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ABSTRACT

This paper proposes finite-sample procedures for testing the SURE specification in multi-
equation regression models, i.e. whether the disturbances in different equations are contempora-
neously uncorrelated or not. We apply the technique of Monte Carlo (MC) tests [Dwass (1957),
Barnard (1963)] to obtain exact tests based on standard LR and LM zero correlation tests. We also
suggest a MC quasi-LR (QLR) test based on feasible generalized least squares (FGLS). We show
that the latter statistics are pivotal under the null, which provides the justification for applying MC
tests. Furthermore, we extend the exact independence test proposed by Harvey and Phillips (1982)
to the multi-equation framework. Specifically, we introduce several induced tests based on a set of
simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the associated
combination problem. The properties of the proposed tests are studied in a Monte Carlo experi-
ment which shows that standard asymptotic tests exhibit important size distortions, while MC tests
achieve complete size control and display good power. Moreover, MC-QLR tests performed best in
terms of power, a result of interest from the point of view of simulation-based tests. The power of
the MC induced tests improves appreciably in comparison to standard Bonferroni tests and in cer-
tain cases outperform the likelihood-based MC tests. The tests are applied to data used by Fischer
(1993) to analyze the macroeconomic determinants of growth.

Key words: seemingly unrelated regressions; SURE system; multivariate linear regression; con-
temporaneous correlation; exact test; finite-sample test; Monte Carlo test; bootstrap; induced test;
LM test; likelihood ratio test; specification test; macroeconomics; growth.
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RÉSUMÉ

Cet article propose des procédures exactes pour tester la spécification SURE (régressions em-
pilées) dans le contexte des régressions linéaires multivariées, i.e. si les perturbations des dif-
férentes équations sont corrélées ou non. Nous appliquons la technique des tests de Monte Carlo
(MC) [Dwass (1957), Barnard (1963)] pour obtenir des tests d’indépendance exacts fondés sur les
critères du quotient de vraisemblance (LR) et du multiplicateur de Lagrange (LM). Nous suggérons
aussi un critère du type quasi-quotient de vraisemblance (QLR) dérivé sur base des moindres carrés
généralisés réalisables (FGLS). Nous démontrons que ces statistiques sont libres de paramètres de
nuisance sous l’hypothèse nulle, ce qui justifie l’application des tests de Monte Carlo. Par ailleurs,
nous généralisons le test exact proposé par Harvey et Phillips (1982) au contexte des équations
multiples. En particulier, nous proposons plusieurs tests induits basés sur des tests de type Harvey-
Phillips et nous suggérons une technique basée sur des simulations afin de résoudre le problème
de combinaison de tests. Nous évaluons les propriétés des tests que nous proposons dans le cadre
d’une étude de Monte Carlo. Nos résultats montrent que les tests asymptotiques usuels présentent
de sérieuses distorsions de niveau, alors que les tests de MC contrôlent parfaitement le niveau et ont
une bonne puissance. De plus, les tests QLR se comportent bien du point de vue de la puissance;
ce résultat est intéressant vu que les tests (multivariés) que nous proposons sont basés sur des sim-
ulations. La puissance des tests de MC induits augmente sensiblement par rapport aux tests fondés
sur l’inégalité de Bonferroni tests et, dans certains cas, dépasse la puissance des tests de MC fondés
sur la vraisemblance. Nous appliquons les tests sur des données utilisées par Fischer (1993) pour
analyser des modèles de croissance.

Mots clés: régressions empilées; système SURE; test d’indépendance; régression linéaire multivar-
iée; corrélation contemporaine; test exact; test à distance finie; test de Monte Carlo; bootstrap; test
induit; test LM; quotient de vraisemblance; test de spécification; mavroéconomie; croissance.
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1. Introduction

Multi-equation models which use both cross-section and time series data are common in econo-
metric studies. These include, in particular, the seemingly unrelated regressions (SURE) model
introduced by Zellner (1962). The SURE specification is expressed as a set of linear regressions
where the disturbances in the different equations are correlated. The non-diagonality of the error
covariance matrix usually entails that individual equation estimates are sub-optimal; hence, gener-
alized least squares (GLS) estimation which exploits the correlations across equations may improve
inference. However, the implementation of GLS requires estimating the error covariance from the
data. Further the cross-equation dependence must be taken into account when testing cross-equation
parameter restrictions. As it is well known, feasible generalized least squares (FGLS) estimators
need not be more efficient than ordinary least squares (OLS); see Srivastava and Giles (1987, Chap-
ter 2). Indeed, the closer the error covariance comes to being spherical, the more likely it is that
OLS estimates will be superior. This has extensively been discussed in the SURE literature; see, for
example, Zellner (1962, 1963), Mehta and Swamy (1976), Kmenta and Gilbert (1968), Revankar
(1974, 1976), Kunitomo (1977), Kariya (1981a), and Srivastava and Dwivedi (1979). In this sense,
choosing between GLS and OLS estimation in the SURE model corresponds to the problem of
testing for sphericity of the error covariance matrix.

This paper studies and proposes finite-sample tests for independence against contemporaneous
correlation of disturbances in a SURE model. Independence tests in multivariate models have been
discussed in both the econometric and statistical literatures. In particular, Breusch and Pagan (1980)
derived a Lagrange multiplier (LM) test for the diagonality of the error covariance matrix. Kariya
(1981c) derived locally best invariant tests in a two-equation framework. Shiba and Tsurumi (1988)
proposed Wald, likelihood ratio (LR), LM and Bayesian tests for the hypothesis that the error co-
variance is block-diagonal. Related results are also available in Kariya (1981b), Kariya, Fujikoshi
and Krishnaiah (1984) and Cameron and Trivedi (1993). Except for one special case, these test
procedures are only justified by asymptotic arguments. The exception is Harvey and Phillips (1982,
Section 3) who proposed exact independence tests between the errors of an equation and those of
the other equations of the system. These tests (which we will denote EFT) involve conventional F
statistics for testing whether the (estimated) residuals added to each equation have zero coefficients.
EFT tests may be applied in the context of general diagonality tests; for example, one may assess in
turn whether the disturbances in each equation are independent of the disturbances in all other equa-
tions. Such a sequence of tests however raises the problem of taking into account the dependence
between multiple tests, a problem not solved by Harvey and Phillips (1982).

A major problem in the SURE context comes from the fact that relevant null distributions are
either difficult to derive or too complicated for practical use. This is true even in the case of identi-
cal regressor matrices. Hence the applicable procedures rely heavily on asymptotic approximations
whose accuracy can be quite poor. This is evident from the Monte Carlo results reported in Har-
vey and Phillips (1982) and Shiba and Tsurumi (1988), among others. In any case, it is widely
acknowledged by now that standard multivariate LR-based asymptotic tests are unreliable in finite
samples, in the sense that test sizes deviate from the nominal significance levels; see Dufour and
Khalaf (1998) for related simulation evidence.
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In this paper, we reemphasize this fact and propose to use the technique of Monte Carlo (MC)
tests [Dwass (1957), Barnard (1963)] in order to obtain provably exact procedures. We apply the
MC test technique to: (i) the standard likelihood ratio (LR) and Lagrange multiplier (LM) criteria,
and (ii) OLS and FGLS-based quasi-LR (QLR) statistics. We also introduce several induced tests
based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to
the associated combination problem. The critical regions of conventional induced tests are usually
computed using probability inequalities (e.g., the well know Boole-Bonferroni inequality) which
yields conservative p-values whenever non independent tests are combined [see, for example, Savin
(1984), Folks (1984), Dufour (1990) and Dufour and Torrès (1998)]. Here, we propose to construct
the induced tests such that size-correct p-values can be readily obtained by simulation.

The first step towards an exact test procedure involves deriving nuisance-parameter-free null
distributions. In the context of standard independence tests, invariance results are known given two
univariate or multivariate regression equations [Kariya (1981b, 1981c), Kariya et al. (1984)]. The
problem of nuisance parameters is yet unresolved in models involving more than two regression
equations. Here, we show that the LR, LM and QLR independence test statistics are pivotal under
the null, for multi-equation SURE systems. Though the proof of this result is not complex, it
does not appear to be known in the literature. Of course, existing work in this area has typically
focused on deriving p-values analytically. By contrast, the approach taken in this article does not
require extracting exact distributions; the technique of MC tests allows one to obtain provably exact
randomized tests in finite samples using very small numbers of MC replications of the original
test statistic under the null hypothesis. In the present context, this technique can easily be applied
whenever the distribution of the errors is continuous and specified up to an unknown covariance
matrix (or linear transformation). Note this distribution does not have to be Gaussian. For further
references regarding MC tests, see Dufour (1995), Dufour and Kiviet (1996, 1998), Kiviet and
Dufour (1997), Dufour, Farhat, Gardiol and Khalaf (1998), and Dufour and Khalaf (2001). We
investigate the size and power of suggested tests in a Monte Carlo study. The results show that,
while the asymptotic LR and LM tests seriously overreject, the MC versions of these tests achieve
perfect size control and have good power. The power of the MC induced tests improves appreciably
in comparison to the standard Bonferroni tests and in several cases outperform the corresponding
MC-LR and LM tests.

The outline of this study is as follows. In Section 2, we present the model and the estimators
used, while the test statistics are described in Section 3. In Section 4, we show that the proposed
test statistics have nuisance-parameter free distributions under the null hypothesis and describe how
exact MC tests can be implemented. In Section 5, we report the simulation results. In Section 6,
we apply the tests to data used by Fischer (1993) to analyze the macroeconomic determinants of
growth. We conclude in Section 7.

2. Framework

Consider the seemingly unrelated regression model

Yi = Xiβi + ui , i = 1, . . . , p , (2.1)
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where Yi is a vector of n observations on a dependent variable, Xi a full-column rank n × ki

matrix of regressors, βi a vector of ki unknown coefficients, and ui = (u1i, u2i, . . . , uni)′ a n × 1
vector of random disturbances. When Xi = Xj , i, j = 1, . . . , p, we have a multivariate linear
regression (MLR) model; see Anderson (1984, chapters 8 and 13), Berndt and Savin (1977), and
Kariya (1985). The system (2.1) may be rewritten in the stacked form

y = Xβ + u (2.2)

where

y =

⎡
⎢⎢⎢⎣

Y1

Y2
...

Yp

⎤
⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎣

X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xp

⎤
⎥⎥⎥⎦ , u =

⎡
⎢⎢⎢⎣

u1

u2
...

up

⎤
⎥⎥⎥⎦ , β =

⎡
⎢⎢⎢⎣

β1

β2
...

βp

⎤
⎥⎥⎥⎦ , (2.3)

so that X is a (np)× k matrix, y and u each have dimension (np)× 1 and β has dimension k × 1,
with k =

∑p
i=1 ki. Set

U =
[

u1 u2 · · · up

]
=

⎡
⎢⎢⎢⎣

U ′
1·

U ′
2·
...

U ′
n·

⎤
⎥⎥⎥⎦ (2.4)

where Ut· = (ut1, ut2, . . . , utp)′ is the disturbance vector for the t-th observation. In the sequel,
we shall also use, when required, some or all of the following assumptions and notations:

Ut· = JWt , t = 1, . . . , n , (2.5)

where J is a fixed lower triangular p × p matrix such that

Σ ≡ JJ ′ =
[
σij

]
i,j=1, ... ,p

is nonsingular, (2.6)

where we set σi ≡ σ
1/2
ii , i = 1, . . . , p;

W1, . . . , Wn are p × 1 random vectors
whose joint distribution is completely specified;

(2.7)

u is independent of X . (2.8)

Assumption (2.8) is a strict exogeneity assumption, which clearly holds when X is fixed. The as-
sumptions (2.5) - (2.7) mean that the disturbance distribution is completely specified up an unknown
linear transformation that can modify the scaling and dependence properties of the disturbances in
different equations. Note (2.5) - (2.7) do not necessarily entail that Σ is the covariance matrix of
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Ut· . However, if we make the additional assumption that

W1, . . . , Wn are uncorrelated with
E(Wt) = 0 , E(WtW

′
t) = Ip , t = 1, . . . , n ,

(2.9)

or, more restrictively,

W1, . . . , Wn
i.i.d.∼ N [0, Ip] , (2.10)

we have:
E

(
Ut·

)
= 0 , E

(
Ut·U

′
t·
)

= Σ , t = 1, . . . , n , (2.11)

E(u) = 0 , E(uiu
′
j) = σijIn , i , j = 1 , . . . , p , (2.12)

and
E(uu′) = Σ ⊗ Ip . (2.13)

The coefficients of the regression equations can be estimated by several methods among which
the most well known are: (i) ordinary least squares (OLS) applied to each equation, (ii) two-step fea-
sible generalized least squares (FGLS), (iii) iterative FGLS (IFGLS), and (iv) maximum likelihood
(ML) assuming u follows a multinormal distribution. The OLS estimator of β is

β̂OLS = (β̂
′
1 , ... , β̂

′
p)

′, β̂i = (X ′
iXi)−1X ′

iYi , i = 1 , . . . , p . (2.14)

An associated estimate Σ̂ for Σ can be obtained from the OLS residuals:

ûi = Yi − Xiβ̂i = M(Xi)ui , M(Xi) = In − Xi(X ′
iXi)−1X ′

i , i = 1 , . . . , p . (2.15)

The two-step FGLS estimate based on any consistent estimate S of Σ, is given by

β̃FGLS =
[
X ′(S−1 ⊗ In)X

]−1
X ′(S−1 ⊗ In)y . (2.16)

If the disturbances are normally distributed, we have the log-likelihood function

L = −np

2
ln(2π) − n

2
ln(|Σ|) − 1

2
(y − Xβ)′(Σ−1 ⊗ In)(y − Xβ) . (2.17)

The corresponding maximum likelihood (ML) estimators β̃ and Σ̃ of β and Σ satisfy the following
normal equations:

X ′(Σ̃−1 ⊗ In)Xβ̃ = X ′(Σ̃−1 ⊗ In)y , Σ̃ =
1
n

Ũ ′Ũ =
[
σ̃ij

]
i,j=1, ... ,p

(2.18)

where β̃ = (β̃
′
1 , . . . , β̃

′
p)

′ and

Ũ = [ũ1 , ... , ũp] , ũi = Yi − Xiβ̃i , σ̃ij = ũ
′
iũj/n . (2.19)

Of course, the estimators in (2.18) are well defined provided the matrix Σ̃ has full column rank, an
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assumption we shall make in the sequel.
Iterative procedures are typically applied to obtain the ML estimates. Suppose Σ̃(0) is an initial

estimate of Σ. Using (2.18), we can solve for a first GLS estimate of β,

β̃
(0)

=
[
X ′(Σ̃(0) ⊗ In)−1X

]−1
X ′(Σ̃(0) ⊗ In)−1y , (2.20)

from which a new estimate of u may be obtained:

ũ(1) = y − Xβ̃
(0)

. (2.21)

This residual leads to further estimators Σ̃(1) and β̃
(1)

of Σ and β. Pursuing this iterative process,
we see that the estimators at the h-th iteration take the form:

β̃
(h)

=
[
X ′(Σ̃(h) ⊗ In)−1X

]−1
X ′(Σ̃(h) ⊗ In)−1y , (2.22)

Σ̃(h) =
1
n

Ũ (h)′Ũ (h) =
[
σ̃

(h)
ij

]
i,j=1, ... ,p

, (2.23)

h = 1, 2, . . . , where

Ũ (h) = [ũ(h)
1 , ... , ũ(h)

p ] , ũ
(h)
i = Yi − Xiβ̃

(h−1)
i , σ̃

(h)
ij = ũ

(h)′
i ũ

(h)
j /n . (2.24)

Under standard assumptions, iterating this procedure to convergence yields the ML estimates [see
Oberhofer and Kmenta (1974)]. For a more general discussion of the properties of such partially
iterated estimators, the reader may consult Robinson (1988).

3. Test statistics for cross-equation disturbance correlation

3.1. Likelihood-based tests

Given the setup described above, we consider the problem of testing the hypothesis H0 that Σ is
diagonal. For any vector d = (d1 , ... , dN )′, let us denote DN (di) the diagonal matrix whose
diagonal elements are d1 , ... , dN :

DN (di) = diag(d1 , . . . , dN ) . (3.1)

Then H0 may be expressed as
H0 : Σ = Dp(σ2

i ) . (3.2)

Since J is lower triangular, it is easy to see that: Σ = Dp(σ2
i ) if and only J = Dp(σi) . Thus,

under H0, uti = σiWti, i = 1 , . . . , p, where Wt = (Wt1, Wt2, . . . , Wtp)′. If (2.9) holds, H0

is equivalent to the absence of contemporaneous correlation between the components of Ut· . If the
components of Wt are independent, H0 is equivalent to the independence between the components
of ut; when W1, . . . , Wn are independent, the latter condition entails that the disturbance vectors
u1, ... , up are independent.
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In the sequel, we will frequently refer to the standardized disturbances

w =
(
w′

1 , . . . , w′
p

)′
, where wi = (1/σi)ui , i = 1 , . . . , p. (3.3)

Under the assumptions (2.5) - (2.7), the vector w has a completely specified distribution if H0 holds.
Let us now consider the case where, in addition to (2.5) - (2.7), we make the normality assump-

tion (2.10). Then the disturbance vectors Ut· = JWt , t = 1, . . . , n , are i.i.d. N [0, Σ] where
Σ = JJ ′ and we have the log-likelihood function (2.17). In this case, the LR and LM statistics for
testing H0 take relatively simple forms. The LR statistic is ξLR = n ln(Λ̃) where

Λ̃ = |Dp(σ̂2
i )|/|Σ̃| , (3.4)

while the LM criterion is

ξLM = n

p∑
i=2

i−1∑
j=1

r2
ij (3.5)

where rij = û
′
iûj/[(û

′
iûi)(û

′
j ûj)]

1/2
. Under standard regularity conditions, both ξLR and ξLM fol-

low a χ2
(
p(p − 1)/2

)
distribution asymptotically under H0 [see Breusch and Pagan (1980)].

In the sequel, we shall also consider quasi-LR statistics ξ
(h)
LR = n ln(Λ̃(h)) where Σ̃(h) is used

instead of the unrestricted ML estimator Σ̃ :

Λ̃(h) = |Dp(σ̂2
i )|/|Σ̃(h)| . (3.6)

Since unrestricted ML estimators of the SURE model parameters are usually obtained through it-
erative numerical methods, such QLR statistics are easier to compute than the fully-iterated LR
statistic.

3.2. Induced Harvey-Phillips tests

A finite-sample exact independence test was developed by Harvey and Phillips (1980). Their pro-
cedure is applicable under the assumptions (2.5) - (2.10) to test a null hypothesis of the form

H01 : Σ =
[

σ2
1 0

0 Σ11

]
(3.7)

where Σ11 is a (p − 1) × (p − 1) matrix. Specifically, they propose the following statistic:

EFT =
û

′
1V̂1

(
V̂ ′

1M1V̂1

)−1
V̂ ′

1û1/(p − 1)

û′
1

[
I − V̂1

(
V̂ ′

1M1V̂1

)−1
V̂ ′

1

]
û1/(n − k1 − p + 1)

, (3.8)

where V̂1 = [û2, . . . , ûp], which follows an F distribution with (p− 1, n− k1 − p + 1) degrees of
freedom under H01. The EFT statistic can be obtained as the usual F -statistic for testing whether
the coefficients on V̂1 are zero in the regression of Y1 on X1 and V̂1.

More generally, we can consider any particular disturbance vector ui (or equation) from the p
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regressions in (2.1) and test in this way whether ui is independent of VK(i)
≡

[
uj

]
j∈K(i)

, where

K(i) is some non-empty subset of {j : 1 ≤ j ≤ p , j �= i}. This can be done by estimating an
extended regression of the form

Yi = Xiβi +
∑

j∈K(i)

ûjγij + ui (3.9)

and testing the hypothesis H0[K(i)] : γij = 0 for j ∈ K(i). Under the null hypothesis H0 of
independence [see (3.2)], the corresponding F -statistic

Fi[K(i)] =

(
û′

iûi − SS(K(i))
)
/pi

SS(K(i))/(n − ki − pi)
(3.10)

follows an F (pi , n − ki − pi), where pi is the number of elements in K(i) and SS(K(i)) is the
unrestricted residual sum of squares from regression (3.9).

As things stand, the latter procedures only test the independence of one disturbance vector ui

with respect to the other disturbance vectors. It is straightforward to see that the test of H0 based
on Fi[K(i)] can only detect correlations between ui and the other disturbances. In order to test H0

against all possible covariance matrices Σ, we need a different procedure. A simple way to do
this, which still exploits the Harvey-Phillips procedure, consists in using induced tests that combine
several tests of the form Fi[K(i)]. Here we shall consider two methods for combining tests.

Denote GF [x|ν1, ν2] the survival function of the Fisher distribution with (ν1, ν2) degrees
of freedom; i.e., if F is a random variable that follows an F (ν1, ν2) distribution, we have
GF [x|ν1, ν2] = P [F ≥ x] . We consider the test statistics

EFTi ≡ Fi[Ki] , where Ki ≡ {j : 1 ≤ j ≤ n , j �= i} , i = 1, . . . , p , (3.11)

each of which tests whether ui is independent of all the other disturbance vectors. The p-value
associated with EFTi is:

pvi[Ki] = GF [EFTi | p − 1 , n − ki − p + 1] (3.12)

which follows a uniform distribution on the interval [0, 1] . The level-α F -test based on EFTi is
equivalent (with probability 1) to rejecting the null hypothesis when pvi[Ki] ≤ α, or equivalently
when 1 − pvi[Ki] ≥ 1 − α .

A difficulty we meet here consists in controlling the overall level of a procedure based on several
separate tests. A simple way to do this consists in running each one of the p tests Fi[Ki] at level

αi, so that
p∑

i=1
αi = α, and rejecting H0 when at least one of the p separate tests rejects the null

hypothesis; for example, we may take αi = α/p, i = 1, . . . , p. By the Boole-Bonferroni inequality,
this ensures that the probability of rejecting H0 is not greater than α (although it could be smaller).
When αi = α/p, this procedure is equivalent to rejecting H0 when pvmin ≤ α/p, where

pvmin ≡ min{pvi[Ki] : i = 1, . . . , p} (3.13)

7



is the minimum of the p-values.
Note that using the minimum of several p-values as a test statistic was originally proposed by

Tippett (1931) and Wilkinson (1951), in the case of independent test statistics. The independence
condition does not however hold here for the EFTi statistics, hence the necessity of taking into
account the dependence. Because it is conservative, the Boole-Bonferroni bound may lead to a
power loss with respect to a procedure that avoids the use of a bound. In the next section, we will
see that the conservative property of the Bonferroni-based pvmin procedure can be corrected by
using the technique of Monte Carlo tests. In other words, we consider the procedure that rejects
H0 when pvmin, as defined by (3.12) and (3.13), is small, and we shall show that its size can be
controlled by using the Monte Carlo test technique.

A second fairly natural way of “aggregating” separate tests consists in rejecting H0 when the
product

pv× =
p∏

i=1

pvi[Ki] (3.14)

is small. Such a procedure was originally suggested by Fisher (1932) and Pearson (1933), again for
independent test statistics. As for the pvmin procedure, we will see that the size of such a test based
on pv× can be controlled by Monte Carlo techniques, even if the individual p-values pvi[Ki] are not
independent.

For convenience reasons, we shall implement both these tests by taking the test criteria:

Fmin = 1 − pvmin , (3.15)

F× = 1 − pv× , (3.16)

each one of which rejects H0 when it is large.
We also considered a “sequential” approach in which we test the sequence of hypotheses

H0i : ui is independent of ui+1, . . . , up (3.17)

for i = 1, ... , p − 1, using Harvey-Phillips tests based on regressions of the form

Yi = Xiβi +
p∑

j=i+1

ûjγij + ui , (3.18)

i = 1 , . . . , p − 1 . Clearly H0 is equivalent to the conjunction of the p − 1 hypotheses H0i , i =
1 , ... , p − 1, so that we should reject H0 when at least one of these tests is significant. This
yields the p − 1 test statistics Fi[{i + 1, . . . , p}], i = 1 , ... , p − 1 for which it is easy to see that
Fi[{i + 1, . . . , p}] ∼ F (p − i , n − ki − p + i) under H0. The problem then consists again in
controlling the overall level of this combined procedure. Since it is not clear the test statistics are
independent, one way to achieve this control consists in using again the Boole-Bonferroni inequality.

For this, we test H0i at level αi, where
p∑

i=1
αi = α , and reject H0 when one of the tests is significant.

In a sequential context, a standard way of doing this consists in considering geometrically declining
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levels, such as

α1 = α/2 , α2 = α/(22) , ... , αp−2 = α/(2p−2) , αp−1 = α/(2p−2) ; (3.19)

see Anderson (1971, Chapter 4) and Lehmann (1957). Here we shall consider the bound proce-
dure based on (3.19), as well as tests on the minimum and the product of the p separate p-values
associated with the test statistics Fi[{i + 1, . . . , p}] :

FSmin = 1 − min {pvi[{i + 1, . . . , p}] : i = 1, . . . , p − 1} , (3.20)

FS× = 1 −
p−1∏
i=1

pvi[{i + 1, . . . , p}] . (3.21)

Again the levels of the two latter procedures will be controlled through the Monte Carlo test tech-
nique.

For further discussion of multiple test procedures, the reader may consult Miller (1981), Folks
(1984), Savin (1984), Dufour (1989, 1990), Westfall and Young (1993), Gouriéroux and Monfort
(1995, Chapter 19), and Dufour and Torrès (1998, 2000).

4. Finite-sample theory

We proceed next to examine the finite-sample distributions of the above defined LM, LR and QLR
test criteria. In particular, we show that the associated null distributions are free of nuisance para-
meters. To do this, we will first demonstrate in the three following propositions that all the statistics
considered are functions of the standardized disturbances wi , i = 1, . . . , p . Interestingly, these
properties hold under very weak distributional assumptions on u and X.

Proposition 4.1 STANDARDIZED REPRESENTATION OF LM AND HARVEY-PHILLIPS STATIS-
TICS. Under the assumptions and notations (2.1) to (2.6), the LM statistic defined in (3.5) can be
written in the form

ξLM = n

p∑
i=2

i−1∑
j=1

r2
ij (4.1)

where rij = ŵ
′
iŵj/[(ŵ

′
iŵi)(ŵ

′
jŵj)]

1/2
, ŵi = ûi/σi = M(Xi)wi and wi = (1/σi)ui , while each

statistic Fi[K(i)] defined in (3.10) is identical to the F -statistic F i[K(i)] for testing H∗
0 : γ∗

ij = 0 for
j ∈ K(i) in the regression

Y ∗
i = Xiβ

∗
i +

∑
j∈K(i)

ŵjγ
∗
ij + wi (4.2)

where Y ∗
i = (1/σi)yi.
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PROOF. The result for the LM statistic follows on observing that

rij =
û

′
iûj

[(û′
iûi)(û

′
j ûj)]

1/2
=

ŵ
′
iŵj

[(ŵ′
iŵi) (ŵ′

jŵj)]1/2
= rij .

For Fi[K(i)], we note that

û
′
iûi = u′

iM(Xi)ui = σ2
i w

′
iM(Xi)wi = σ2

i ŵ
′
iŵi , SS[K(i)] = σ2

i SS∗
i

where ŵ
′
iŵi and SS∗

i are the restricted and unrestricted residual sum of squares from the linear
regression

Y ∗
i = Xiβ

∗
i +

∑
j∈K(i)

ŵjγ
∗
ij + wi .

We then see that

Fi[K(i)] =

(
û′

iûi − SS[K(i)]
)
/pi

SS[K(i)]/(n − ki − pi)
=

(
σ2

i ŵ
′
iŵi − σ2

i SS∗
i

)
/pi

σ2
i SS∗

i /(n − ki − pi)

=

(
ŵ′

iŵi − SS∗
i

)
/pi

SS∗
i /(n − ki − pi)

= F i[K(i)] .

Proposition 4.2 STANDARDIZED REPRESENTATION OF THE LR STATISTIC. Under the assump-
tions and notations of Proposition 4.1, suppose the matrix Σ̃ defined in (2.18) has full column rank.
Then the LR-based statistic Λ̃ defined in (3.4) can be written in the form

Λ̃ =

p∏
i=1

[w
′
iM(Xi)wi/n]

|Σ̃∗|
(4.3)

where Σ̃∗ is the ML estimator of Σ obtained by maximizing the Gaussian log-likelihood

L∗ = −np

2
ln(2π) − n

2
ln(|Σ|) − 1

2
(w − Xβ)′(Σ−1 ⊗ In)(w − Xβ) (4.4)

where w = (w′
1, w′

2, . . . , w′
p)

′.

PROOF. From (3.4) we can write

Λ̃ =
|Dp(σ−1

i )| |Dp(σ̂2
i )| |Dp(σ−1

i )|
|Dp(σ−1

i )| |Σ̃| |Dp(σ−1
i )|

=

p∏
i=1

σ̂2
i /σ

2
i

|Dp(σ−1
i )Σ̃Dp(σ−1

i )|
(4.5)
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where σ̂2
i /σ

2
i = ŵ

′
iŵi/n = w

′
iM(Xi)wi/n . Further, it is easy to see that the

Gaussian log-likelihood (2.17) is invariant under data transformations of the form y∗ =
vec [ Y1∗ Y2∗ · · · Yp∗ ] with

Yi∗ = ci(Yi + Xiδi) , i = 1, . . . , p , (4.6)

where ci is an arbitrary non-zero constant and δi an arbitrary ki × 1 vector (i = 1, . . . , p). In other
words, if the log-likelihood function of y is given by (2.17), the likelihood of y∗ has the same form
with βi replaced by βi∗ = ci(βi + δi) and Σ replaced by Σ∗ = Dp(ci)ΣDp(ci). In particular, if
we take δi = −βi and ci = 1/σi , we get Yi∗ = (1/σi)ui = wi with L∗ as the corresponding
log-likelihood function. Consequently, by the equivariance of maximum likelihood estimators [see
Dagenais and Dufour (1991)], we have Σ̃∗ = Dp(σ−1

i )Σ̃Dp(σ−1
i ), from which (4.3) follows.

Proposition 4.3 STANDARDIZED REPRESENTATION OF QLR STATISTICS. Under the assump-
tions and notations of Proposition 4.1, let Σ̃(0) be an initial positive definite estimator of Σ, and
suppose the matrices Σ̃(h), h = 1, . . . , H, defined in (2.23) have full column rank. Then, the
approximate LR statistics Λ̃(H) defined by (3.6) can be written in the form

Λ̃(H) =

p∏
i=1

[w
′
iM(Xi)wi/n]

|Σ̃(H)
∗ |

(4.7)

where Σ̃
(H)
∗ is the estimate of Σ obtained through the formulas:

β̃
(h)
∗ =

[
X ′(Σ̃(h)

∗ ⊗ In)−1X
]−1

X ′(Σ̃(h)
∗ ⊗ In)−1w , (4.8)

Σ̃
(h)
∗ = Dp(σ−1

i )Σ̃(0)Dp(σ−1
i ) , for h = 0 ,

= 1
nŨ

(h)′
∗ Ũ

(h)
∗ , for h ≥ 1 ,

(4.9)

h = 0, 1, . . . , H, where Ũ
(h)
∗ , h ≥ 1, obeys the recursion

Ũ
(h)
∗ = [ũ(h)

1∗ , ... , ũ
(h)
p∗ ] , ũ

(h)
i∗ = wi − Xiβ̃

(h−1)
i∗ , i = 1, . . . , p . (4.10)

PROOF. From the definition (3.6), we can write, for h ≥ 0,

Λ̃(h) =
|Dp(σ−1

i )| |Dp(σ̂2
i )| |Dp(σ−1

i )|
|Dp(σ−1

i )| |Σ̃(h)| |Dp(σ−1
i )|

=
|Dp(σ̂2

i /σ
2
i )|

|Σ̃(h)
∗ |

=

p∏
i=1

[w
′
iM(Xi)wi/n]

|Σ̃(h)
∗ |

(4.11)

where
Σ̃

(h)
∗ ≡ Dp(σ−1

i )Σ̃(h)Dp(σ−1
i ) . (4.12)
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For h = 0, the result holds trivially. For h ≥ 1, we have:

Σ̃
(h)
∗ =

1
n

Ũ
(h)′
∗ Ũ

(h)
∗ =

[
ũ

(h)′
i∗ ũ

(h)
j∗ /n

]
i,j=1, ... ,p

, (4.13)

Ũ
(h)
∗ = Ũ (h)Dp(σ−1

i ) = [ũ(h)
1 , ... , ũ(h)

p ]Dp(σ−1
i ) = [ũ(h)

1∗ , ... , ũ
(h)
p∗ ] , (4.14)

ũ
(h)
i∗ ≡ (1/σi)ũ

(h)
i = (1/σi)[Yi − Xiβ̃

(h−1)
i ] , i = 1, . . . , p . (4.15)

Putting (4.15) in vector form, we see that

ũ
(h)
∗ ≡ vec[ũ(h)

1∗ , ... , ũ
(h)
p∗ ] = (D ⊗ In)ũ(h) = Dn

(
y − Xβ̃

(h−1))
(4.16)

where D ≡ Dp(σ−1
i ) and Dn ≡ D ⊗ In .

Now, for h ≥ 0, the feasible GLS estimator β̃
(h)

minimizes the quadratic form

S̃(β) = (y − Xβ)′
(
Σ̃(h) ⊗ In

)−1(y − Xβ)

with respect to β. Since

S̃(β) = (y − Xβ)′(D ⊗ In)(D−1 ⊗ In)
(
Σ̃(h) ⊗ In

)−1(D−1 ⊗ In)(D ⊗ In)(y − Xβ)

= [(D ⊗ In)(y − Xβ)]′
[
(DΣ̃(h)D) ⊗ In

]−1[(D ⊗ In)(y − Xβ)] ,

this entails that

β̃
(h)

=
[(

DnX
)′(

Σ̃
(h)
∗ ⊗ In

)−1(
DnX

)]−1(
DnX

)′(
Σ̃

(h)
∗ ⊗ In

)−1
Dny .

Further, on noting that

w ≡ (w′
1, w′

2, . . . , w′
p)

′ = (D ⊗ In)u = Dnu

and

DnX = [Dp(σ−1
i ) ⊗ In]X =

⎡
⎢⎢⎢⎣

σ−1
1 X1 0 · · · 0

0 σ−1
2 X2 · · · 0

...
...

. . .
...

0 0 · · · σ−1
p Xp

⎤
⎥⎥⎥⎦ = XDp(σ−1

i Iki
) = XΔ

where Δ ≡ Dp(σ−1
i Iki

) is a non-singular matrix, we see that

β̃
(h)

=
[(

XΔ
)′(

Σ̃
(h)
∗ ⊗ In

)−1(
XΔ

)]−1(
XΔ

)′(
Σ̃

(h)
∗ ⊗ In

)−1
Dny

= β + Δ−1
[
X ′(Σ̃(h)

∗ ⊗ In

)−1
X

]−1
X ′(Σ̃(h)

∗ ⊗ In

)−1
Dnu

= β + Δ−1β̃
(h)
∗
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where
β̃

(h)
∗ =

[
X ′(Σ̃(h)

∗ ⊗ In)−1X
]−1

X ′(Σ̃(h)
∗ ⊗ In)−1w .

For h ≥ 1, we then see that:

Dnũ(h) = Dn(y − Xβ̃
(h−1)

) = Dn(Xβ + u − Xβ − XΔ−1β̃
(h−1)
∗ )

= w − Xβ̃
(h−1)
∗

hence
ũ

(h)
i∗ ≡ (1/σi)ũ

(h)
i = wi − Xiβ̃

(h−1)
i∗ , i = 1, . . . , p.

This completes the proof of the proposition.

Propositions 4.1 and 4.2 show that the distributions of the LM, Harvey-Phillips and LR statistics
only depend on the distributions of X and w, irrespective whether the null hypothesis H0 holds or
not. This property also carries to procedures based on combining several of these test statistics,
such as the induced Harvey-Phillips tests proposed in Section 3.2. In particular, under the strict
exogeneity assumption (2.8), this means that the conditional distributions (given X) of these test
statistics only depend on the distribution of w (and the known value of X). If we further assume
that the joint distribution of W1, . . . , Wn is completely specified [assumption (2.7)], then under H0

the distribution of w does not involve any unknown parameter, and similarly for the LM, Harvey-
Phillips and LR statistics. For the QLR statistics, the same properties will hold provided we assume
that Σ̃

(0)
∗ ≡ Dp(σ−1

i )Σ̃(0)Dp(σ−1
i ) can be rewritten as a function of X and w. In particular, this

will be the case if the initial value Σ̃(0) is obtained from the least squares residuals from the p
separate regressions in (2.1), i.e. if

Σ̃(0) =
1
n

Û ′Û , Û = [û1, . . . , ûp] , ûi = M(Xi)Yi , i = 1, . . . , p. (4.17)

We can thus state the following proposition.

Proposition 4.4 PIVOTAL PROPERTY OF TESTS FOR CROSS-EQUATION CORRELATION. Under
the assumptions and notations (2.1) to (2.8), the LM statistic, the LR-based statistic Λ̃ and all the
statistics of the form Fi[K(i)], where K(i) is some (non-empty) subset of {j : 1 ≤ j ≤ p , j �= i},
follow a joint distribution (conditional on X) that does not depend on any unknown parameter
under the null hypothesis H0 : Σ = Dp(σ2

i ) . If furthermore

Dp(σ−1
i )Σ̃(0)Dp(σ−1

i ) = H(X, w) (4.18)

where H(X, w) is a known function of X and w, the same property holds for the QLR statistics
Λ̃(h), h ≥ 0.

It is of interest to note here that the pivotal property for the LR statistics Λ̃ could also be ob-
tained by using the invariance results for generalized regressions models given by Breusch (1980).
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However this would not simplify our proof and would not yield the explicit representation provided
by Proposition 4.2. As we will see below, the latter can be useful for implementing MC tests.

The fact that the LM, Harvey-Phillips, LR and QLR statistics have nuisance-parameter-free
null distributions entails that MC tests can be applied here to obtain a finite-sample version of the
corresponding tests. Such tests can be implemented as follows. Consider a test statistic T for H0

with a continuous nuisance-parameter-free null distribution, suppose H0 is rejected when T is large[
i.e., when T ≥ c(α), where P [T ≥ c(α)] = α under H0

]
, and denote by G(x) = P [T ≥ x] its

survival function under the null hypothesis. Let T0 be the test statistic computed from the observed
data. Then the associated critical region of size α may be expressed as G(T0) ≤ α. By Monte
Carlo methods, generate N independent realizations T1 , . . . , TN of T under H0. Now compute
the randomized “p-value” p̂N (T0) , where

p̂N (x) =
NĜN (x) + 1

N + 1
, (4.19)

ĜN (x) =
1
N

N∑
i=1

I[0,∞)(Ti − x), IA(x) =
{

1, if x ∈ A
0, if x /∈ A

.

Then we can show that

P [p̂N (T0) ≤ α] =
I[α(N + 1)]

N + 1
; (4.20)

see Dufour and Kiviet (1998). In particular, if we choose N so that α(N + 1) is an integer (e.g., for
α = 0.05, we can take N = 19, 39, 99, etc.), we have:

P [p̂N (T0) ≤ α] = α . (4.21)

In other words, the randomized critical region p̂N (T0) ≤ α has the same level as the critical region
G(T0) ≤ α. This procedure is of course valid when the error vectors Ut· are i.i.d. normal [As-
sumption (2.10)], but also under parametric distributional assumptions when J is the only unknown
parameter in the distribution of Ut· , t = 1, . . . , n .

MC tests can be interpreted as parametric bootstrap methods applied to statistics whose null dis-
tribution does not depend on nuisance parameters, with however the central additional observation
that the randomization allows one to exactly control the size of the test for a given (possibly small)
number of MC simulations. For further discussion of Monte Carlo tests (including its relation with
the bootstrap), see Dufour (1995), Dufour and Kiviet (1996), Kiviet and Dufour (1997), Dufour
et al. (1998), and Dufour and Khalaf (2001). On the bootstrap, the reader may consult Hall (1992),
Efron and Tibshirani (1993), Jeong and Maddala (1993), Vinod (1993), Shao and Tu (1995), and
Horowitz (1997).

5. Simulation experiments

In order to assess the performance of the various procedures discussed above, we conducted a set of
Monte Carlo experiments for a five-equation model (p = 5) with n = 25 observations. To assess test

14



Table 1. Covariance matrices used in the Monte Carlo experiments

.0007773 6.616e-06 -1.082e-05 .0003573 -.0001443

.0024550 .0001923 -.0010390 -.0006195
Σ1 .0002950 1.747e-05 .0002829

.0007560 .0004105

.0006790

.0007773 1.654e-06 -1.353e-06 3.969e-05 -1.804e-05

.0024550 2.405e-05 -.0001737 -7.732e-05
Σ2 .0002800 2.427e-05 5.417e-05

.0001276 2.495e-05
4.863e-05
.0007773 3.308e-06 -3.607e-06 8.931e-05 -3.608e-05
.0024550 9.618e-05 -.0003471 -.0001238

Σ3 .0002836 3.804e-05 .0001051
.0001800 7.966e-05
.0001029
.0007773 8.271e-07 -1.803e-06 .0001786 -2.062e-05
.0024550 2.138e-05 -.0002083 -.0002061

Σ4 .0002800 1.513e-05 3.485e-05
.0001707 2.421e-05
5.630e-05

size, we also considered n = 50, 100. In each experiment, the design matrices Xi , i = 1, . . . , p,
include a constant term and equal numbers of regressors (ki = k, i = 1, . . . , p). The values
of k considered are k = 5, 6, . . . , 15. The variables in each matrix Xi were generated using
a multivariate normal distribution and kept constant over all replications. The disturbances were
generated from multivariate normal distributions. Several choices for the error covariance were
considered and are listed in Table 1. The Σ1 matrix as well as the regression coefficients used were
taken from the empirical example discussed in Section 6.1 The other matrices were obtained by
dividing certain elements of the Cholesky decomposition of Σ1 by appropriate constants to decrease
the covariance terms. Of course, the parameters under the null were obtained by setting the non-
diagonal elements of Σ1 to zero. The numbers of trials for the MC tests were set to 19 and 99
(N = 19, 99). The number of overall replications was 1000. All experiments were performed with
Gauss 386iVM (version 3.2.13). The results are presented in Tables 2 and 3.

Our main findings can be summarized as follows.

1. The asymptotic tests (Asy.) consistently overreject. Indeed, we can see that the empirical
sizes can be substantially larger than the nominal 5%. This is in accordance with well doc-
umented results on LR-based multivariate tests. On the other hand, our conclusions with

1The statistics studied are all invariant to the values of the regression coefficients.
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Table 2. Empirical sizes of LM and quasi-LR independence tests

p = 5 n = 25 n = 50 n = 100
k QLROLS LM QLROLS LM QLROLS LM

Asy. MC Asy. MC Asy. MC Asy. MC Asy. MC Asy. MC
5 .193 .040 .105 .045 .115 .057 .081 .057 .070 .040 .062 .037
6 .198 .046 .122 .052 .115 .055 .082 .050 .071 .046 .054 .036
7 .307 .050 .172 .057 .137 .061 .108 .057 .069 .050 .054 .037
8 .322 .048 .200 .054 .150 .057 .106 .050 .080 .048 .069 .045
9 .413 .049 .263 .052 .158 .048 .107 .046 .087 .049 .073 .038
10 .478 .055 .336 .058 .184 .050 .139 .052 .091 .055 .071 .040
11 .536 .038 .353 .049 .190 .054 .146 .056 .092 .038 .076 .036
12 .601 .040 .432 .045 .210 .048 .150 .049 .096 .040 .079 .041
13 .650 .057 .505 .043 .230 .047 .179 .040 .109 .057 .088 .037
14 .725 .059 .577 .051 .236 .042 .185 .048 .115 .059 .095 .036
15 .816 .052 .684 .064 .271 .045 .213 .055 .120 .052 .109 .047

Table 3. Empirical rejections of various independence tests

n = 25 Σ0 (H0) Σ1 Σ2 Σ3 Σ4

Asy. MC MC MC MC MC
MC replications - 19 19 99 19 99 19 99 19 99

LM .105 .045 .998 1.0 .911 .954 .704 .794 .444 .500
QLROLS .193 .040 1.0 1.0 .947 .971 .744 .820 .438 .494
QLRGLS .260 .040 1.0 1.0 .959 .979 .750 .825∗ .429 .504

LR .267 .047 1.0 1.0 .961 .980 .746 .824 .428 .494
Fmin - .043 1.0 1.0 .925 .965 .632 .693 .360 .409
F× - .052 1.0 1.0 .944 .980 .714 .784 .382 .438

FSmin - .049 1.0 1.0 .846 .912 .562 .653 .368 .399
FS× .052 1.0 1.0 .963 .984∗ .721 .799 .490 .562∗

Bonferroni Harvey-Phillips type tests
Fmin .034 1.0 .963 .665 .356

FSmin .049 1.0 .896 .687 .316
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respect to the LM test are not in agreement with the available Monte Carlo evidence, in which
LM independence test was found to work well. This was due to the fact that small numbers
of equations were studied in the earlier literature. Here we find that it does not always work
well in larger systems. In contrast, the MC versions of the tests achieve perfect size control,
i.e. the probability of type I error is equal to the nominal size of 5%.

2. The size corrected tests perform quite well. The power of all four MC tests are comparable
to each other, although the LR-type tests exhibit better power. The EFT test shows relatively
lower power, as would be expected.

3. Iterating SURE estimators to convergence is clearly not worthwhile, in the sense of improving
the power of the associated LR test. In fact, in some cases, iterations resulted in slight power
losses. Furthermore, our results give very favorable support to the OLS-based QLR test. This
issue is particularly pertinent in the context of simulation-based tests.

4. The MC induced tests based on the Harvey-Phillips statistics perform very well over all the
parameter values considered. As expected, the Tippet/Wilkinson-type MC induced tests per-
form better than their Bonferroni counterparts. The power of the Fisher/Pearson-type induced
tests is generally higher than the power of the Tippet/Wilkinson-type ones. Further, the se-
quential variants of the induced tests perform better than the non-sequential ones. Indeed, in
two cases over three, the sequential Fisher/Pearson-type induced test (FS×) exhibits the best
power among all the tests considered.

6. Application to growth equations

For illustrative purposes, we studied data previously analyzed by Fischer (1993) which contains
several series of macroeconomic aggregates observed yearly for a large panel of countries. The
dependent variables of interest are four growth indicators: GDP growth, capital accumulation, pro-
ductivity growth (measured by Solow residuals), and labor force growth. The following determi-
nants of growth are considered: the inflation rate, the ratio of budget surplus to GDP, the terms of
trade, and the black market premium on the exchange rate. Fischer focuses on explaining the de-
terminants of growth. The econometric specification consists of an unbalanced panel model, which
assumes contemporaneously uncorrelated disturbances. Here, we shall test the latter specification.
Attention is restricted to the multiple regressions (17), (23), (29) and (35) in Fischer (1993), which
include all four explanatory variables. The choice of countries was motivated by the availability of
observations on all included variables. We consider:

A) the South-American region (1973-1987): 1) Mexico, 2) Argentina, 3) Chile, 4) Colombia, 5)
Ecuador, and 6) Paraguay;

B) the African region (1977-88): 1) Ghana, 2) Côte d’Ivoire, 3) Kenya, 4) Malawi, 5) Morocco,
and 6) Zambia;

C) the Asian region (1978-87): 1) Korea, 2) Pakistan, 3) Thailand, 4) India, and 5) Indonesia.
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Then, for each region, we considered four SURE different systems corresponding to each one
of the four growth indicators considered (where t = 1, . . . , n, i = 1, . . . , p) :

ΔGDPti = βG
0 + βG

1i INFLATti + βG
2i TRMTRDti + βG

3i SRPLSti + βG
4i EXCMti + uG

ti ;

ΔCPTLti = βK
0 + βK

1i INFLATti + βK
2i TRMTRDti + βK

3i SRPLSti + βK
4i EXCMti + uK

ti ;

ΔPRDCTti = βP
0 + βP

1i INFLATti + βP
2i TRMTRDti + βP

3i SRPLSti + βP
4i EXCMti + uP

ti ;

ΔLABORti = βL
0 + βL

1i INFLATti + βL
2i TRMTRDti + βL

3i SRPLSti + βL
4i EXCMti + uL

ti .

Here, for each country i and each year t, ΔGDPti, ΔCPTLti, ΔPRDCTti,ΔLABORti, and
EXCMti represent respectively GDP growth, capital accumulation, productivity growth, and labor
force growth. The explanatory variables are: inflation (INFLATti), terms of trade (TRMTRDti),
the ratio of budget surplus to GDP (SRPLSti), and the black market premium on the exchange
rate (EXCMti). Overall, we consider 12 different SURE systems with either 6 equations (South
America, Africa) or 5 equations (Asia), each system corresponding to a region and one of the four
growth indicators. Countries are numbered inside each region as indicated in the list presented at
beginning of this section (this ordering correspond to the World Bank database that we used).

We will now test whether the disturbances inside each one of these SURE systems are con-
temporaneously correlated, using a Gaussian distributional assumption. The assumption that the
disturbances are not correlated across countries is important to justify pooling the data as done by
Fischer (1993). In each case, we applied LM, LR and QLR tests, as well as Harvey/Phillips-type
induced tests. The MC tests are based on N = 999 replications of the statistics considered. The
QLR tests are based on two-step feasible GLS estimators, using OLS residuals to estimate the dis-
turbance covariance matrix. For completeness, we also report the individual Harvey-Phillips tests
(based on the statistics Fi(Ki) and Fi[{i + 1, . . . , p}] defined in Section 3.2) which are combined
by the MC induced tests. Note that in the case of the sequential tests, the ordering of the countries
may affect the outcome of the test; here, we present results based on the ordering given above. The
results are presented (as p-values) in Tables 4 to 7. The MC test results which are significant at the
10% level are highlighted with one star (*), while those which are significant at the 5% level are
highlighted with two stars (**). In view of the simulation evidence of Section 5, we shall stress
the conclusions provided by the MC LR-based and FS tests. Asymptotic p-values (Asy.) are only
reported for comparison sake.

For GDP growth (Table 4), no test is significant (at the 10% level) in the case of the South-
American countries. For Africa, the MC LR-type tests are significant at the 10% level (but not 5%),
but the FSmin induced test is significant at the 5% level. On looking at the individual sequential
Harvey-Phillips tests, it appears this may be due to correlations between the disturbances in the
Malawi equation and those for Morocco and/or Zambia. Turning to the Asian region, while the LR-
based tests are not significant again, we nevertheless observe that the Fmin, FSmin and FS× are
significant at the 10% level. In this case, the Harvey-Phillips sequential tests suggest that there may
be dependence between Korea and the other countries. For all regions, it is of interest to observe
that the asymptotic approximations and the MC procedure yield very different p-values for the LR-
based statistics, which may lead to quite different conclusions. This observation also applies to the
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Table 4. GDP growth SURE systems: independence tests

South America Africa Asia
p = 6 p = 6 p = 5

F1(K1) .7927 .1613 .0215∗∗

F2(K2) .7906 .2882 .6068
F3(K3) .2669 .1308 .7127
F4(K4) .9901 .0516∗ .5453
F5(K5) .8503 .9571 .3771
F6(K6) .8253 .2652 -

F1({2, . . . , p}) .7927 .1613 .0215∗∗

F2({3, . . . , p}) .7470 .4964 .3113
F3({4, . . . , p}) .8810 .9137 .4277
F4({5, . . . , p}) .8647 .0055∗∗ .3873

F5({ p}) .9290 .6005 -

Asy. MC Asy. MC Asy. MC
LM .9425 .977 .0466 .081∗ .4384 .611

QLROLS .9242 .981 .0100 .062∗ .0872 .470
LR .4374 .978 .0000 .082∗ .0000 .412
Fmin - .742 - .224 - .094∗

F× - .917 - .130 - .258
FSmin - 1.0 - .025∗∗ - .085∗

FS× - 1.0 - .072∗ - .096∗
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Table 5. Capital growth SURE systems: independence tests

South America Africa Asia
p = 6 p = 6 p = 5

F1(K1) .1592 .2503 .3399
F2(K2) .3514 .2035 .2200
F3(K3) .0561∗ .7065 .1373
F4(K4) .0333∗∗ .0589∗ .2255
F5(K5) .2288 .0143∗∗ .0357
F6(K6) .3509 .8389 -

F1({2, . . . , p}) .1592 .2503 .3399
F2({3, . . . , p}) .2249 .0854∗ .6323
F3({4, . . . , p}) .0111∗ .3004 .0069∗

F4({5, . . . , p}) .7156 .1422 .6355
F5({ p}) .7679 .7581 -

Asy. MC Asy. MC Asy. MC
LM .0350 .061∗ .1023 .026∗∗ .2449 .367

QLROLS .0058 .096∗ .0049 .132 .0000 .002∗∗

LR .0000 .053∗ .0000 .249 .0000 .001∗∗

Fmin - .167 - .063∗ - .137
F× - .075∗ - .080∗ - .056∗

FSmin - .055∗ - .359 - .027∗∗

FS× - .086∗ - .141 - .091∗

20



Table 6. Productivity growth SURE systems: independence tests

South America Africa Asia
p = 6 p = 6 p = 5

F1(K1) .9765 .1312 .5003
F2(K2) .9162 .1909 .8182
F3(K3) .5362 .2965 .4958
F4(K4) .9976 .0242∗∗ .1246
F5(K5) .9430 .8209 .0918
F6(K6) .7528 .2454 -

F1({2, . . . , p}) .9765 .1312 .5003
F2({3, . . . , p}) .8294 .3912 .5421
F3({4, . . . , p}) .6037 .3738 .8683
F4({5, . . . , p}) .9442 .0519∗ .2284

F5({ p}) .6962 .8069 -

Asy. MC Asy. MC Asy. MC
LM .9913 .998 .0356 .061∗ .5070 .698

QLROLS .9891 .997 .0012 .074∗ .0658 .415
LR .7929 .998 .0000 .016∗∗ .0000 .266
Fmin - .943 - .111 - .337
F× - .979 - .093∗ - .282

FSmin - .988 - .212 - .636
FS× - .990 - .152 - .664
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Table 7. Labor force growth SURE systems: independence tests

South America Africa Asia
p = 6 p = 6 p = 5

F1(K1) .4051 .0734∗ .0153∗

F2(K2) .4051 .2266 .684
F3(K3) .1976 .0397∗∗ .0957∗

F4(K4) .0189∗∗ .0153∗∗ .8999
F5(K5) .0288∗∗ .3571 .4434
F6(K6) .1011 .1761 -

F1({2, . . . , p}) .4051 .0734∗ .0153∗

F2({3, . . . , p}) .2594 .1201 .5698
F3({4, . . . , p}) .5535 .0085∗∗ .2187
F4({5, . . . , p}) .0580∗ .0897∗ .2661

F5({ p}) .0799∗ .4900 -

Asy. MC Asy. MC Asy. MC
LM .0686 .103 .0007 .004∗∗ .3040 .457

QLROLS .0108 .126 .0000 .006∗∗ .0063 .140
LR .0000 .020∗ .0000 .004∗∗ .0000 .194
Fmin - .102 - .065∗ - .062∗

F× - .045∗∗ - .021∗∗ - .128
FSmin - .272 - .033∗∗ - .062∗

FS× - .092∗ - .008∗∗ - .050∗∗
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results for the other growth indicators discussed below.
For capital growth (Table 5), the MC LR and FSmin tests are strongly significant for Asia

and close to being significant at the 5% level for South America. The same tests do not come
out significant at usual levels for Africa, although the LM , Fmin and F× also provide indications
of dependence in this case too. The Harvey-Phillips individual tests suggest there is dependence
between the disturbances in the equation for Chile and those for Colombia, Ecuador and Paraguay;
in Africa, the dependence appears to be between Thailand, India and Indonesia.

In the case of productivity growth (Table 6), we see no evidence of cross-equation correlation for
both South America and Asia, but some for Africa. In the latter case, the MC-LR statistic is strongly
significant, and to a lesser extent the quasi-LR and F× tests. On looking at the individual sequential
Harvey-Phillips tests, it seems this may be due to correlation between Morocco and Zambia.

For labor force growth (Table 7), we see strong evidence of cross-equation correlation in the
cases of South America and Africa. For Asia, the LR-based tests are not significant at the 10%
level, but induced Harvey-Phillips tests are significant at the 5% level (or close to it).

Overall, these results provide several examples where asymptotic p-values grossly overstate test
significance. Despite this fact, using more reliable finite-sample methods, we also found quite sig-
nificant evidence of contemporaneous correlation between the disturbances in several of the equa-
tions considered, a feature that should be taken into account when analyzing these data. Of course,
it is beyond the scope of the present paper to perform a complete reanalysis of the Fischer (1993)
data.

7. Conclusion

In this paper, we have proposed simulation-based procedures to derive exact p-values for standard
LR and LM independence tests in the context of SURE models. We have also proposed alternative
OLS and IFGLS-based QLR criteria. In multi-equation models, conventional independence tests
only have an asymptotic justification. The reason for the lack of popularity of finite sample proce-
dures is clearly the intractable nature of available distributional results. Here, we have considered an
alternative and considerably more straightforward approach to independence tests. We have shown
that LR and LM statistics are pivotal under the null, which implies that exact critical values can be
obtained easily by MC techniques.

The feasibility of the approach suggested was illustrated through both a simulation experiment
and an empirical application. The results show that asymptotic tests are indeed highly unreliable;
in contrast, MC tests achieve size control and have good power. We emphasize that OLS-based MC
QLR tests performed extremely well. This aspect is important particularly in larger systems, since
test procedures based on iterative estimators are typically more expensive from the point of view
of MC tests. The MC induced tests turned out to have surprisingly good power. Since the MC test
procedure yields size-correct significance points, this approach seems very promising in the context
of non-independent simultaneous tests.
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