p+ 1] (3.12)

which follows a uniform distribution on the interval [0; 1]. The level-. F-test
based on EFTi is equivalent (with probability 1) to rejecting the null hypoth-
esis when pvi[Ki]6 ., or equivalently when 1− pvi[Ki]¿ 1− ..
A diIculty we meet here consists in controlling the overall level of a

procedure based on several separate tests. A simple way to do this consists
in running each one of the p tests Fi[Ki] at level .i, so that

∑p
i=1 .i= .,

and rejecting H0 when at least one of the p separate tests rejects the null
hypothesis; for example, we may take .i= .=p; i=1; : : : ; p. By the Boole–
Bonferroni inequality, this ensures that the probability of rejecting H0 is not
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greater than . (although it could be smaller). When .i= .=p, this procedure
is equivalent to rejecting H0 when pvmin6 .=p, where

pvmin ≡ min{pvi[Ki]: i=1; : : : ; p} (3.13)

is the minimum of the p-values.
Note that using the minimum of several p-values as a test statistic was

originally proposed by Tippett (1931) and Wilkinson (1951), in the case
of independent test statistics. The independence condition does not however
hold here for the EFTi statistics, hence the necessity of taking into account
the dependence. Because it is conservative, the Boole–Bonferroni bound may
lead to a power loss with respect to a procedure that avoids the use of a
bound. In the next section, we will see that the conservative property of the
Bonferroni-based pvmin procedure can be corrected by using the technique of
Monte Carlo tests. In other words, we consider the procedure that rejects H0

when pvmin, as de1ned by (3.12) and (3.13), is small, and we shall show
that its size can be controlled by using the Monte Carlo test technique.
A second fairly natural way of “aggregating” separate tests consists in

rejecting H0 when the product

pv×=
p∏
i=1

pvi[Ki] (3.14)

is small. Such a procedure was originally suggested by Fisher (1932) and
Pearson (1933), again for independent test statistics. As for the pvmin proce-
dure, we will see that the size of such a test based on pv× can be controlled
by Monte Carlo techniques, even if the individual p-values pvi[Ki] are not
independent.
For convenience reasons, we shall implement both these tests by taking the

test criteria

Fmin =1− pvmin; (3.15)

F×=1− pv× (3.16)

each one of which rejects H0 when it is large.
We also considered a “sequential” approach in which we test the sequence

of hypotheses

H0i: ui is independent of ui+1; : : : ; up (3.17)

for i=1; : : : ; p − 1, using Harvey–Phillips tests based on regressions of the
form

Yi=Xi�i +
p∑

j=i+1

û j(ij + ui; (3.18)
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i=1; : : : ; p − 1. Clearly H0 is equivalent to the conjunction of the p − 1
hypotheses H0i, i=1; : : : ; p − 1, so that we should reject H0 when at least
one of these tests is signi1cant. This yields the p − 1 test statistics Fi[{i +
1; : : : ; p}]; i=1; : : : ; p− 1 for which it is easy to see that Fi[{i+1; : : : ; p}] ∼
F(p−i; n−ki−p+i) under H0: The problem then consists again in controlling
the overall level of this combined procedure. Since it is not clear the test
statistics are independent, one way to achieve this control consists in using
again the Boole–Bonferroni inequality. For this, we test H0i at level .i, where∑p

i=1 .i= ., and reject H0 when one of the tests is signi1cant. In a sequential
context, a standard way of doing this consists in considering geometrically
declining levels, such as

.1 = .=2; .2 = .=(22); : : : ; .p−2 = .=(2p−2); .p−1 = .=(2p−2); (3.19)

see Anderson (1971, Chapter 4) and Lehmann (1957). Here we shall consider
the bound procedure based on (3.19), as well as tests on the minimum and the
product of the p separate p-values associated with the test statistics Fi[{i +
1; : : : ; p}]:

FSmin =1−min{pvi[{i + 1; : : : ; p}]: i=1; : : : ; p− 1}; (3.20)

FS×=1−
p−1∏
i=1

pvi[{i + 1; : : : ; p}]: (3.21)

Again the levels of the two latter procedures will be controlled through the
Monte Carlo test technique.
For further discussion of multiple test procedures, the reader may consult

Miller (1981), Folks (1984), Savin (1984), Dufour (1989, 1990), Westfall
and Young (1993), GouriUeroux and Monfort (1995, Chapter 19) and Dufour
and TorrJes (1998, 2000).

4. Finite-sample theory

We proceed next to examine the 1nite-sample distributions of the above
de1ned LM, LR and QLR test criteria. In particular, we show that the as-
sociated null distributions are free of nuisance parameters. To do this, we
will 1rst demonstrate in the three following propositions that all the statistics
considered are functions of the standardized disturbances wi; i=1; : : : ; p. In-
terestingly, these properties hold under very weak distributional assumptions
on u and X .

Proposition 4.1 (Standardized representation of LM and Harvey–Phillips
statistics). Under the assumptions and notations (2:1) to (2:6); the LM
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statistic de9ned in (3:5) can be written in the form

�LM = n
p∑
i=2

i−1∑
j=1

Qr2ij ; (4.1)

where Qrij= ŵ
′
i ŵj=[(ŵ

′
i ŵi)(ŵ

′
jŵj)]

1=2

; ŵi= û i=�i=M (Xi)wi and wi=(1=�i)ui;
while each statistic Fi[K(i)] de9ned in (3:10) is identical to the F-statistic
QFi[K(i)] for testing H ∗

0 : (
∗
ij=0 for j∈K(i) in the regression

Y ∗
i =Xi�

∗
i +

∑
j∈K(i)

ŵj(∗ij + wi; (4.2)

where Y ∗
i =(1=�i)yi.

Proof. The result for the LM statistic follows on observing that

rij=
û′iû j

[(û′iû i)(û
′
jû j)]

1=2 =
ŵ′
i ŵj

[(ŵ′
i ŵi)(ŵ

′
jŵj)]

1=2 = Qrij:

For Fi[K(i)], we note that

û′iû i= u
′
iM (Xi)ui=�2i w

′
iM (Xi)wi=�2i ŵ

′
i ŵi; SS[K(i)]=�2i SS

∗
i ;

where ŵ′
i ŵi and SS

∗
i are the restricted and unrestricted residual sum of squares

from the linear regression

Y ∗
i =Xi�

∗
i +

∑
j∈K(i)

ŵj(∗ij + wi:

We then see that

Fi[K(i)] =
(û′iû i − SS[K(i)])= Qpi
SS[K(i)]=(n− ki − Qpi)

=
(�2i ŵ

′
i ŵi − �2i SS∗i )= Qpi

�2i SS∗i =(n− ki − Qpi)

=
(ŵ′

i ŵi − SS∗i )= Qpi
SS∗i =(n− ki − Qpi)

= QFi[K(i)]:

Proposition 4.2 (Standardized representation of the LR statistic). Under the
assumptions and notations of Proposition 4:1; suppose the matrix �̃ de9ned
in (2:18) has full column rank. Then the LR-based statistic  ̃ de9ned in
(3:4) can be written in the form

 ̃=
∏p
i=1 [w

′
iM (Xi)wi=n]

|�̃∗|
(4.3)

where �̃∗ is the ML estimator of � obtained by maximizing the Gaussian
log-likelihood

L∗=− np
2

ln(2�)− n
2
ln(|�|)− 1

2
(w − X�)′(�−1 ⊗ In)(w − X�); (4.4)

where w=(w′
1; w

′
2; : : : ; w

′
p)

′.
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Proof. From (3.4) we can write

 ̃=
|Dp(�−1

i )| |Dp(�̂2i )| |Dp(�−1
i )|

|Dp(�−1
i )| |�̃| |Dp(�−1

i )| =
∏p
i=1 �̂

2
i =�

2
i

|Dp(�−1
i )�̃Dp(�−1

i )| ; (4.5)

where �̂2i =�
2
i = ŵ

′
i ŵi=n=w

′
iM (Xi)wi=n. Further, it is easy to see that the Gaus-

sian log-likelihood (2.17) is invariant under data transformations of the form
y∗= vec[Y1∗ Y2∗ · · · Yp∗] with

Yi∗= ci(Yi + Xi1i); i=1; : : : ; p; (4.6)

where ci is an arbitrary non-zero constant and 1i an arbitrary ki × 1 vector
(i=1; : : : ; p). In other words, if the log-likelihood function of y is given
by (2.17), the likelihood of y∗ has the same form with �i replaced by
�i∗= ci(�i + 1i) and � replaced by �∗=Dp(ci)�Dp(ci). In particular, if
we take 1i= − �i and ci=1=�i, we get Yi∗=(1=�i)ui=wi with L∗ as the
corresponding log-likelihood function. Consequently, by the equivariance of
maximum likelihood estimators (see Dagenais and Dufour, 1991), we have
�̃∗=Dp(�−1

i )�̃Dp(�−1
i ), from which (4.3) follows.

Proposition 4.3 (Standardized representation of QLR statistics). Under the
assumptions and notations of Proposition 4:1; let �̃

(0)
be an initial positive

de9nite estimator of �; and suppose the matrices �̃
(h)
; h=1; : : : ; H; de9ned

in (2:23) have full column rank. Then; the approximate LR statistics  ̃
(H)

de9ned by (3:6) can be written in the form

 ̃
(H)

=
∏p
i=1[w

′
iM (Xi)wi=n]

|�̃(H)
∗ |

(4.7)

where �̃
(H)
∗ is the estimate of � obtained through the formulas:

�̃
(h)
∗ =[X ′(�̃

(h)
∗ ⊗ In)−1X ]−1X ′(�̃

(h)
∗ ⊗ In)−1w; (4.8)

�̃
(h)
∗ =Dp(�−1

i )�̃
(0)
Dp(�−1

i ) for h=0;

=
1
n
Ũ

(h)′

∗ Ũ
(h)
∗ for h¿ 1; (4.9)

h=0; 1; : : : ; H; where Ũ
(h)
∗ ; h¿ 1; obeys the recursion

Ũ
(h)
∗ =[ũ(h)1∗ ; : : : ; ũ

(h)
p∗]; ũ(h)i∗ =wi − Xi�̃

(h−1)
i∗ ; i=1; : : : ; p: (4.10)
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Proof. From the de1nition (3.6), we can write, for h¿ 0,

 ̃
(h)

=
|Dp(�−1

i )| |Dp(�̂2i )| |Dp(�−1
i )|

|Dp(�−1
i )| |�̃(h)| |Dp(�−1

i )|
=

|Dp(�̂2i =�2i )|
|�̃(h)

∗ |
=

∏p
i=1 w

′
iM (Xi)wi

|�̃(h)
∗ |

;

(4.11)

where

�̃
(h)
∗ ≡ Dp(�−1

i )�̃
(h)
Dp(�−1

i ): (4.12)

For h=0, the result holds trivially. For h¿ 1, we have

�̃
(h)
∗ =

1
n
Ũ

(h)
∗

′
Ũ

(h)
∗ =[ũ(h)i∗

′
ũ(h)j∗ =n]i; j=1; :::;p; (4.13)

Ũ
(h)
∗ = Ũ

(h)
Dp(�−1

i )= [ũ(h)1 ; : : : ; ũ
(h)
p ]Dp(�−1

i )= [ũ(h)1∗ ; : : : ; ũ
(h)
p∗]; (4.14)

ũ(h)i∗ ≡ (1=�i)ũ
(h)
i =(1=�i)[Yi − Xi�̃

(h−1)
i ]; i=1; : : : ; p: (4.15)

Putting (4.15) in vector form, we see that

ũ(h)∗ ≡ vec[ũ(h)1∗ ; : : : ; ũ(h)p∗]= (D ⊗ In)ũ (h) = QDn(y − X �̃(h−1)
); (4.16)

where D ≡ Dp(�−1
i ) and QDn ≡ D ⊗ In.

Now, for h¿ 0, the feasible GLS estimator �̃
(h)

minimizes the quadratic
form

S̃(�)= (y − X�)′(�̃(h) ⊗ In)−1(y − X�)

with respect to �. Since

S̃(�) = (y−X�)′(D⊗In)(D−1⊗In)(�̃(h)⊗In)−1(D−1⊗In)(D⊗In)(y−X�)
= [(D ⊗ In)(y − X�)]′[(D�̃(h)

D)⊗ In]−1[(D ⊗ In)(y − X�)];

this entails that

�̃
(h)

= [( QDnX )′(�̃
(h)
∗ ⊗ In)−1( QDnX )]

−1( QDnX )′(�̃
(h)
∗ ⊗ In)−1 QDny:

Further, on noting that

w ≡ (w′
1; w

′
2; : : : ; w

′
p)

′=(D ⊗ In)u= QDnu
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and

QDnX = [Dp(�−1
i )⊗ In]X =




�−1
1 X1 0 · · · 0

0 �−1
2 X2 · · · 0

...
...

. . .
...

0 0 · · · �−1
p Xp




= XDp(�−1
i Iki)=X2;

where 2 ≡ Dp(�−1
i Iki) is a non-singular matrix, we see that

�̃
(h)

= [(X2)′(�̃
(h)
∗ ⊗ In)−1(X2)]−1(X2)′(�̃

(h)
∗ ⊗ In)−1 QDny

= �+ 2−1[X ′(�̃
(h)
∗ ⊗ In)−1X ]−1X ′(�̃

(h)
∗ ⊗ In)−1 QDnu

= �+ 2−1�̃
(h)
∗ ;

where

�̃
(h)
∗ =[X ′(�̃

(h)
∗ ⊗ In)−1X ]−1X ′(�̃

(h)
∗ ⊗ In)−1w:

For h¿ 1, we then see that

QDnũ
(h) = QDn(y − X �̃(h−1)

)= QDn(X�+ u− X� − X2−1�̃
(h−1)
∗ )

=w − X �̃(h−1)
∗

hence

ũ(h)i∗ ≡ (1=�i)ũ
(h)
i =wi − Xi�̃

(h−1)
i∗ ; i=1; : : : ; p:

This completes the proof of the proposition.

Propositions 4.1 and 4.2 show that the distributions of the LM, Harvey–
Phillips and LR statistics only depend on the distributions of X and w, irre-
spective whether the null hypothesis H0 holds or not. This property also car-
ries to procedures based on combining several of these test statistics, such as
the induced Harvey–Phillips tests proposed in Section 3.2. In particular, under
the strict exogeneity assumption (2.8), this means that the conditional distri-
butions (given X ) of these test statistics only depend on the distribution of w
(and the known value of X ): If we further assume that the joint distribution
of W1; : : : ; Wn is completely speci1ed [Assumption (2.7)], then under H0 the
distribution of w does not involve any unknown parameter, and similarly for
the LM, Harvey–Phillips and LR statistics. For the QLR statistics, the same
properties will hold provided we assume that �̃

(0)
∗ ≡ Dp(�−1

i )�̃
(0)
Dp(�−1

i ) can
be rewritten as a function of X and w. In particular, this will be the case if



158 J.-M. Dufour, L. Khalaf / Journal of Econometrics 106 (2002) 143–170

the initial value �̃
(0)

is obtained from the least squares residuals from the p
separate regressions in (2.1), i.e. if

�̃
(0)

=
1
n
Û

′
Û ; Û =[û 1; : : : ; û p]; û i=M (Xi)Yi; i=1; : : : ; p:

(4.17)

We can thus state the following proposition.

Proposition 4.4 (Pivotal property of tests for cross-equation correlation).
Under the assumptions and notations (2:1) to (2:8); the LM statistic; the
LR-based statistic  ̃ and all the statistics of the form Fi[K(i)]; where K(i) is
some (non-empty) subset of {j: 16 j6p; j 	= i}; follow a joint distribution
(conditional on X ) that does not depend on any unknown parameter under
the null hypothesis H0: �=Dp(�2i ). If furthermore

Dp(�−1
i )�̃

(0)
Dp(�−1

i )=H (X;w); (4.18)

where H (X;w) is a known function of X and w; the same property holds
for the QLR statistics  ̃

(h)
; h¿ 0.

It is of interest to note here that the pivotal property for the LR statistics  ̃
could also be obtained by using the invariance results for generalized regres-
sions models given by Breusch (1980). However this would not simplify our
proof and would not yield the explicit representation provided by Proposition
4.2. As we will see below, the latter can be useful for implementing MC
tests.
The fact that the LM, Harvey–Phillips, LR and QLR statistics have nuisance-

parameter-free null distributions entails that MC tests can be applied here to
obtain a 1nite-sample version of the corresponding tests. Such tests can be
implemented as follows. Consider a test statistic T for H0 with a continuous
nuisance-parameter-free null distribution, suppose H0 is rejected when T is
large [i.e., when T¿ c(.), where P[T¿ c(.)]= . under H0], and denote by
G(x)=P[T¿ x] its survival function under the null hypothesis. Let T0 be the
test statistic computed from the observed data. Then the associated critical
region of size . may be expressed as G(T0)6 .. By Monte Carlo methods,
generate N independent realizations T1; : : : ; TN of T under H0: Now compute
the randomized “p-value” p̂N (T0), where

p̂N (x)=
NĜN (x) + 1
N + 1

; (4.19)

ĜN (x)=
1
N

N∑
i=1

I[0;∞)(Ti − x); IA(x)=

{
1; if x∈A;
0; if x 	∈ A:
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Then we can show that

P[p̂N (T0)6 .]=
I [.(N + 1)]
N + 1

; (4.20)

see Dufour and Kiviet (1998). In particular, if we choose N so that .(N +1)
is an integer (e.g., for .=0:05, we can take N =19; 39; 99, etc.), we have

P[p̂N (T0)6 .]= .: (4.21)

In other words, the randomized critical region p̂N (T0)6 . has the same level
as the critical region G(T0)6 .. This procedure is of course valid when
the error vectors Ut· are i.i.d. normal [Assumption (2.10)], but also under
parametric distributional assumptions when J is the only unknown parameter
in the distribution of Ut·, t=1; : : : ; n.
MC tests can be interpreted as parametric bootstrap methods applied to

statistics whose null distribution does not depend on nuisance parameters,
with however the central additional observation that the randomization allows
one to exactly control the size of the test for a given (possibly small) number
of MC simulations. For further discussion of Monte Carlo tests (including its
relation with the bootstrap), see Dufour (1995), Dufour and Kiviet (1996),
Kiviet and Dufour (1997), Dufour et al. (1998), and Dufour and Khalaf
(2001). On the bootstrap, the reader may consult Hall (1992), Efron and
Tibshirani (1993), Jeong and Maddala (1993), Vinod (1993), Shao and Tu
(1995), and Horowitz (1997).

5. Simulation experiments

In order to assess the performance of the various procedures discussed
above, we conducted a set of Monte Carlo experiments for a 1ve-equation
model (p=5) with n=25 observations. To assess test size, we also con-
sidered n=50; 100. In each experiment, the design matrices Xi; i=1; : : : ; p,
include a constant term and equal numbers of regressors (ki= k; i=1; : : : ; p).
The values of k considered are k=5; 6; : : : ; 15. The variables in each matrix
Xi were generated using a multivariate normal distribution and kept constant
over all replications. The disturbances were generated from multivariate nor-
mal distributions. Several choices for the error covariance were considered
and are listed in Table 1. The �1 matrix as well as the regression coef-
1cients used were taken from the empirical example discussed in Section
6. 1 The other matrices were obtained by dividing certain elements of the
Cholesky decomposition of �1 by appropriate constants to decrease the co-
variance terms. Of course, the parameters under the null were obtained by
setting the non-diagonal elements of �1 to zero. The numbers of trials for

1 The statistics studied are all invariant to the values of the regression coeIcients.



160 J.-M. Dufour, L. Khalaf / Journal of Econometrics 106 (2002) 143–170

Table 1
Covariance matrices used in the Monte Carlo experiments

0.0007773 6.616e− 06 −1:082e− 05 0.0003573 −0:0001443
0.0024550 0.0001923 −0:0010390 −0:0006195

�1 0.0002950 1.747e− 05 0.0002829
0.0007560 0.0004105
0.0006790

0.0007773 1.654e− 06 −1:353e− 06 3.969e− 05 −1:804e− 05
0.0024550 2.405e− 05 −0:0001737 −7:732e− 05

�2 0.0002800 2.427e− 05 5.417e− 05
0.0001276 2.495e− 05
4.863e− 05

0.0007773 3.308e− 06 −3:607e− 06 8.931e− 05 −3:608e− 05
0.0024550 9.618e− 05 −0:0003471 −0:0001238

�3 0.0002836 3.804e− 05 0.0001051
0.0001800 7.966e− 05
0.0001029

0.0007773 8.271e− 07 −1:803e− 06 0.0001786 −2:062e− 05
0.0024550 2.138e− 05 −0:0002083 −0:0002061

�4 0.0002800 1.513e− 05 3.485e− 05
0.0001707 2.421e− 05
5.630e− 05

the MC tests were set to 19 and 99 (N =19; 99): The number of overall
replications was 1000. All experiments were performed with Gauss 386iVM
(version 3.2.13). The results are presented in Tables 2 and 3.
Our main 1ndings can be summarized as follows.

1. The asymptotic tests (Asy.) consistently overreject. Indeed, we can see
that the empirical sizes can be substantially larger than the nominal
5%. This is in accordance with well documented results on LR-based
multivariate tests. On the other hand, our conclusions with respect to the
LM test are not in agreement with the available Monte Carlo evidence,
in which LM independence test was found to work well. This was due
to the fact that small numbers of equations were studied in the earlier
literature. Here we 1nd that it does not always work well in larger
systems. In contrast, the MC versions of the tests achieve perfect size
control, i.e. the probability of type I error is equal to the nominal size
of 5%.

2. The size corrected tests perform quite well. The power of all four MC
tests are comparable to each other, although the LR-type tests exhibit
better power. The EFT test shows relatively lower power, as would be
expected.
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Table 2
Empirical sizes of LM and quasi-LR independence tests

p=5 n=25 n=50 n=100

k QLROLS LM QLROLS LM QLROLS LM

Asy. MC Asy. MC Asy. MC Asy. MC Asy. MC Asy. MC

5 0.193 0.040 0.105 0.045 0.115 0.057 0.081 0.057 0.070 0.040 0.062 0.037
6 0.198 0.046 0.122 0.052 0.115 0.055 0.082 0.050 0.071 0.046 0.054 0.036
7 0.307 0.050 0.172 0.057 0.137 0.061 0.108 0.057 0.069 0.050 0.054 0.037
8 0.322 0.048 0.200 0.054 0.150 0.057 0.106 0.050 0.080 0.048 0.069 0.045
9 0.413 0.049 0.263 0.052 0.158 0.048 0.107 0.046 0.087 0.049 0.073 0.038
10 0.478 0.055 0.336 0.058 0.184 0.050 0.139 0.052 0.091 0.055 0.071 0.040
11 0.536 0.038 0.353 0.049 0.190 0.054 0.146 0.056 0.092 0.038 0.076 0.036
12 0.601 0.040 0.432 0.045 0.210 0.048 0.150 0.049 0.096 0.040 0.079 0.041
13 0.650 0.057 0.505 0.043 0.230 0.047 0.179 0.040 0.109 0.057 0.088 0.037
14 0.725 0.059 0.577 0.051 0.236 0.042 0.185 0.048 0.115 0.059 0.095 0.036
15 0.816 0.052 0.684 0.064 0.271 0.045 0.213 0.055 0.120 0.052 0.109 0.047

Table 3
Empirical rejections of various independence tests

n=25 �0 (H0) �1 �2 �3 �4

Asy. MC MC MC MC MC

MC replications — 19 19 99 19 99 19 99 19 99

LM 0.105 0.045 0.998 1.0 0.911 0.954 0.704 0.794 0.444 0.500
QLROLS 0.193 0.040 1.0 1.0 0.947 0.971 0.744 0.820 0.438 0.494
QLRGLS 0.260 0.040 1.0 1.0 0.959 0.979 0.750 0:825∗ 0.429 0.504
LR 0.267 0.047 1.0 1.0 0.961 0.980 0.746 0.824 0.428 0.494

Fmin — 0.043 1.0 1.0 0.925 0.965 0.632 0.693 0.360 0.409
F× — 0.052 1.0 1.0 0.944 0.980 0.714 0.784 0.382 0.438
FSmin — 0.049 1.0 1.0 0.846 0.912 0.562 0.653 0.368 0.399
FS× 0.052 1.0 1.0 0.963 0:984∗ 0.721 0.799 0.490 0:562∗

Bonferroni Harvey–Phillips type tests
Fmin 0.034 1.0 0.963 0.665 0.356
FSmin 0.049 1.0 0.896 0.687 0.316

3. Iterating SURE estimators to convergence is clearly not worthwhile, in
the sense of improving the power of the associated LR test. In fact, in
some cases, iterations resulted in slight power losses. Furthermore, our
results give very favorable support to the OLS-based QLR test. This
issue is particularly pertinent in the context of simulation-based tests.
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4. The MC induced tests based on the Harvey–Phillips statistics perform
very well over all the parameter values considered. As expected, the
Tippet=Wilkinson-type MC induced tests perform better than their Bon-
ferroni counterparts. The power of the Fisher=Pearson-type induced tests
is generally higher than the power of the Tippet=Wilkinson-type ones.
Further, the sequential variants of the induced tests perform better than
the non-sequential ones. Indeed, in two cases over three, the sequential
Fisher=Pearson-type induced test (FS×) exhibits the best power among
all the tests considered.

6. Application to growth equations

For illustrative purposes, we studied data previously analyzed by Fischer
(1993) which contains several series of macroeconomic aggregates observed
yearly for a large panel of countries. The dependent variables of interest
are four growth indicators: GDP growth, capital accumulation, productivity
growth (measured by Solow residuals), and labor force growth. The following
determinants of growth are considered: the inYation rate, the ratio of budget
surplus to GDP, the terms of trade, and the black market premium on the
exchange rate. Fischer focuses on explaining the determinants of growth. The
econometric speci1cation consists of an unbalanced panel model, which as-
sumes contemporaneously uncorrelated disturbances. Here, we shall test the
latter speci1cation. Attention is restricted to the multiple regressions (17),
(23), (29) and (35) in Fischer (1993), which include all four explanatory
variables. The choice of countries was motivated by the availability of ob-
servations on all included variables. We consider

(A) the South-American region (1973–1987): (1) Mexico, (2) Argentina, (3)
Chile, (4) Colombia, (5) Ecuador, and (6) Paraguay;

(B) the African region (1977–1988): (1) Ghana, (2) Côte d’Ivoire, (3) Kenya,
(4) Malawi, (5) Morocco, and (6) Zambia;

(C) the Asian region (1978–1987): (1) Korea, (2) Pakistan, (3) Thailand,
(4) India, and (5) Indonesia.

Then, for each region, we considered four SURE di5erent systems cor-
responding to each one of the four growth indicators considered (where
t=1; : : : ; n; i=1; : : : ; p)

[GDPit = �G0 + �G1i INFLATit + �
G
2i TRMTRDit + �

G
3i SRPLSit

+�G4i EXCMit + uGit ;

[CPTLit = �K0 + �K1i INFLATit + �
K
2i TRMTRDit + �

K
3i SRPLSit

+�K4i EXCMit + uKit ;



J.-M. Dufour, L. Khalaf / Journal of Econometrics 106 (2002) 143–170 163

[PRDCTit = �P0 + �
P
1i INFLATit + �

P
2i TRMTRDit + �

P
3i SRPLSit

+�P4i EXCMit + uPit ;

[LABORit = �L0 + �
L
1i INFLATit + �

L
2i TRMTRDit + �

L
3i SRPLSit

+�L4i EXCMit + uLit :

Here, for each country i and each year t; [GDPit ; [CPTLit ; [PRDCTit ;
[LABORit , and EXCMit represent respectively GDP growth, capital accumu-
lation, productivity growth, and labor force growth. The explanatory variables
are: inYation (INFLATit); terms of trade (TRMTRDit); the ratio of budget sur-
plus to GDP (SRPLSit), and the black market premium on the exchange rate
(EXCMit). Overall, we consider 12 di5erent SURE systems with either 6
equations (South America, Africa) or 5 equations (Asia), each system cor-
responding to a region and one of the four growth indicators. Countries are
numbered inside each region as indicated in the list presented at beginning
of this section (this ordering correspond to the World Bank database that we
used).
We will now test whether the disturbances inside each one of these SURE

systems are contemporaneously correlated, using a Gaussian distributional as-
sumption. The assumption that the disturbances are not correlated across coun-
tries is important to justify pooling the data as done by Fischer (1993). In
each case, we applied LM, LR and QLR tests, as well as Harvey=Phillips-type
induced tests. The MC tests are based on N =999 replications of the statistics
considered. The QLR tests are based on two-step feasible GLS estimators,
using OLS residuals to estimate the disturbance covariance matrix. For com-
pleteness, we also report the individual Harvey–Phillips tests (based on the
statistics Fi(Ki) and Fi[{i+1; : : : ; p}] de1ned in Section 3.2) which are com-
bined by the MC induced tests. Note that in the case of the sequential tests,
the ordering of the countries may a5ect the outcome of the test; here, we
present results based on the ordering given above. The results are presented
(as p-values) in Tables 4–7. The MC test results which are signi1cant at the
10% level are highlighted with one star (∗), while those which are signi1cant
at the 5% level are highlighted with two stars (∗∗). In view of the simulation
evidence of Section 5, we shall stress the conclusions provided by the MC
LR-based and FS tests. Asymptotic p-values (Asy.) are only reported for
comparison sake.
For GDP growth (Table 4), no test is signi1cant (at the 10% level) in the

case of the South-American countries. For Africa, the MC LR-type tests are
signi1cant at the 10% level (but not 5%), but the FSmin induced test is signif-
icant at the 5% level. On looking at the individual sequential Harvey–Phillips
tests, it appears this may be due to correlations between the disturbances in
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Table 4
GDP growth SURE systems: independence tests

South America Africa Asia
p=6 p=6 p=5

F1(K1) 0.7927 0.1613 0:0215∗∗
F2(K2) 0.7906 0.2882 0.6068
F3(K3) 0.2669 0.1308 0.7127
F4(K4) 0.9901 0:0516∗ 0.5453
F5(K5) 0.8503 0.9571 0.3771
F6(K6) 0.8253 0.2652 —

F1({2; : : : ; p}) 0.7927 0.1613 0:0215∗∗
F2({3; : : : ; p}) 0.7470 0.4964 0.3113
F3({4; : : : ; p}) 0.8810 0.9137 0.4277
F4({5; : : : ; p}) 0.8647 0:0055∗∗ 0.3873
F5({p}) 0.9290 0.6005 —

Asy. MC Asy. MC Asy. MC

LM 0.9425 0.977 0.0466 0:081∗ 0.4384 0.611
QLROLS 0.9242 0.981 0.0100 0:062∗ 0.0872 0.470
LR 0.4374 0.978 0.0000 0:082∗ 0.0000 0.412
Fmin — 0.742 — 0.224 — 0:094∗
F× — 0.917 — 0.130 — 0.258
FSmin — 1.0 — 0:025∗∗ — 0:085∗
FS× — 1.0 — 0:072∗ — 0:096∗

the Malawi equation and those for Morocco and=or Zambia. Turning to the
Asian region, while the LR-based tests are not signi1cant again, we never-
theless observe that the Fmin; FSmin and FS× are signi1cant at the 10% level.
In this case, the Harvey–Phillips sequential tests suggest that there may be
dependence between Korea and the other countries. For all regions, it is of
interest to observe that the asymptotic approximations and the MC procedure
yield very di5erent p-values for the LR-based statistics, which may lead to
quite di5erent conclusions. This observation also applies to the results for the
other growth indicators discussed below.
For capital growth (Table 5), the MC LR and FSmin tests are strongly

signi1cant for Asia and close to being signi1cant at the 5% level for South
America. The same tests do not come out signi1cant at usual levels for Africa,
although the LM, Fmin and F× also provide indications of dependence in this
case too. The Harvey–Phillips individual tests suggest there is dependence
between the disturbances in the equation for Chile and those for Colom-
bia, Ecuador and Paraguay; in Asia, the dependence appears to be between
Thailand, India and Indonesia.
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Table 5
Capital growth SURE systems: independence tests

South America Africa Asia
p=6 p=6 p=5

F1(K1) 0.1592 0.2503 0.3399
F2(K2) 0.3514 0.2035 0.2200
F3(K3) 0:0561∗ 0.7065 0.1373
F4(K4) 0:0333∗∗ 0:0589∗ 0.2255
F5(K5) 0.2288 0:0143∗∗ 0.0357
F6(K6) 0.3509 0.8389 —

F1({2; : : : ; p}) 0.1592 0.2503 0.3399
F2({3; : : : ; p}) 0.2249 0:0854∗ 0.6323
F3({4; : : : ; p}) 0:0111∗ 0.3004 0:0069∗
F4({5; : : : ; p}) 0.7156 0.1422 0.6355
F5({p}) 0.7679 0.7581 —

Asy. MC Asy. MC Asy. MC

LM 0.0350 0:061∗ 0.1023 0:026∗∗ 0.2449 0.367
QLROLS 0.0058 0:096∗ 0.0049 0.132 0.0000 0:002∗∗
LR 0.0000 0:053∗ 0.0000 0.249 0.0000 0:001∗∗
Fmin — 0.167 — 0:063∗ — 0.137
F× — 0:075∗ — 0:080∗ — 0:056∗
FSmin — 0:055∗ — 0.359 — 0:027∗∗
FS× — 0:086∗ — 0.141 — 0:091∗

In the case of productivity growth (Table 6), we see no evidence of
cross-equation correlation for both South America and Asia, but some for
Africa. In the latter case, the MC-LR statistic is strongly signi1cant, and to a
lesser extent the quasi-LR and F× tests. On looking at the individual sequen-
tial Harvey–Phillips tests, it seems this may be due to correlation between
Morocco and Zambia.
For labor force growth (Table 7), we see strong evidence of cross-equation

correlation in the cases of South America and Africa. For Asia, the LR-based
tests are not signi1cant at the 10% level, but induced Harvey–Phillips tests
are signi1cant at the 5% level (or close to it).
Overall, these results provide several examples where asymptotic p-values

grossly overstate test signi1cance. Despite this fact, using more reliable 1nite-
sample methods, we also found quite signi1cant evidence of contemporaneous
correlation between the disturbances in several of the equations considered,
a feature that should be taken into account when analyzing these data. Of
course, it is beyond the scope of the present paper to perform a complete
reanalysis of the Fischer (1993) data.



166 J.-M. Dufour, L. Khalaf / Journal of Econometrics 106 (2002) 143–170

Table 6
Productivity growth SURE systems: independence tests

South America Africa Asia
p=6 p=6 p=5

F1(K1) 0.9765 0.1312 0.5003
F2(K2) 0.9162 0.1909 0.8182
F3(K3) 0.5362 0.2965 0.4958
F4(K4) 0.9976 0:0242∗∗ 0.1246
F5(K5) 0.9430 0.8209 0.0918
F6(K6) 0.7528 0.2454 —

F1({2; : : : ; p}) 0.9765 0.1312 0.5003
F2({3; : : : ; p}) 0.8294 0.3912 0.5421
F3({4; : : : ; p}) 0.6037 0.3738 0.8683
F4({5; : : : ; p}) 0.9442 0:0519∗ 0.2284
F5({p}) 0.6962 0.8069 —

Asy. MC Asy. MC Asy. MC

LM 0.9913 0.998 0.0356 0:061∗ 0.5070 0.698
QLROLS 0.9891 0.997 0.0012 0:074∗ 0.0658 0.415
LR 0.7929 0.998 0.0000 0:016∗∗ 0.0000 0.266
Fmin — 0.943 — 0.111 — 0.337
F× — 0.979 — 0:093∗ — 0.282
FSmin — 0.988 — 0.212 — 0.636
FS× — 0.990 — 0.152 — 0.664

7. Conclusion

In this paper, we have proposed simulation-based procedures to derive ex-
act p-values for standard LR and LM independence tests in the context of
SURE models. We have also proposed alternative OLS and IFGLS-based
QLR criteria. In multi-equation models, conventional independence tests only
have an asymptotic justi1cation. The reason for the lack of popularity of
1nite sample procedures is clearly the intractable nature of available distri-
butional results. Here, we have considered an alternative and considerably
more straightforward approach to independence tests. We have shown that
LR and LM statistics are pivotal under the null, which implies that exact
critical values can be obtained easily by MC techniques.
The feasibility of the approach suggested was illustrated through both a

simulation experiment and an empirical application. The results show that
asymptotic tests are indeed highly unreliable; in contrast, MC tests achieve
size control and have good power. We emphasize that OLS-based MC QLR
tests performed extremely well. This aspect is important particularly in larger
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Table 7
Labor force growth SURE systems: independence tests

South America Africa Asia
p=6 p=6 p=5

F1(K1) 0.4051 0:0734∗ 0:0153∗
F2(K2) 0.4051 0.2266 0.684
F3(K3) 0.1976 0:0397∗∗ 0:0957∗
F4(K4) 0:0189∗∗ 0:0153∗∗ 0.8999
F5(K5) 0:0288∗∗ 0.3571 0.4434
F6(K6) 0.1011 0.1761 —

F1({2; : : : ; p}) 0.4051 0:0734∗ 0:0153∗
F2({3; : : : ; p}) 0.2594 0.1201 0.5698
F3({4; : : : ; p}) 0.5535 0:0085∗∗ 0.2187
F4({5; : : : ; p}) 0:0580∗ 0:0897∗ 0.2661
F5({p}) 0:0799∗ 0.4900 —

Asy. MC Asy. MC Asy. MC

LM 0.0686 0.103 0.0007 0:004∗∗ 0.3040 0.457
QLROLS 0.0108 0.126 0.0000 0:006∗∗ 0.0063 0.140
LR 0.0000 0:020∗ 0.0000 0:004∗∗ 0.0000 0.194
Fmin — 0.102 — 0:065∗ — 0:062∗
F× — 0:045∗∗ — 0:021∗∗ — 0.128
FSmin — 0.272 — 0:033∗∗ — 0:062∗
FS× — 0:092∗ — 0:008∗∗ — 0:050∗∗

systems, since test procedures based on iterative estimators are typically more
expensive from the point of view of MC tests. The MC induced tests turned
out to have surprisingly good power. Since the MC test procedure yields
size-correct signi1cance points, this approach seems very promising in the
context of non-independent simultaneous tests.
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