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1. Introduction

During the last 20 years, computer-based simulation methods have revolutionized the way we ap-
proach statistical analysis. This has been made possible by the rapid development of increasingly
quick and inexpensive computers. Important innovations in this field include the bootstrap meth-
ods for improving standard asymptotic approximations [for reviews, see Efron (1982), Efron and
Tibshirani (1993), Hall (1992), Jeong and Maddala (1993), Vinod (1993), Shao and Tu (1995),
Davison and Hinkley (1997), and Horowitz (1997)] and techniques where estimators and forecasts
are obtained from criteria evaluated by simulation [see Mariano and Brown (1993), Hajivassiliou
(1993), Keane (1993), Gouriéroux and Monfort (1996) and Gallant and Tauchen (1996)]. An area
of statistical analysis where such techniques can make an important difference is hypothesis testing
which raises often difficult distributional problems especially in view of determining appropriate
critical values.

This paper has two major objectives. First, we review some basic notions on hypothesis testing
from a finite-sample perspective, emphasizing in particular the specific role of hypothesis testing in
statistical analysis, the distinction between the level and the size of a test, the notions of exact and
conservative tests, as well as randomized and non-randomized procedures. Second, we present a
relatively informal overview of the possibilities of Monte Carlo test techniques, whose original idea
originates in the early work Dwass (1957), Barnard (1963) and Birnbaum (1974), in econometrics.
This technique has the great attraction of providing provably exact (randomized) tests based on
any statistic whose finite sample distribution may be intractable but can be simulated. Further, the
validity of the tests so obtained does not depend on the number of replications employed (which can
be small). These features may be contrasted with the bootstrap, which only provides asymptotically
justified (although hopefully improved) large-sample approximations.

In our presentation, we will try to address the fundamental issues that will allow the practitioners
to use Monte Carlo fest techniques. The emphasis will be on concepts rather than technical detail,
and the exposition aims at being intuitive. The ideas will be illustrated using practical econometric
problems. Examples include: specification tests in linear regressions contexts (normality, indepen-
dence, heteroskedasticity and conditional heteroskedasticity), non-linear hypotheses in univariate
and SURE models, tests on structural parameters in instrumental regressions, tests on long-run mul-
tipliers in dynamic models, long-run identification constraints in VAR models, confidence intervals
for ratio of coefficients in discrete choice models. More precisely, we will discuss the following
themes.

In Section 2, we identify the important statistical issues motivating this econometric method-
ology, as an alternative to standard procedures. The issues raised have their roots in practical test
problems and may be outlined as follows.

e An Exact Test Strategy: What Is It, and Why Should We Care?
e The Nuisance-Parameter Problem: What Does It Mean to Practitioners?
e Understanding the Size/Level Control Problem.

e Pivotal and Boundedly-Pivotal Test Criteria: Why Is this Property Important?



e Identification and Near non-identification: A Challenging Setting.

e Non-Nested hypothesis.

Further, the relevance and severity of the problem will be demonstrated using simulation studies
and/or empirical examples.

Sections 3 and 4 describe the Monte Carlo (MC) test method along with various econometric
applications of it. Among other things, the procedure is compared and contrasted with the boot-
strap. Whereas bootstrap tests are asymptotically are asymptotically valid (as both the numbers of
observations and simulated samples go to o), a formal demonstration is provided to emphasize the
size control property of MC tests. Monte Carlo tests are typically discussed in parametric contexts.
Extensions to non-parametric problems are also discussed. The theory is applied to a broad spec-
trum of examples that illustrate the usefulness of the procedure. We conclude with a word of caution
on inference problems that cannot be are solved by simulation. For convenience, the concepts and
themes covered may be outlined as follows.

e MC Tests Based on Pivotal Statistics: An Exact Randomized Test Procedure

e MC Tests in the Presence of Nuisance Parameters

» Local MC p-value
» Bounds MC p-value
» Maximized MC p-value

e MC Tests versus the Bootstrap

» Fundamental Differences/Similarities
» The Number of Simulated Samples: Theory and Guidelines

» MC tests or Bartlett Corrections?MC tests: Breakthrough Improvements and ”Success
Stories”

» The Intractable Null Distributions Problem (e.g. tests for normality, Uniform Linear
hypothesis in Multi-Equation models, tests for ARCH)

» The Case of Unidentified Nuisance Parameters (test for structural jumps, test for ARCH-
M)

» Non-Nested Tests
» Induced Tests: The “Combination” Problem
» Non-Standard, Possibly Unbounded Confidence Intervals

e MC Tests May Fail: Where and Why? A Word of Caution.

We conclude in Section 5.



2. Statistical issues: a practical approach to core questions

Is it more serious to convict an innocent man or to acquit a guilty? That will depend on
the consequences of the error; is the punishment death or fine; what is the danger to the
community of released criminals [...]. From the point of view of mathematical theory
all that we can do is to show how the risk of errors may be controlled and minimized.
[Neyman and Pearson (1933), quoted by McCloskey and Ziliak (1996)]

In order to understand the theory of hypothesis testing, it is necessary to analyze the intuitive rea-
soning underlying the classical [Neyman-Pearson] criteria for constructing a ”good” test.

The hypothesis testing problem is often presented as one of deciding between two hypotheses:
the hypothesis of interest (the null Hy) and its complement (the alternative H 4). For the purpose of
the exposition, consider a test problem pertaining to a parametric model (Y, Py), i.e. the case where
the data generating process [DGP] is determined up to a finite number of unknown real parameters
0 € O. O refers to the parameter space, ) is the sample space, Py is the family of probability
distributions on ), and let Y denote the observations. Furthermore, let © refer to the subspace of
© compatible with Hy.

A statistical test partitions the sample space into two subsets: a set consistent with Hy (the
region of acceptance), and its complement whose elements are viewed as inconsistent with Hy (the
region of rejection, or the critical region). This may be translated into a decision rule based on a
test statistic S(Y'): the rejection region is defined as the numerical values of the test statistic for
which the null will be rejected. In general, a test is completely defined by its critical region. When
the observed value of the test statistic falls in the critical region, the result is said to be significant.

Associated with any rejection decision are two possible outcomes:

e the test may reject Hy when Hj is true; this is called type I error;

o the test may reject Hy when Hj is false; the probability of this is called the power of the test.

A test whose error probability is as small as possible is clearly desirable. Furthermore, the ability
of the test to detect departures from the null (the probability of the right answer) is also of concern.
The central issue is, and will remain, how to reconcile both desirable yet somewhat conflicting
characteristics. As might be expected, a test which minimizes risk and at the same time maximizes
power is almost impossible to devise. The following discussion outlines the elements of the classical
approach to the problem that is due to Neyman and Pearson.

The starting point in the test construction process is to modify the fundamental questions. In-
stead of addressing the test problem as one of choosing between Hj and H 4, the question is restated
as follows:

“Is there enough evidence to reject the null hypothesis?”
Accordingly, the potential test outcomes are:

e “the test rejects Hy : the sample provides convincing evidence in favor of H 4”;



o “the test fails to reject Hy : the sample evidence is insufficient to disprove Hy”.

This - weaker and rather ”conservative” - formulation of the problem is the one that has received the
most attention from statisticians and has led to the most commonly used test strategy: set the type
I error probability to a small pre-assigned value « and then, subject to this constraint, find criteria
with ”good” power. In other words, restrict focus to procedures which “control” the risk of falsely
rejecting the null and among those, select the ones which optimize the probability of rejecting a
false null.

Minimal risk actually means controlled risk; maximum power cannot be achieved arbi-
trarily but is subject to “’risk” control.

Then the concept of “a most powerful test” becomes meaningless!! We are rather led to consider
most powerful a% tests”, a notation which suggests limiting considerations to tests of some preas-
signed error probability.

The concepts underlying the optimality criteria just stated have often been compared to the
principles of court justice. Under “standard” judicial systems, the “alleged criminal” is presumed
innocent until proven guilty. Convictions require proving guilt beyond reasonable doubt. In
terms of hypotheses tests, failing to reject the null is analogous to failing to convict a defendant, in
which case the person on trial will either be innocent or the evidence was not decisive enough to
overturn the initial presumption of innocence.

2.1. Significance level, size and power: basic definitions

In our discussion so far, we have avoided the terms significance level and test size. Instead, we have
focused on the intuitive interpretation of type I error control. We move now to the formal translation
of this concept into mathematical statements.
Let R refer to the rejection region of a test. The associated function describing the type I error
probability may be defined as
a(0) = Py(R)

where @ satisfies the null. In this framework, an a% test implies
a(f) <a 2.1
for all 8 € ©(.This may be restated as follows

supa(f) < a. (2.2)
[ASSH

« is called the “significance level” (notice the < sign) and sup[«(0)],0 € Oy is called the size of
the test. In other words, a test of size o implies (notice the = sign)

supa(f) = «. (2.3)
0€0Og

'If we adopt such a criterion, we might as well ignore the data and merely decide, apriori, to reject the null.



At this stage, it is worth emphasizing that although a size correct procedure is preferred, the classical
test theory requires primarily the control of the significance level. The fact that in some cases, it is
practically impossible to determine a critical point so that size is exactly « does not matter. We just
chose an «-level critical region whose size is as nearly as possible «. In other words, level control
is required yet size control - if possible - is desirable.

The mathematical implications of size or level control can be quite complicated. Indeed, in
the probability statements (2.2) and (2.3), the sample size is explicitly taken into consideration. In
addition, the underlying supremum, in many cases, is far from trivial.

When we talk about an exact test, it must be understood that attention is restricted to
level-correct critical regions, where (2.2) is evaluated in terms of a fixed sample size,
for all values of the intervening parameter compatible with the null.

We now turn to the concept of power. Formally, the power of a test may be defined as
Po(R), 6 ¢& Oq 24

where R is determined by considerations of the level of the test. For a given «, a test which satisfies

the condition
Po(R) < «, forall § € ©g,

Pg(R) is maximum, forall @ ¢ ©g,

is said to be uniformly most powerful at level o, i.e. most powerful against all possible DGP’s that
do not satisfy the null. Unfortunately, for most problems of practical interest, it is the exception
rather than a rule that such a test exists. Usually, attention is restricted to alternatives of particular
interest. To solve this difficulty, we may impose further reasonable restrictions on the class of tests
considered. For instance, we expect the power of a test to exceed its size, for all § ¢ ©. Otherwise,
the test is more liable to accept H 4 when it is false than when it is true. A test satisfying

Py(R)
Py(R)

<a, forallfe O,
>a, foralld ¢ O,
is said to be an unbiased «-level test. Generally speaking, we also expect that larger samples
provide more information,i.e. more convincing evidence in favor or against Hy. If the sample size
is sufficiently large, we expect to reject a false null with probability close to one. This defines the
consistency property. A test is consistent (for a certain class of alternatives) if the power — 1 as
the sample size — oco. Furthermore, for certain problems, it seems natural to demand that the test
be invariant under certain reparameterizations (transformations of 6).

Another natural restriction on the class of tests is worth considering. Suppose it is possible to
find a rejection region such that Py(R) does not depend on 6 under the null. This clearly simplifies
the analytical problems associated with (2.3). A test with the property

Py(R) = «, foralld € O,

is said to be similar.



2.2. Large sample tests

It is useful at this stage to restate the definitions introduced above in terms of the familiar framework
of test statistics. Without loss of generality, suppose the critical region takes the form

SY)>c
where S(Y) is a test statistic. To obtain an a-level test, ¢ must be chosen so that

supPy[S(Y) > ¢ <. (2.5)
0€0g

The test will have size « if and only if

supPy[S(Y) > ¢ =« (2.6)
0€0g

To solve for ¢ in (2.5) or (2.6), it is necessary to extract the finite sample distribution of S(Y’) when
the null is true. Typically, S(Y) is a complicated function of the observations and the statistical
problem involved is often intractable. More importantly, it is evident from the definitions (2.5),
(2.6), (2.2) and (2.3) that in many cases of practical interest, the distribution of S(Y') may be dif-
ferent for different parameter values. Unless of course the null fixes the values of 6 (i.e. Oy is a
point); such hypotheses are called simple hypotheses. Most hypothesis encountered in practice are
composite i.e. the set Oy has more than one element. The null may uniquely define some param-
eters, but almost invariably, some other parameters are not restricted to a point-set. In the context
of composite hypotheses, some unknown parameters may appear in the distribution of S(Y"). Such
parameters, for obvious reasons, are called nuisance parameters. Consequently, in carrying out
an exact test, one may encounter two difficulties. First is the problem of extracting the analytic
form of the distribution of S(Y’). Second is the problem of maximizing the rejection probabilities
over the relevant nuisance parameter space. The first difficulty is easily removed in the context of
Monte Carlo testing. We draw attention to the latter problem, the importance of which is not fully
recognized in econometric practice.

As it is often the case, a reasonable solution for both problems exists when one is dealing with
large samples. Whereas the null distribution of S(Y) may be complicated and/or may involve
unknown parameters, the asymptotic null distribution of the commonly used test statistic has a
known form and is nuisance-parameter-free. Then the critical point may conveniently be obtained
using asymptotic arguments. The term approximate critical point is more appropriate here, since
we are dealing with asymptotic levels: the choice of the cut-off point which yields an approximate
size-« test may be very different from the exact critical values. To illustrate these issues, we next
present two commonly used test criteria: the likelihood ratio (LR) and the Wald test statistics.



2.2.1. The likelihood ratio test

Consider the case where both Hy and H 4 are simple hypotheses, i.e. the sample space has only two
elements 6y and 67, and the hypothesis takes the form

fﬂ)t 9::90,
fIA: 92291.

Suppose the associated probability distributions are defined by density functions f(y;6) and
f(y;07). It can be shown (using the Neyman-Pearson fundamental Lemma) that any critical region
of the form

Rr={y: fly00/f(y;00) >k }

where k is chosen such that
Py, (R*) = «,

is uniformly most powerful at level a.. Note that the term “uniformly” is unnecessary here because
H 4 reduces to one point.

The above result provides the basis of the LR principle and justifies the following generaliza-
tion to composite hypotheses. As emphasized earlier, in this case f(y; #) is not uniquely determined
under the null nor under the alternative, and the Neyman-Pearson fundamental Lemma cannot be
readily applied. We arrive at a reasonable procedure by the following modification. Given a sample,
determine its “best chance” if H 4 is true and its "best chance” if Hj is true. Large enough values
of the ratio of these best chances are interpreted as evidence against H. The best chance of a sam-
ple translates into the well known maximum likelihood (ML) principle which yields the following

rejection region:
R™ — { Y (supf(y;9)> / <supf(y;9)> >k }
0¢00 0cO¢

where k is determined by the condition

sup Pg,(R™) = «.
0€0Og

The LR principle provides a formal method for constructing critical regions. Note that no asymptotic
argument has been used so far. Although the LR principle is not justified on asymptotic grounds,
asymptotic theory conveniently provides approximate critical points. Indeed, it can be shown, under
general regularity conditions, that the asymptotic distribution of

sup f(y; 0)
0¢00

sup f(y;0)
[ASSH)

—21In

is x? with known degrees of freedom and the test is asymptotically most powerful.



The LR test can be slightly modified to improve the y? approximation. Examples include the
Bartlett correction. Bartlett corrections involve rescaling the test statistic by a suitable constant
obtained such that the mean of the scaled statistic equals that of the approximating distribution to a
given order [Bartlett (1937), Barndorff-Nielsen and Blaesild (1986)]. The formulae for the relevant
constant must be solved on a case by case basis.

We conclude this preliminary discussion on LR test with the following note. The large-sample
distributional results underlying the x? approximation are valid if © is a subset of the space com-
patible with H 4, defined by r non-redundant restrictions (nested hypotheses), in which case the
constraints in Hy may be reduced by reparameterization to the form

hi(0) =0, i=3j, ..., .7)

In fact r will determine the degrees of freedom of the statistic’s limiting distribution. It is usual in
this context to refer to the restricted and unrestricted models. We will emphasize that the application
of the Monte Carlo test technique to LR criteria allows one to obtain valid tests with non-nested
hypotheses. This is indeed a very useful property.

2.2.2. The Wald test

-~

In the context of hypotheses of the form (2.7), the Wald criterion is based on the vector (), where

0 is the ML estimate. The null is rejected if h(/H\) is far enough from zero, where h(/H\) denotes the
% 1 vector with elements /;(6). As it is well known, under general regularity conditions, we have:

V(@ —6) ¥ N, B, ) (2.8)
where By is the information matrix. Using a Taylor expansion, we can write

h(9) ~ h(6) + H}(6 — 0)
where

Oh;(6)
Hy= 1~
"7 "o,

Under the null hypothesis ~(6) = 0, then
h(0) ~ Hj(# —6).

It follows that R
Vnh(9) % N (0, HyB; ' Hy) . (2.9)

~

This may be used to derive a region of “proximity to zero” around h(€) and yields the following
critical region for testing (2.7):

{ y: nh'(@) [HéBngg]ilh(/H\) >k } (2.10)



The test statistic so defined is asymptotically x?(r) under the null. At this stage, it is worth em-
phasizing that the principle underlying the Wald test is fundamentally asymptotic, in the sense that
(2.8), (2.9) and (2.10) are justified only on asymptotic grounds. In the case of the LR test, we re-
sorted to asymptotic theory at the stage of cut-off points computations. In terms of the Wald test,
there is no reason why the region of “proximity to zero”? implied by (2.9) should be preferred (or
even relevant) from the finite sample perspective.

2.2.3. How large is large?

For sufficiently large sample sizes, the standard asymptotic approximations are expected to work
well. The question is, and will remain, how large is large? To illustrate this issue, we next con-
sider several examples involving commonly used econometric methods. We will demonstrate, by
simulation, that asymptotic procedures may yield highly unreliable decisions, with samples of sizes
empirically relevant. The problem, and our main point, is that finite sample accuracy is not merely
a small sample problem.

2.3. Econometric applications: Monte Carlo studies
2.3.1. Instrumental regressions >

Consider the limited-information (LI) structural regression model:

y=YP+ X1y, +tu=20+u,

Y = X410 + Xolly + V @11

where Y and X; are n X m and n x k matrices which respectively contain the observations on
the included endogenous and exogenous variables, Z = [Y, X;], d = (3, 7]) and X refers to the
excluded exogenous variables. If more than rn variables are excluded from the structural equation,
the system is said to be over-identified. The associated LI reduced form is:

(2.12)

[y Y] = XTI+ [w V],H:[”l Hl]’

my 1y
T = Hlﬁ—i-’)/l, my =110, (2.13)

The necessary and sufficient condition for identification follows from the relation w9 = II5 3. Indeed
[ is recoverable if and only if
rank(Ily) =m. (2.14)

To test the general linear hypothesis R = r, the well-known IV analogue of the Wald test is
frequently applied on grounds of computational ease. For instance, consider the two-stage least
squares (2SLS) estimator

;= [ZIP(P'P)~'P'Z,) 71 Z!P(P'P)~' P'y; (2.15)

*Using standard notation, this region is the familiar 0+ ta/2 SE(/Q\) in the scalar parameter case.
3This section is based on the results in Dufour and Khalaf (1998b).



where P is the following matrix of instruments P = [X;, X (X'X) 1 X'Y;]. Application of the
Wald principle yields the following criterion

1 R .
o = 5 (r = RS))' — [R'(Z[P(P'P)"'P'Z) '] (r — Rb) (2.16)
where 1
s° = (i — Z03)' (yi — Zi0:)". @.17)

Under usual regularity conditions and imposing identification, 7, is distributed like a x?(q) vari-
able.

Bartlett (1948) and Anderson and Rubin (1949, AR) suggested an exact test that can be applied
only if the null takes the form 8 = 3°. The idea behind the test is quite simple. Define y* = y—Y 3°
. Under the null, the model can be written as y* = X;; +u. On the other hand, if the hypothesis is
not true, y* will be a linear function of all the exogenous variables. Thus, the null may be assessed
by the F' test that the coefficient of the “excluded” regressors is zero in the regression of y* on all
the exogenous variables.

We first consider a simple experiment based on the work of Nelson and Startz (1990a, 1990b)
and Staiger and Stock (1997). The model considered is a special case of (2.11) with two endoge-
nous variables (p = 2) and £ = 1 exogenous variables. The structural equation includes only the
endogenous variable. The restrictions tested were of the form

Hy :p=p3". (2.18)

The sample sizes were set to n = 25, 100. The exogenous regressors were independently drawn
from the normal distribution, with mean zero and unit variance. These were drawn only once. The
errors were generated according to a multinormal distribution with mean zero and covariance

1 .95
= [ 95 1 ] . (2.19)

The other coefficients were:
ﬁzﬁozo;ﬂzzl,.g,.7,.5,.2,.1,.05,.01. (2.20)

In this case, the 2SLS-based test corresponds to the standard #-test [see Nelson and Startz (1990b)
for the relevant formulae]. 1000 replications were performed, and Figures 1.1 - 1.3 report the
estimated 97.5 percentile for the two-tailed 2SLS ¢-test for the significance of 3. Figures 1.4 - 1.6
present the estimated probabilities of type I error [P(type I error)] associated with the latter test.
In this context, the identification condition reduces to IIs # 0. This condition can be tested
using a standard F' test in the first stage regression. The problem is more complicated when the
structural equation includes more than one endogenous variable. To examine this case, we consider
the following simulation experiment.* The model is (2.11) with three endogenous variables (1 = 2)

“See Dufour and Khalaf (1998b) for a detailed discussion of this experiment.
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Figure 1.1: N-based t-test critical points, sample size = 25
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Figure 1.2: V-based t-test critical points, sample size = 100
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Figure 1.3: N=based t-test critical points, sample size = 250
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Figure 1.4: V-based t-test / Anderson—Rubin T test, sample size = 25

o5
B
-3 = [V=Student t
Yo = Anderson—Rubin
g
}7
0
oo
o
1 —
ag ‘ ‘ ‘ ‘ ‘ ‘ ‘
oo 01 02 03 04 05 06 07 08 09
. Coefficient of the Tst stage regression
Fiqure 1.5: IV-based {-test / Anderson-Rubin F test, somple size = 100
03
5
=3 — V-Student t
ho = Anderson—Rubin
>\O
}7
iR
70
0o
[ije
ag ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
500 01 0.2 03 04 05 06 07 08 09
. Coefficient of the 1st stage regression
Fiqure 1.6: IV-based t-test / Anderson-Rubin F test, somple size = 250
09
i
-3 = [V=Student t
Yo = MAnderson—Rubin
>a
o
aa
0o
(VR
IO _____________ e e E e e e e e e e e e = ==
dg L L L L L L L L L
Eo00 01 02 03 04 05 06 07 08 09
[

Coefficient of the Tst stage regression

12



and k£ = 6 exogenous variables. In all cases, the structural equation includes only one exogenous
variable, the constant regressor. The restrictions tested were of the form

Hy : g=p", (2.21)

Hyy : By =BY, (2.22)

where 8 = (£, (). The sample sizes were set to n = 25, 100. The exogenous regressors were
independently drawn from the normal distribution, with means zero and unit variances. These were
drawn only once. The errors were generated according to a multinormal distribution with mean zero

and covariance
1 95 —.95

= 95 1 —-1.91 | . (2.23)
-95 —-191 12

The other coefficients were:

L
v =1, 8, =10, By =—-1.5,1II; = (1.5,2)', Iy = [ 1 ] (2.24)
O(k_372)
with
L1 21
I = [ Lo ] (2.25)

The identification problem becomes mores serious as the determinant of IT,II, gets closer to zero.
In view of this, we also consider:

.2 1.999 . [5 499

= [1.999 2 I R RCE 226

oo [ 099 o |01 009 ‘
— 1099 1 | — L.009 01 |°

For further reference, the model corresponding to (2.25) is called the “identified” case and the
model corresponding to (2.26) the “near-unidentified” case. The Wald statistics based on 2SLS
were calculated as defined above. The standard asymptotic x? critical value was adopted and 1000
replications were performed. Figures 2.1- 2.4 summarize our findings for the near-unidentified case.
The results for the identified model are as follows.

‘ Table 1 : Empirical P(T'ype I error), identified model ‘
Sample size | Wald(Hj;) Anderson-Rubin(Hy;) Wald(Hz)

25 14.8 4.4 14.2
100 8.4 4.3 8.1

It is evident from both experiments that IV-based Wald tests perform very poorly in terms of size
control. Identification problems severely distort the test sizes. While the evidence of size distortions
is notable even in identified models, the problem is far more severe in near-unidentified situations.
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Figure 2.1: V-based Wald test / Andersan—Rubin F test, sample size = 25
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Figure 2.3: V-bosed Wald test, sample size = 25
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Figure 2.4: IV-based Wald test, sample size = 100
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More importantly, increasing the sample size does not correct the problem. In this regard, Bound,
Jaeger, and Baker (1995) report severe bias problems associated with IV-based estimators, despite
very large sample size.

“The use of large data sets does not necessarily insulate researchers from quantitatively
important finite sample biases.” [Bound, Jaeger, and Baker (1995)]

In contrast, the Anderson-Rubin test, when available, is immune to such problems: the test is
exact, in the sense that the null distribution of the AR criterion does not depend on the parame-
ters controlling identification. Indeed, the AR test statistic follows an F'(m,n — k) distribution,
regardless of the identification status. The AR test has recently received renewed attention; see, for
example, Dufour and Jasiak (1994) and Staiger and Stock (1997). Recall however that the test is
not applicable unless the null sets the values of the coefficients of all the endogenous variables.

Despite the recognition of the need for caution in the application of IV-based tests, the stan-
dard econometric software packages typically implement IV-based Wald tests. In particular, the
t-tests on individual parameters are routinely computed in the context of 2SLS or 3SLS procedures.
Unfortunately, the Monte Carlo experiments we have analyzed confirm that IV-based tests realize
computational savings at the risk of very poor performance.

2.3.2. Normality tests®

We consider normality tests in the context of the linear regression model:

Y=XB+u (2.27)

where Y = (y1, ..., yn) is a vector of observations on the dependent variable, X is the matrix of
n, observations on k regressors, 3 is a vector of unknown coefficients and w is an n-dimensional
vector of ¢.5.d disturbances. The problem consists in testing:

Hotf(’u):(,D(0,0'),J>0, (228)

where f (u) is the unknown probability density function (pdf) and ¢ (u, o) is the normal pdf with
mean g and standard deviation o. In this context, normality tests are typically based on the least-
squares residual vector

i=y—XB=Myu (2.29)

where 8 = (X'X)"' X'y and My = I, — X (X'X) "' X'. Let i1n, < o < ... < Tiny, denote the
order statistics of the residuals, and

n n
S=m—-ky a,, &7=n"") . (2.30)
=1 =1

Here we focus on two tests: the Kolmogorov-Smirnov (K S) test [Kolmogorov (1933), Smirnov
(1939)], and the Jarque and Bera (1980, 1987; henceforth JB) test.

5This section is based on the results in Dufour, Farhat, Gardiol, and Khalaf (1998).
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The K S test is based on a measure of discrepancy between the empirical and hypothesized
distributions. The exact and limiting distributions of the test statistic are non-standard and even
asymptotic points must be estimated. The statistics are defined as follows:

KS = max (D*, D”) 2.31)
where Dt = maxi<ij<p [(¢/n) — %] and D™ = maxi<i<p[2; — (i — 1)/n|,where 2z; =
®(uip/s), i = 1, ..., n, and ®(.) denotes the cumulative N (0, 1) distribution function. We have

used significance points from D’ Agostino and Stephens (1986, Table 4.7), although these formally
were derived for the location-scale model.

The JB test derives from the recognition that the third and fourth moments of the N (0, 1)
distribution are equal to 0 and 3 respectively. Hence deviations from normality may be assessed
using the sample moments, i.e. the coefficients of skewness (Sk) and kurtosis (ku):

Sk=n"1> "1} /(5% (2.32)
=1
n
Ku=n""Y"1},/(5%)°. (2.33)
=1

The skewness and kurtosis tests may be implemented as two distinct tests [see D’Agostino and
Stephens (1986, chapter 6)]. The J B Lagrange multiplier criterion combined both Sk and kw :

JB=n [E(Skf + L (Ku — 3)2] . (2.34)
6 24

Under the null and appropriate regularity conditions, the J B statistic is asymptotically distributed as

x2 (2). As is typically the case with the various normality tests, the exact distribution is intractable.
The simulation experiment was performed as follows. The model used was (2.27). For each

disturbance distribution, the tests were applied to the residual vector, obtained as & = M, u. Hence,

there was no need to specify the coefficients vector 8. The matrix X included a constant term, &y

dummy variables, and a set of independent standard normal variates. Formally,

_ : : _ | ks
X= [ i Xyt X ] Xy = [ Zn—k1 p1) ] 2.35)

where Z(; ;) denotes an (7, j) matrix of zeros, X(, includes k — k1 — 1 regressors drawn as in-
dependent and identically distributed (7.i.d.) standard normal. Sample sizes of n = 25, 50, 100
(and 300 in certain cases) were used, k was set as the largest integer less than or equal to /n and
k1 =0, 2, 4, ..., k. The disturbances were generated from the standard normal. Figures 4.1 -
4.2 report rejection percentages (from 10000 replications) at the nominal size of 5%. “Design 17,
“Design 2” and “Design 3” refer to the following:
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Design 1 kr=0

. k=2 k=4
Design 2 (n:25>’<n>25>

. k1= k k=8 ki = 10
Design 3 <ng50>’<n=100>’<n=300>

Our conclusions may be summarized as follows. Although the tests appear adequate when the
explanatory variables are generated as standard normal, the sizes of all tests vary substantially from
the nominal 5% for all other designs, irrespective of the sample size. More specifically, (i) the KS
test consistently overrejects, and (ii) the JB test based on & underrejects when the number of dummy
variables relative to normal regressors is small and overreject otherwise.

2.3.3. Confidence sets for parameter ratios in discrete choice models ©

A common problem in discrete choice models consists in building confidence regions for possibly
nonlinear parameter transformations. For instance, in the analysis of random utility travel demand
models, one is frequently required to construct a confidence interval (CI) for ratios of parameters.
Usually, this is performed using the delta-method that generates Wald-type confidence intervals
based on consistent parameter and variance/covariance estimates. To fix ideas, consider the simple
binary probit model

P(YZ = 1) = F(,BO + ﬁlei + /82X2i) ,t1=1, ..., n, (2.36)

where F'(.) is the cumulative standard normal distribution. The problem is to construct a confidence
interval for the ratio 3, /3,. Given MLE 3, and 3, and an associated variance/covariance matrix
Y19, the delta-method yields the following (1 — «) CL:

[(31/32) + Za/2(§’§12§)1/2] (2.37)

where .
5= 1/3, B./B |

and z, /, refers to the standard normal deviate. As it is well known, in discrete response models,
such CI’s are only asymptotically valid. There is substantial evidence that standard asymptotics
provide a poor approximation to the sampling distribution of estimators and test statistics in the
presence of discrete or limited dependent variables; see, for example Davidson and MacKinnon
(1999c, 1999a, 1999b) and Savin and Wiirtz (1998). These papers focus on linear hypothesis tests,
and this certainly casts doubts on the reliability of procedures involving parameter ratios, where the
underlying inferential problem is more complicated. In this regard, the analytical results in Dufour
(1997) have serious implications for the problem at hand. Indeed, it is shown that standard CI’s for
ratios of coefficients have confidence levels that may deviate arbitrarily from their nominal level,
since they are almost surely bounded. The following simulation experiment based on (2.36) was

SThis section is based on the results in Bolduc, Dufour, and Khalaf (1998).
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designed to assess the severity of this problem. We considered n = 100, 250, and set:
Bo=1; 6,=1;B,=1,.5, 4,.3,.2,.1, .01, .001.

The regressors were drawn as standard normal. As is well known, in this simple “regular” frame-
work, the likelihood function is well behaved and the asymptotic variance-covariance matrix esti-
mate is given by S = (X'DX)~!, where X is the regressor matrix, D is a diagonal n x n) matrix
with entries )
d; = Lf(Bo + B1X1i + ByXoi)]
F(By + B1X1i + By X2:i) [1 — F(Bo + 1 X1i + B2X0i)]

and f(.) is the standard normal probability density function. The CI was obtained as in (2.37). The
coverage probabilities for a nominal 95% confidence level are reported in Figures 3.1 - 3.2.

These findings illustrate quite clearly that the use of the delfa-method may lead to unreliable
inference. Indeed, it can be seen from Figures 3.1 - 3.2 that the true coverage probabilities are
substantially different from 95%, with the coverage sharply deteriorating as 3, approaches zero.
Moreover, increasing the sample size does not seem to solve the problem. The practical implication
is that CI obtained as in (2.37) may have zero confidence levels; in other words, the probability that
the above CI “misses” the true ratio is practically “one”.

2.3.4. Uniform linear hypothesis in multivariate regression models

Multivariate linear regression (MLR) models involve a set of p regression equations with cross-
correlated errors. When regressors may differ across equations, the model is known as the Seem-
ingly Unrelated Regression model [SURE, Zellner (1962)]. The MLR model can be expressed as
follows:

Y=XB+U (2.38)
where Y = [Y1, ..., Y}] is an n x p matrix of observations on p dependent variables, X is an
n X k full-column rank matrix of fixed regressors, B = [}, ... , Bp] is a k x p matrix of unknown
coefficients and U = [Uy, ... , Up] = [ﬁl, e ﬁn]’ is an n X p matrix of random disturbances

with covariance matrix > where det (3) # 0. An alternative representation of the model is
p
Yi=a;j+ Y BpXik,i=1,..,n j=1,..,p. (2.39)
k=1

Uniform Linear (UL) constraints take the special form

Hy: RBC =D (2.40)

"This experiment is taken from Dufour and Khalaf (1998a).
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where R is a known r x k matrix of rank r < k, C'is a known p X ¢ matrix of rank ¢ < p, and D is
a known r X ¢ matrix. An example is the case where the same hypothesis is tested for all equations

Hy :RB;=4;,1=1,...,p, (2.41)
which corresponds to C' = I,. In this context, the likelihood ratio (LR) criterion is:
LR=mnIn(A), A= |U0|/|0'T); (2.42)

where (7(’) [70 and U'U are respectively the constrained and unconstrained SSE matrices.

Stewart (1997) discusses several econometric applications where the problem can be stated in
terms of (2.40). A prominent example includes the multivariate test of the capital asset pricing
model CAPM. Let Rj;, j = 1, ... , p, be security returns for period ¢, ¢ = 1, ... ,T. If it
is assumed that a riskless asset Ry exists, then efficiency can be tested based on the following
MLR-based capital asset pricing model (CAPM)

Rjt_RFt:aj+/6j(RMt_RFt)+ejta .7:]-7 - P, t:]-a ey Ta

where R4 are the returns on the market benchmark. The hypothesis of efficiency implies that the
intercepts «; are jointly equal to zero, i.e.

aj=0,7=1,...,p. (2.43)

The latter hypothesis is a special case of (2.40) with C' = I, and R is the 1 x p vector (1, 0, ...,0).
Another example concerns demand analysis. It can be shown [see for example Berndt (1991, Chap-
ter 9)] that the translog demand specification yields a model of the form (2.39). In this context, the
hypothesis of linear homogeneity takes the form

p
Hy:» Bjx=0,j=1,..,p.
k=1

We consider a simulation experiment modelled after the latter application, with
p=25,7,8 n=20, 25,40, 50, 100.

The regressors are independently drawn from the normal distribution; the errors are independently
generated as i.i.d. N(0,%) with ¥ = GG’ and the elements of G drawn (once) from a normal
distribution. The coefficients for all experiments are available from Dufour and Khalaf (1998a).
The statistics examined are the relevant LR criteria defined by (2.42) and the Bartlett-corrected
LR test [Attfield (1995, section 3.3)]. The results are summarized in Figures 5.1 - 5.2. We report
the tests empirical size, based on a nominal size of 5% and 1000 replications. It is evident that
the asymptotic LR test overreject substantially. Second, the Bartlett correction, though providing
some improvement, fails in larger systems. In this regard, it is worth noting that Attfield (1995,
section 3.3) had conducted a similar Monte Carlo study to demonstrate the effectiveness of Bartlett
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adjustments in this framework, however the example analyzed was restricted to a two-equations
model.
To conclude this section, it is worth noting that an exact test is available for the special cases

Hy: RBC =D, min(r,c) <2.

Indeed, Laitinen (1978) in the context of the tests of demand homogeneity and Gibbons, Ross, and
Shanken (1989), for the problem of testing the CAPM efficiency hypothesis, independently show
that a transformation of the relevant LR criterion has an exact F' distribution given normality of
asset returns.®

2.3.5. Testing for ARCH and GARCH "

Consider the linear model
w=z8+u,t=1, ..., T, (2.44)

where z; = (1, x40, ... , zw)', B is ak x 1 vector of unknown coefficients and the error terms
uy are i.i.d. with mean 0 and variance 2. We are concerned with the problem of testing the null
hypothesis

Hy:0l=0%,t=1,..., T, (2.45)

against the ARCH (m), or GARCH (q,m) alternative. The standard test [Engle (1982), Lee
(1991)] may be obtained as 7' times the R? from regression of ﬂ% on a constant and mn lags of g,
where % denotes the OLS residuals estimate. Under Hy, the Engle test statistic follows a x?(m —1)
in large samples. We investigate the performance of this test using the following design. The re-
gressors are drawn as standard normal, 3 is a k x 1 vector of ones, 02=1,T= 25, 50, 100, and k&
is set as the largest integer less than or equal to v/7'. The results are shown in Figure 6. It is evident
that the test is undersized.

2.4. Econometric applications: discussion

In many empirical problems, it is quite possible that the exact null distribution of the relevant test
statistic S(Y') is not easy to compute analytically yet it is nuisance-parameter-free (recall the def-
inition of similar tests). In this case S(Y") is called a pivotal statistic, i.e. the null distribution of
S(Y) is uniquely determined under the null hypothesis. In such cases, we will show that the MC
test easily solves the size control problem, regardless of the distributional complexities involved.
The above examples on normality tests, heteroskedasticity tests and the uniform linear hypothesis
tests, all involve pivotal statistics.

The problem is more complicated in the presence of nuisance parameters. To conclude this
section, we will state a property related to test statistics which will prove to be fundamental in finite
sample contexts. '’

8The underlying distributional result is due to Wilks (1932).
This section is based on Bernard, Dufour, Khalaf, and Genest (1998).
OFor a formal treatment see Dufour (1997).
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In the context of a right-tailed test problem, consider a statistic S(Y') whose null distribution
depends on nuisance parameters and suppose that it is possible to find another statistic S*(Y") such
that

S(Y)<S5*(Y), VOe€©y, (2.46)

and S*(Y) is pivotal under the null. Then S(Y") is said to be boundedly pivotal. The implications
of this property are as follows. From (2.46), we obtain

Po[S(Y) > ¢] <P[S*(Y) >¢], VOeOy.

Then if we calculate ¢ such that
PIS*(Y) > ¢] = a, (2.47)

we solve the level constraint for the test based on S(Y). It is clear that (2.46) and (2.47) imply
PolS(Y) > <a, VOeOy.

As emphasized earlier, the size control constraint is easier to deal with in the case of S*(Y') because
it is pivotal. Consequently, the maximization problem

sup Py[S(Y) > (]
0€0g

has a non-trivial solution (less than 1) in the case of boundedly pivotal statistics. If this property
fails to hold, the latter optimization problem may admit only the trivial solution, so that it becomes
mathematically impossible to control the significance level of the test.

It is tempting to dismiss such considerations assuming they will occur only in “textbook” cases.
Yet it can be shown (we will consider this issue in the next section) that similar considerations
explain the poor performance of the Wald tests and confidence intervals in examples 1 and 3 above.
These are problems of empirical relevance in econometric practice. In the next session, we will
show that the bootstrap will also fail for such problems!

We close this section with these comments from Phillips (1983):

“For the process by which asymptotic machinery works inevitably washes out sensitivi-
ties that are present and important in finite samples. Thus generality and robustness in
asymptotic theory are achieved at the price of insensitivity with respect to ingredients
as the distributional characteristics of a model’s random elements and the values of
many of its parameters.”

3. The Monte Carlo test technique: an exact randomized test
procedure

If there were a machine that could check 10 permutations a second, the job would run
something on the order of 1000 years. The point is, then, that an impossible test can be
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made possible, if not always practical. [Dwass (1957)]

The Monte Carlo (MC) test procedure was first proposed by Dwass (1957) in the following con-
text. Consider two independent samples X1, ..., X, and Y7, ..., Y,, where the X’s are ud (F(x)),

the Y’s are ¢ (F'(z — 0)) and the cdf F(.) is continuous. No further distributional assumptions are
imposed. To test Hy : 6 = 0, the following procedure may be applied.

o Let
z = (Xla ) Xma Yla ) Yn) )
1 « 1 ¢
=LKLY
i=1 =1
e Obtain all possible @ = (n + m)! permutations of z, 21 ., 2(@) and calculate the associ-
ated “permuted analogues” of s

) = Lyom U _ Lswmin 00 i—1, .., Q.

e Let r denote the number of s)’s for which s < s(). Reject the null (e.g. against Hy : § > 0)
if r < k, where k is a predetermined integer.

It is easy to see that
Pir<k)=k/Q

under the null because the X’s and the Y’s are exchangeable. In other words, the test just described
is exactly of size k/Q.

The procedure is intuitively appealing, yet there are (n + m)! permutations to examine. To
circumvent this problem, Dwass (1957) proposed to apply the same principle to a sample of P
permutations Eﬂ), - 5P ), in a way that will preserve the size of the test. The modified test may
be applied as follows:

e Let 7 denote the number of 3U)’s for which s < 3U). Reject the null (against § > 0)ifr < d,
where d is chosen such that

d+1 k

P+1 Q
Dwass formally shows that with this choice for d, the size of modified test is exactly k/Q = the size
of the test based on all permutations. This means that if a 5% permutation test is desired, and 99
permutations are manageable, then d 4- 1 should be set to 5. The latter decision rule may be restated
as follows: reject the null if the rank of s in the series

s, s, .., 50

is less than or equal to 5.
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Since each 37 is “weighted” by the probability that it is sampled from all possible
permutations, the modification due to Dwass yields a randomized test procedure.

The principles underlying the MC test procedure are highly related to the randomized permuta-
tion test just described. Indeed, this technique is based on the above test strategy where the sample
of permutations is replaced by simulated samples. Note Barnard (1963) proposed later a similar
idea.

3.1. Monte Carlo tests based on pivotal statistics

In the following, we briefly outline the MC test methodology as it applies to the pivotal statistic
context and a right tailed test; for a more detailed discussion, see Dufour (1995) and Dufour and
Kiviet (1998).

Let Sy denote the observed test statistic .S, where S is the adopted test criterion. We assume S
has a unique continuous distribution under the null hypothesis (S is a continuous pivotal statistic).
Suppose we can generate N i.i.d. replications, S;, j = 1, ... , NN, of this test statistic under the
null hypothesis. Compute

R 1, ifz€ A
Gn(So) = % Zj'vzl Ljo,0) (S5 = 50), Lalz) = { 0 l? z ¢ A

In other words, NG ~(Sp) is the number of simulated statistics which greater or equal to Sy, and

provided none of the simulated values S;, j =1, ..., N, is equal to Sp,

Rn(So) =N — NGn(Sp) + 1 (3.1)
gives the rank of Sy in the series Sy, Si, ..., Sy .'! Then the test’s critical region corresponds
N Pn(So)<a,0<a<l. (3.2)
where R

pn(z) = % 3.3)

The latter expression gives the empirical probability that a value as extreme or more extreme than
Sp is realized if the null is true. Hence py (S ) may be viewed as MC p-value.

Note that the MC decision rule may also be expressed in terms of R ~N(S0). Indeed the critical
region

N @ N(SO ) +1 o
N +1 -
is equivalent to R
RN(S()) > (N + 1) (1 - Oé) +1. (3.4

""The subscript N in the notation adopted here may be misleading. We emphasize that Ry (To) gives the rank of S in
the N + 1 dimensional array So, S, ..., Sv . Throughout this section [V refers to the number of MC replications.

28



In other words, for 99 replications a 5% MC test is significant if the rank Sy in the series
So, S1, ..., Sy is at least 96, or informally, if .Sy lies in the series top 5% percentile.

We are now faced with the immediate question: does the MC test just defined
achieve size control?

If the null distribution of S is nuisance-parameter-free and «(IN + 1) is an integer, the critical
region (3.2) is provably exact, in the sense that

Py [Pn(So) < a] =«

or alternatively
P (1) [RN(SO) >(N+1)(1—a)+ 1] — .

The proof is based on the following theorem concerning the distribution of the ranks associated with
a finite dimensional array of exchangeable variables; see Dufour (1995) for a more formal statement
of the theorem and related references.

3.1.1 Theorem Consider an M x 1 vector of exchangeable real random variables (Y1, ..., Yar)
such that P[Y; = Y;| = 0 fori # j, and let R; denote the rank of Y; in the series Y1, ..., Yar. Then

PlH > 2] = M0 g s, (35)

where I(z) is the largest integer less than or equal to x.

If S'is continuous pivotal statistic, it follows from the latter result that
Pty [Fv(80) > (N +1) (1 — ) +1] .

Indeed, in this case, the observed test statistic and the simulated statistic are exchangeable if the null
is true. Here it is worth recalling that the S;’s must be simulated imposing the null. Now using
(3.5), it is easy to show that P, {EN(SO) >(N+1)(1—-a)+ 1} = «, provided N is chosen
so that (N + 1) is an integer.

We emphasize that the sample size and the number of replications are explicitly taken into
consideration in the above arguments. No central limit theorems have been used so far to justify the
procedure just described.

It will be useful at this stage to focus on a simple illustrative example. Consider the Jarque and
Bera normality test statistic, '

_ L 2, 1 2
JB=n 6(Sk) +24(Ku 37,

12See Section 2.3.2 for a formal presentation of the model and test statistics. Some equations are redefined here for
convenience.
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in the context of the linear regression model
Y=X0+u.
The MC test based on JB and N replications may be obtained as follows.

e Calculate the constrained OLS estimates /ﬁ\, s and the associated residuals .

Obtain the Jarque-Bera statistic based on s and @ and denote it JB(©).

Treateing s as fixed, repeat the following steps for j =1, ... , N :

» draw an (n x 1) vector &) as i.i.d. N(0,s%);
» obtain the simulated independent variable YO =X ﬁ +al);
> regress Y@ on X

» derive the Jarque-Bera statistic jé(]) associated with the regression of Y@ on X.

Obtain the rank Ry (JB®) in the series JB(), JBY), .., JBW) .

Reject the null if Ry (JBO)>(N+1)(1—a)+1.
Furthermore, a MC p-value may be obtained as Py (So ) = [N + 1 — Ry (So)]/(N +1).

3.2. Monte Carlo tests in the presence of nuisance parameters

In Dufour (1995), we discuss extensions of MC tests when nuisance parameters are present. We
now briefly outline the underlying methodology. In this section, n refers to the sample size and NV
the number of MC replications.

Consider a test statistic S for a null hypothesis Hy, and suppose the null distribution of S
depends on an unknown parameter vector 6.

e From the observed data, compute:

(i) the test statistic Sy, and

(ii) a restricted consistent estimator ¢,, of 0.

e Using 0, generate N simulated samples and, from them, /N simulated values of the test

~0 _
statistic. Then compute px (So|6,,), where py (]0) refers to pv () based on realizations of
S generated given § = 6 and py(z) is defined in (3.3).

e A MC test may be based on the critical region
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» For further reference, we denote the latter procedure a local Monte Carlo (LMC) test.

Under general conditions, this LMC test has the correct level asymptotically (as n — o), i.e., under
H 0y

lim {P[p (So[f},) < o] — Plpn (S0l6) < o]} =0. (3.6)

n—0o0

In particular, these conditions are usually met whenever the test criterion involved is asymptotically
pivotal. We emphasize that no asymptotics on the number of replication is required to obtain (3.6).

e To obtain an exact critical region, the MC p-value ought to be maximized with respect to
the intervening parameters. Specifically, in Dufour (1995), we show that the test [henceforth
called a maximized Monte Carlo (MMC) test] based on the critical region

sup [pn(Sol0)] < « (3.7)
0 € My

where M) is the subset of the parameter space compatible with the null hypothesis (i.e., the
nuisance parameter space) is exact at level a.

e The LMC test procedure is closely related to a parametric bootstrap, with however a funda-
mental difference. Whereas bootstrap tests are valid as N — oo, the number of simulated
samples used in MC tests is explicitly taken into account.

e Further the LMC p-value may be viewed as exact in a liberal sense, i.e. if the LMC fails to
reject, we can be sure that the exact test involving the maximum p-value is not significant at
level a.

In practical applications of exact MMC tests, a global optimization procedure is needed to obtain
the maximal randomized p-value in (3.7). We use the simulated annealing (SA) algorithm [Corana,
Marchesi, Martini, and Ridella (1987), Goffe, Ferrier, and Rogers (1994)].

To conclude this section, we consider another application of MC tests which is useful in the
context of boundedly pivotal statistics. Using the above notation, the statistic at hand .S is boundedly
pivotal if it is possible to find another statistic S* such that

S <S8, VoeOy, (3.8)

and S* is pivotal under the null. Let ¢ and ¢* refer to the « size-correct cut-off points associated with
S and S*. As emphasized earlier, inequality (3.8) implies that ¢* may be used to define a critical
region for S. The resulting test will be the correct level and may be viewed as conservative in the
following sense: if the test based on c* is significant, we can be sure that the exact test involving
the (unknown!) c is significant at level «.. The main point here is that it is easier to calculate ¢*,
because S* is pivotal, whereas S is nuisance-parameter dependant. Of course, this presumes that
the null exact distribution of S* is known and tractable; see Dufour (1989, 1990) for the underlying
theory and several illustrative examples. Here we argue that the MC test technique may be used to
produce simulation-based conservative p-values based on S* even if the analytic null distribution
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of S* is unknown or complicated (but may be simulated). The procedure involved is the same as
above, except that the S* rather than S is evaluated from the simulated samples, as follows.

Let Sy denote the observed test statistic S. By Monte Carlo methods and for a given number NV
of replications, generate S;-‘, j =1, ..., N,independent realizations of the bounding statistic S™,
under the null hypothesis. Obtain

N
A* 1 *
Gy (So) = N ZI[O,OO] (S5 — So)

7j=1
and R R
Ry (Sp) = N = NGn(So) +1

where ﬁ}‘V(SO) gives the rank of Sy in the series Sp, ST, ..., Sy .Then the LMC critical region

corresponds to R
RN(So) > (N+1)(1 —a) + 1.

We denote the latter procedure a Bound MC (BMC) test.
A sound test strategy would be to perform the bounds tests first and, on failure to reject, to apply
randomized tests. We recommend the following computationally attractive exact « test procedure:

1. compute the test statistic from the data;

2. if a bounding criterion is available, compute a BMC p-value; reject the null if: BMC p-value
< aj

3. if the observed value of the test statistic falls in the BMC acceptance region, obtain a LMC
p-value; declare the test not significant if: LMC p-value > «;

4. if the LMC p-value < oo < BMC p-value, obtain the MMC p-value and reject the null if the
latter is less than or equal to .

4. Monte Carlo tests: econometric applications

4.1. Pivotal statistics

In Dufour and Kiviet (1996, 1998), Kiviet and Dufour (1997), Dufour, Farhat, Gardiol, and Khalaf
(1998), Dufour and Khalaf (1998a, 1998c), Bernard, Dufour, Khalaf, and Genest (1998), Saphores,
Khalaf, and Pelletier (1998), several applications of MC tests based on pivotal statistics are pre-
sented. The problems considered include the following ones.

e Normality tests [Dufour, Farhat, Gardiol, and Khalaf (1998)]

» Kolmogorov-Smirnov’s test
» the Anderson-Darling test

» Cramer-von Mises’ test
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vVvvyvVvVvyyvyy

the Shapiro-Wilk test

the Shapiro-Francia test
Weisberg-Binham’s test
D’ Agostino’s test

the Filliben test

The Jarque-Bera LM test

the skewness and kurtosis coefficients

e Heteroskedasticity tests [Bernard, Dufour, Khalaf, and Genest (1998)]

vVvyVvyYvyyYvyy

v

Glejser’s Wald-type tests;

Ramsey’s versions of the Bartlett test;
Breusch-Pagan-Godfrey Lagrange multiplier (LM) test;
White’s general test;

Koenker’s studentized test

Szroeter’s class of tests;

- In this class of tests, we find that a Goldfeld-Quandt type test proposed by Szroeter
performs particularly well in terms of power. The test takes the form of a Goldfeld-
Quandt statistic where the variance estimates are obtained by partitioning the OLS
residual vector from a single regression on the whole sample. Clearly, the criterion
is not F’ distributed because the variance estimates so obtained are not independent.
Yet it can be shown that it is pivotal, hence an exact MC version of this test is easily
obtained. The fact that one single regression is needed may explain the superior
power properties of this test.

Harrison and McCabe’s test
Engle’s LM test for ARCH and GARCH
Lee and King’s LM-type test against ARCH and GARCH [Lee and King (1993)]

- This test takes into account the one sided nature of the alternative hypothesis at hand
(non-negativity of variance). We show that the MC version of this test outperforms
the MC Engle test; the improvement in power is important.

extensions of the Cochrane and Hartley tests

- The Hartley-type test takes the form max(s?)/ min(s?) where s? are estimates of the

variance from relevant sub-samples (suggested by the alternative hypotheses). The
statistic is intuitively appealing, yet the available tables of critical points are derived
for the no-covariates case. We show that the MC version of this test may outper-
form the LR test. The example considered focuses on grouped heteroskedasticity,
where the LR test requires an iterative maximization procedure and is clearly more
expensive, particularly form the point of vue of simulation-based tests.
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» Tests for break in variance at unknown points

- The tests proposed are of the sup(LM) and sup(LR) type. No trimming is required,
and exact MC critical points are obtained. We show that as expected, the size of
these tests is correct, regardless of the break date.

e Tests based on autocorrelations [Saphores, Khalaf, and Pelletier (1998)]

» the Ljung-Box test

» the variance ratio test.

In connection, it is worth mentioning that the MC test procedure applied to the Durbin-Watson test
for AR(1) disturbances solves the inconclusive region problem.

The reader will find in the above papers simulation results which show clearly that the technique
of Monte Carlo tests completely corrects often important size distortions due to poor large sample
approximations. Now to illustrate the feasibility of MMC tests and the usefulness of BMC tests, we
will focus on two examples involving nuisance parameters.

4.2. Monte Carlo tests in the presence of nuisance parameters: examples from the
multivariate regression model

In this section, we review important distributional results from Dufour and Khalaf (1998a, 1998b)
pertaining to LR test criteria in the MLR (reduced form) model. The model was introduced in
Section 2.3.4. For convenience, we rewrite the system in stacked form:

y=UI,X)r+wv 4.1)

where y = vec(Y'), m = vec(B), v = vec(U). Further, we suppose the disturbances have a know
distribution up to a non-singular matrix. The distributional assumptions are formally set in Dufour
and Khalaf (1998a, 1998c). Consider general restrictions on ¢* independent linear transformations

of m, of the form
H01 :Rm e AO (42)

where R is a ¢* x kp matrix and A is a non-empty subset of RY". This characterization of the
hypothesis includes linear restrictions, both within and across equations, and allows for nonlinear
as well as inequality constraints.

The LR criterion to test Hy; is nln(A), where

5
A - [Zol
b2

4.3)

with 201 and 3 being the restricted and unrestricted ML estimators of X in (4.1). In the statistics
literature, A~! is often called the Wilks criterion. Dufour and Khalaf (1998a) show that the null
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distribution of A depends on nuisance parameters, yet it is boundedly pivotal. To see the point,
consider restrictions of the form
Hyy : QUC =D 4.4

such that Hyo C Hyy, where (@ is a ¢ X k matrix of rank g and C' is a p X ¢ matrix of rank c. Linear
restrictions that decompose into the latter specific form are called uniform linear (UL) in the MLR
literature. Let A¢(q, ¢) be the reciprocal of the Wilks criterion for testing the latter restrictions. Then
the distribution of A is bounded by the distribution of A“(q, ¢). Specifically, in Dufour and Khalaf
(1998a), it is shown that:

(i) the null distribution of the LR statistic for uniform linear hypothesis involves no nuisance
parameters and may easily be obtained by simulation;

(i) under the null, P[A > X{(g,¢)] < a forall 0 < a < 1, where A{, (g, ¢) is determined such
that P[A(q, ¢) = AG(q,0)] = o

The underlying distributional conditions are appreciably less restrictive than those of traditional
multivariate analysis of variance which require normal errors.

4.2.1. Hypothesis testing in SURE models '

The results for the MLR model provide interesting applications for systems inference in SURE
model. Let us now consider the following p equation SURE model:

where X; is a n x k; full-column rank matrix of fixed regressors and Uy, Us , ... ,U, satisfy the
distributional assumptions set above. Let

Yl X1 0 . 0 51 Ul
SRR FE LIPS
Y, 0 0 - X, B, U,

Then an alternative compact representation of the model is
y=X'B+u. (4.6)

In this case, 3 is k* x 1 with k* = Y¥ | k;. Note that the SURE model corresponds to a MLR
system imposing exclusion restrictions; for further reference, we call this model the “nesting” MLR
model. See Dufour and Khalaf (1998a) for an explicit formulation of the relation between both
models. We consider the problem of testing a general hypothesis of the form

Hy:C*Be A 4.7)

BThis section is based on Dufour and Khalaf (1998a).

35



where C* is a full row-rank v} x k* matrix, A} is a non-empty subset of R% . We first restate Hy
in terms of the MLR model which includes (4.6) as a special case, so that it incorporates the SURE
exclusion restrictions. The associated LR statistic is

LR=nln(A), A=I[|/|Z] (4.8)

where f]o and 3 are the restricted and unrestricted SURE MLE. For the purpose of deriving the
conservative bound, we also consider

LR* =nln(A), A*=[So|/|S.] (4.9)

where fu is the unconstrained estimate of X in the “nesting” MLR model. As it stands, the testing
problem may be approached as presented above. The following example illustrates the construction
of the bounding statistic. Consider the three equations system

Yi = By +08uX1+Ur,

Y2 - ,820 + ,622X2 + U2 , (410)
Y = [30+ 033X3+Us,

and the hypothesis
Hy : By = By = B33 -
In the framework of the corresponding MLR model,
Yi = B+ BuXi+ BraXe + B3 Xs +Un,

Yo = B+ BanX1+ BoaXo + B3 X5 + Uz, (4.11)
Y3 = B30+ B3 X1 + B3.Xo + B33X3 + Uz,

Hy is equivalent to the joint hypothesis

Hy : By = By = B3z and By = B3 = By = Po3 = P31 = P32 = 0.

In order to use the above results on the conservative bound, we need to construct a set of UL
restrictions that satisfy the hypothesis. It is easy to see that the constraints setting the coefficients
Bij» 4 J = 1 ,..., 3, to specific values meet this purpose. All that remains is to calculate
associated Wilks’ statistics conforming with these restrictions. Note that the statistic just derived
serves to bound both LR and LR*.

The algorithm for performing MC tests based on LR*, at 5% level with 99 replications, can be
described as follows.

e Compute f]o and f], the restricted and unrestricted SURE (iterative) MLE .
e Compute i\]u is the unconstrained (OLS) estimate of X in the “nesting” MLR model.

e Compute A* = |Sy|/|S,| and LR* = nln(A%).
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Draw 99 realizations from a multivariate (n, 3, I') normal distribution: U(l), U@ y e U@

and store.

Consider the linear constraints

010 0 glo gzo ggo Bu 9 0
Hyp:|10 0 1 0 22t P =10 By 0
0 0 0 1 /812 /822 1632 0 0 B

Pz Baz B3 33

where ﬁll = ﬁzz = ﬁ33 are the constrained SURE estimates calculated in the first step.

Call the bounde MC procedure BMC(0), described below, for 8 = vec(chol(So)). The
Cholesky decomposition is used as an argument to impose positive definiteness. The output
is the BMC p-value. Reject the null if the latter is < .05 and STOP.

Otherwise, call the procedure M C(#), also described below, for § = wvec(chol (fo)) The
output is the LMC p-value. Declare the test not significant if the latter exceeds .05 and
STOP.

Otherwise, call the maximization algorithm for the function MC(#) using 6§ =
vec(chol(3y)) as a starting value. Obtain the MMC p-value and reject the null if the latter is
< .05. Note: if only a decision is required, the maximization algorithm may be instructed to
exit once as soon as a value larger than .05 is attained. This may save considerable computa-
tion time.

‘ Description of the procedure BM C(0): ‘

Construct a triangular €2 from @ (this gives the Cholesky decomposition of the variance which
will be used to generate the simulated model).

Doforj =1, ..., N (independently)

¢ Generate the random vectors Yl(j ) Yz(j ) Y3(j ) conformably with the nesting MLR model,
using the restricted SURE coefficient estimates, the observed regressors, and §2.
¢ Estimate the MLR model with the observed regressors as dependant variable, and Yl(j )

YZ(] ) Y3(] ) as independent variables: obtain the unrestricted estimates and the estimates
imposing Hys.

¢ From these estimates, form the bounding statistics LR((;j ) and store.

Obtain the rank of LR* in the series LR*, LR, ..., LR®™.

This yields a BMC p-value as described above which is the output of the procedure.
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» |Description of the procedure M C(6): ‘

e Construct a triangular €2 from 6 (this gives the Cholesky decomposition of the variance which
will be used to generate the simulated model).

e Doforj =1, ..., N (independently)

¢ Generate the random vectors Yl(j ) YQ(j ) Y3(j ) conformably with the nesting MLR model,
using the restricted SURE coefficient estimates, the observed regressors, and €.

¢ Estimate the MLR model with the observed regressors as dependant variable, and Yl(j )

YQ(] ) Y3(‘7 ) as independent variables: obtain the unrestricted estimates and the estimates
imposing H.

4 From these estimates, form the statistics LR*\Y) and store.

e Obtain the rank of LR* in the series LR*, LR*V), ..., LR*(¥9),
e This yields a MC p-value as described above which is the output of the procedure.

» Description of the maximization algorithm (here: SA).

SA starts from an initial point, say 8 = vec(chol(io)), and sweeps the parameter space (user
defined) at random. An uphill step is always accepted while a downhill step may be accepted;
the decision is made using the Metropolis criterion. The direction of all moves is determined by
probabilistic criteria. As it progresses, SA constantly adjusts the step length so that downhill moves
are less and less likely to be accepted. In this manner, the algorithm escapes local optima and
gradually converges towards the most probable area for optimizing. SA is robust with respect to
non-quadratic and even non-continuous surfaces and typically escapes local optima. The procedure
is known not to depend on starting values. Most importantly, SA readily handles problems involving
a fairly large number of parameters.

In Dufour and Khalaf (1998a), we report the results of a simulation experiment designed ac-
cording to this example. In particular, we examine the performance of LMC and BMC tests. We
also return to the simulation experiment dealing with of UL in MLR contexts (see Section 2.3.4)
and show that the Bartlett correction may fail, the MC test procedure achieves perfect size control.

4.2.2. Hypothesis tests in the simultaneous equation model '+

This section discusses tests on structural parameters in SE models. We consider here the problem
of testing linear restrictions in a LI framework; the notation for this case is set in Section 2.3.1 and
is reproduced here for convenience:

y=YpB+X1v, tu=20+u,

Y = X0 + Xoll, + V 4.12)

“This section is based on Dufour and Khalaf (1998b)
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where Y and X; are n X m and n X k and X, refers to the excluded exogenous variables. The
associated LI reduced form is

(4.13)

[y Y] = Xl+[v V] nz[ﬂl Hl],

T2 H2
71 = LB+, m =10 (4.14)

We shall restrict attention to hypotheses that set several structural coefficients to specific values.
More precisely, we consider in turn hypotheses of the form:

Hy: B, =3, (4.15)

Hy: By =B, (4.16)

where 8; = (0Y;, 8%) and B; is mq; x 1.
When the model is identified, (4.15) corresponds to the following restrictions

i} = i (4.17)
or equivalently,
w1 Ly 1
S =0 4.18
I[M H%H—ﬁ?] 19

where
S1 = [Ok—s, k:)» L(o—rs)]

and O, ;) denotes a zero s x j matrix. Let 3o and 3 be the error covariance LIML estimates
imposing and ignoring (4.17), where the latter corresponds to the unrestricted reduced form. Further,
let £;,; denote the LIML error covariance estimate imposing the exclusion restrictions implied by
the structure. Conformably with the notation set above, define

)
A = @ (4.19)
12|
)
Ak — ki, 1) = ||2°||. (4.20)

Following the arguments of Section 3.2, we see that the distribution of Ay is bounded by the
distribution of A¢(k — k;, 1) .

The limited information LR statistic (L R,;) may be obtained as n In(A ). Whereas n[Iln(Arr)]
has a x?(m;) asymptotic distribution only under identification assumptions, n[In(A¢(k — k;, 1))] is
asymptotically distributed as x2(k — k;) whether the rank condition holds or not. The asymptotic
distribution of the LRy statistic is thus bounded by a x?(k — k;) distribution independently of
the conditions for identification. This result was derived under local-to-zero asymptotics in Nelson,
Startz, and Zivot (1996) and Wang and Zivot (1996) for the special case where (3, is scalar. Further-
more, exact bounds based on the F'(k — k;,n — k) distribution may also be derived for this problem

39



if normality is imposed. Indeed, as pointed out in Stewart (1997),

q[A(g, 1) — 1]

S ~ Fgn—k) @.21)

where A¢(q, 1) is the reciprocal of the Wilks statistics for testing uniform linear restrictions of the
form QIIC = D, rank(Q) =q, rank(C)=c=1.

The important thing to note regarding the latter bound is that it relates to the well known
Anderson-Rubin (AR) statistic. It is straightforward to show using the results on UL hypotheses in
Dufour and Khalaf (1998a) and Stewart (1997) that the AR statistic associated with Hy : §; = ,6?
corresponds to a monotonic transformation of the LR criterion for testing the UL hypothesis
IIs; ,6? = 7Tr9; against an unrestricted alternative.

Let us now consider the hypothesis (4.16). On partitioning I1;; = [II114, [119;] and IIy; =
[[21;, Ia9;] conformably with 8; = (83};, 3;) the corresponding reduced form restrictions may be
expressed as

1
LU | SET RN U DY 0
S 067 | =0 4.22
2wy Moy Ty _gh (4.22)
2%

where
So =[Oty , ke) » Lk—ks)] -

Let Az; be the reciprocal of the Wilks statistic for testing (4.22) against the restrictions implied by
the structure. The nonlinearities in connection with (4.22) stem from the fact that 3., is unknown.
However, the special case of (4.22) that corresponds to specific (unknown) values of (3, takes the
UL form. Let AS(k — k;, 1) denote the reciprocal of the Wilks statistic for testing these UL
restrictions against an unrestricted alternative. Then conservative bounds for Ay can be obtained
from the statistic A°(k — k;, 1) or the F'(k — k;,n — k) when applicable. In Dufour and Khalaf
(1998b), we present simulations which illustrate the performance of MC tests in this context. The
parameters for the simulation experiments were presented in Section 3.1.

We have attempted to apply the MC test procedure to the Wald test for both hypotheses consid-
ered. In this case, the performance of the standard bootstrap was disappointing. The LMC Wald
tests failed completely in near-unidentified conditions. Furthermore, in all cases examined, the Wald
tests maximal randomized p-values were always one. This is a case where the MC procedure does
not (and cannot) correct the performance of the test.

In other words, Wald statistics do not constitute valid pivotal functions in such models
and it is even impossible to bound their distributions over the parameter space (except
by the trivial bound 0 and 1). [Dufour (1997)]

We conclude this section with a specific problems where the MC test strategy conveniently
solves a difficult and non-standard distributional problems: combining non-independent test criteria.
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4.3. Monte Carlo tests in non-standard test problems
4.3.1. Combining non-independent tests '°

In the context of the SURE model (4.5), consider the hypothesis that 3 is diagonal:
Hy : % = Dy(o?), for some vector (o7, ..., op) (4.23)

where Dy (d;) represent a diagonal matrix of dimension N, with (d; , ..., dy) along the diagonal.
Several criteria are available for testing H of which the most well known are the LR and the LM
tests [Breusch and Pagan (1980)]. The asymptotic null distribution of both criteria is x%(p(p—1)/2).
Dufour and Khalaf (1998c) show that LR and LM statistics are pivotal under the null, which implies
that exact critical values can be obtained easily by MC techniques no matter how large the system
is.

On the other hand, a finite sample exact independence test was developed by Harvey and Phillips
(1980, HP); their procedure is applicable where the null hypothesis has the form

2

w_ |01 0
H01-Z—[0 211]' (4.24)

Specifically, they propose to use the usual F statistic for testing whether the coefficients on Vi are
zero in the regression of y; on X; and Vl, where VI is the matrix of OLS residuals associated with
the other equations in the system.

HP tests may be applied in the context of general diagonality tests; for example, one may as-
sess in turn whether the disturbances in each equation are independent of the disturbances in all
other equations. Such a sequence of tests however raises the problem of taking into account the
dependence between multiple tests, a problem not solved by Harvey and Phillips (1982); in fact, the
problem of testing (4.23) is not addressed at all in Harvey and Phillips (1982). Here we introduce
several induced tests of (4.23) based on a set of simultaneous HP-type tests and suggest a simulation-
based solution to the associated combination problem. The critical regions of conventional induced
tests are usually computed using probability inequalities (e.g., the well know Boole-Bonferroni in-
equality) which yields conservative p-values whenever non independent tests are combined [see, for
example, Savin (1984), Folks (1984) and Dufour and Torrés (1998, 1996)]. Here, we propose to
construct the induced tests such that size-corrected p-values can be readily obtained by simulation.

We examine two types of induced tests. The first one involves combining the p HP independence
tests between the errors of each equation and those of the other equations in the system. The separate
tests involved and the associated p-values are denoted F'(i, i) and p(i, i), i = 1, ... , p, where

p(i, i) =P[F(i,9) > F(p—1, n—k; —p+1].

Alternatively, we propose to examine, in turn, whether v is independent of (usy , ..., up), or uy is
independent of (u3 , ..., u,) and so on so forth; a maximum of (p — 1) tests would be involved.
In this case, we denote the sequential individual tests and corresponding p-values F'(i, i : p) and

5This section is based on the results in Dufour and Khalaf (1998c).
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pli,i:p), i=1, ..., p, where
p(i, i:p) =P[F(i,i:p) > F(p—1, n—k —p+i).

For further reference, the former procedure is called a joint test, and the latter a sequential test. To
obtain an a-level procedure, the most common practice in such situations involves Bonferroni-based
tests which reject the null hypothesis when at least one of the separate tests is significant at level «;,
where the sum of the individual significance levels «; overall the tests performed equals «. For the
Bonferroni joint test, we shall use c;; = a/p. For the Bonferroni sequential test, we set a; = /2,
ay = af(2%),. .., ap 9 =a/(2P7?), ap_1 = a/(2P7?). We also discuss how one can perform

multiple tests of size « based on the statistics F'(¢, ¢) and F'(i, i : p). To do this, we propose the
following combined test criteria:

Fiownt,miy = 1 — n%in {p(i, 1)}, (4.25)
p —_
Fyoint, prROD = 1 — H {p(i, 1)}, (4.26)
i=1
Fspqmivn =1 — U%in {p(i, i:p)}, (4.27)
p
Fsgq.prop =1 — [ {p(i, i:p)}. (4.28)
i=1

The combined test involving the smallest p-value was suggested by Tippett (1931) and Wilkinson
(1951). In the case of the joint test, an equivalent procedure may be obtained using the largest
F (i, i). The combination method using the product of the p-values goes back to Fisher (1932) and
Pearson (1933). Both multiple test procedures as originally suggested are valid when the combined
tests are independent. Here, we propose to apply the MC technique based on these criteria may be
used to obtain induced tests of size «.

In order to assess the performance of the various procedures discussed above, a set of Monte
Carlo experiments were conducted for a five equation model (p = 5) with n = 25. To assess the
tests sizes, we also consider n = 50, 100. The design matrices X; , ¢ = 1, ... , p, included a
constant term, a set of k,, explanatory variables common to all equations and a set of regressors
which differ between the different equations, where

- ki/2, if k; is even
™= (ki +1)/2, if k; is odd

Hence, k,,, — 5(k; — k,,, — 1) distinct variables were used in each design and were generated using
a multivariate normal distribution. The set of regressors were kept constant for all replications. The
disturbances were generated from multivariate normal distributions. Several choices for the error
covariance were considered. The matrix labelled >, as well as the regression coefficients are from
the empirical example discussed in the paper. The other matrices were obtained by dividing certain
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elements of the Cholesky decomposition of 3J; by appropriate constants to decrease the covariance
terms. Of course, the parameters under the null were obtained by setting the non-diagonal elements
of 3J; to zero. The number of trials for the MC tests was set to 19 and 99 (N =19, 99). The number
of overall replications was 1000. The following table summarizes basic results.

Table 2. Empirical rejections of various independence tests

n =25 20 (Ho) 21 22 23 24
ASY MC MC MC MC MC
Reps - 19 19 99| 19 99 19 99 19 99
LM 105 045 | 998 1.0 | 911 954 | .704 .794 | 444 500
LR 267 047 1.0 1.0]|.961 980 | .746 .824 | 428 494
Fjornt,mInN - 043 | 1.0 1.0 |.925 965 | .632 .693 | .360 .409
FyoinT,prOD - 052 | 1.0 1.0] .944 980 |.714 .784 | 382 438
Fspo mIn - 052 | 1.0 1.0 |.963 .984* | 721 .799 | 490 .562*
Fspgmin - 049 | 1.0 1.0| .846 912 | .562 .653 | .368 .399
Bonferroni Harvey-Phillips type tests
Farg .034 1.0 963 .665 .356
Fsgq .049 1.0 .896 .687 316

From the results in this table, we can make the following observations.

1. The asymptotic tests consistently overreject. In contrast, all MC tests achieve size control.
2. The size corrected tests perform quite well, although the LR-type tests seem rather superior.
3. The Bonferroni tests show relatively low power, as we would expect.

4. The MC induced tests based on the Harvey-Phillips statistics perform very well overall the
parameter values considered. As expected, the Tippet/Wilkinson-type MC induced tests per-
form better than their Bonferroni counterparts. The power of the Fisher/Pearson MC induced
test is generally higher than the Tippet/Wilkinson-type MC test. Furthermore, the former test
displays good power properties with respect to the LR based MC tests and in some cases
outperforms the MC LR tests.

4.3.2. Non-identified nuisance parameters '

The first example we discuss in this section is the problem of testing for the significance of jumps in
the context of a jump-diffusion model. For econometric applications and references, see Saphores,
Khalaf, and Pelletier (1998). Formally, consider the following model written, for convenience, in
discrete time:

¢
St_St—IZ:U‘-i_O—ft-i_Zln(Y%)a t:]-a "'7T7
i=1

!This section draws on the results in Saphores, Khalaf, and Pelletier (1998) and Bernard, Dufour, Khalaf, and Genest
(1998).
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where ¢ u N(0,1) and In(Y) w N(6,0?) and n; is the number of jumps which occur in the

interval [ t—1, t ] ; the arrival of jumps is assumed to follow a Poisson process with parameter
A. The associated likelihood function is as follows:

T 00 i .
T N 1 —(zy — p — 05)?
Li=-TIh(A) — =In(27r)+ » In — exp ( :
2 ; z_; it o2 + 62§ 2(02 + 6%5)

The hypothesis of no jumps corresponds to A = 0. It is clear that in this case, the parameters
0, 62 are not identified under the null, and hence, following the results of Davies (1977, 1987),
the distribution of the associated LR statistic is non-standard and quite complicated. Although this
problem is well recognized by now, a x2(3) asymptotic distribution is often (inappropriately) used
in empirical applications of the latter LR test. See Diebold and Chen (1996) for related arguments
dealing with structural change tests.

Let i, 62 denote the MLE under the null, i.e. imposing a Geometric Brownian Motion. Here
we argue that in this case, the MC p-value calculated as described above, drawing i.i.d. N (i, 5?)
disturbances (with zz and 52 taken as given) will not depend on 6 and 2. This follows immediately
from the implications of non-identification. Furthermore, the invariance to location and scale (u and
o) is straightforward to see. Consequently, the MC test described in the context of pivotal statistics
will yield exact p-values.

The problem of unidentified nuisance parameters is prevalent in econometrics. We next turn to
another illustrative example: testing for ARCH-in-mean effects. Formally, consider the model:

Vi = Xif+ho+e,
Ct—1 N(0, h%) )
h = ap+age? |+ ..+ ozpe%_p ,

where the predetermined variables z; include a constant regressor and the notation e;;_; denotes
conditioning of information up to and including ¢ — 1. The hypothesis of no-ARCH is

H():Oq:...:ap:o.

Let B and 2 denote the OLS estimates from the regression of Y; on X; and ¢; the associated
residuals. The LM test for a known ¢ is

—1
WXX'X)'X'w| W'y (4.29)

¢2
VW Ww —

LM(¢):2+¢2 2+ ¢°

where v is a T" x 1 vector with elements

7= (=1) + e /o
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and WisaT x (p+ 1) matrix with elements
W= (1, €., .., &, ).

In this case, it is also evident that under the null, the parameter ¢ is unidentified. Indeed, only
(the intercept + ¢) may be “estimated” from the data. In practice, the latter estimate is substituted
for ¢ to implement the LM test using a cut-off point from the x?(p). Bera and Ra (1995) discuss
the application of the Davies sup-LLM test to this problem and show that this leads to more reliable
inference. It is clear however that the asymptotic distribution required is quite complicated. The MC
test procedure may be applied to the sup-LM test. Simulation studies reported in Bernard, Dufour,
Khalaf, and Genest (1998) show that this method works very well in terms of size and power.
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4.3.3. Cointegration tests !
Consider the p-dimensional k-lags VAR

k—1
AX; =11X; 1+ Y TjAX; j+e
j=1

using standard notation, fixed initial values and i.i.d disturbances with covariance .. The hypothesis
that there are r or fewer cointegrating vectors is

Hy : rank(1l) <r.

The associated test statistic is computed in terms of the square canonical correlations of A/)\(t and
X\t_l where A/)?t and )?t—l refer to residuals from the regression of AX; and X;_; on all lagged
differences. Nielsen (1998) emphasizes that the problem of solving the underlying determinantal
equation is invariant to non-singular linear transformations of the data. Correspondingly, the null
distribution of the Johansen test statistic is scale-invariant.

As it is well know, the asymptotic null distributions underlying the specialized tables of critical
points provide for use with the Johansen test are asymptotically similar. More specifically, the
asymptotic distributions depend on the assumed number of unit roots. Nielsen argues that this result
must be qualified in models with k¥ > 1. Whereas the test of no-cointegration is “exact similar” in
the case k = 1, the same test is not even asymptotically pivotal is higher order models.

The point is best illustrated with the model corresponding to £ = 2, p = 1. In this case, Nielsen
shows analytically and using simulations that the null distribution for the Johansen test depends
importantly on the coefficient of the lagged variable I'. To extract the analytic null distribution,
Nielsen reparameterizes the model scaling the latter coefficient by the sample size. Furthermore,
tables for the asymptotic distribution fixing 7T are provided and serve to illustrate the dependence
on I'. Whether these tables may be used for empirical applications is an open question. The au-
thor recognizes that in practice, I' must be estimated from the data, which may cast doubt on the
reliability of these tables. Related identification issues in the context of cointegration tests are also
discussed in Dufour (1997).

In view of this, the MMC approach may be worth considering here. Note also that the results
in Dufour and Khalaf (1998a) on the pivotal bound may provide useful applications to this test
problem.

Finally, a word of caution about structural VAR models. Consider the two-dimensional struc-
tural VAR model

Xt = A(L)Et

and suppose the standard normalization and orthogonalization restrictions are imposed. It is also
assumed that the second shock has no lung run effect on the first variable, i.e. Aj2(1) = 0. We are
interested in testing

H 0- Q12 = 0

This section draws on the results in Nielsen (1998).
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i.e. whether the response of the first variable to the second shock at lag k is zero. Faust and Leeper
(1997) demonstrate that in this case, any size-correct test has power less than or equal to its size.
The proof is based on the following arguments.

Consider a model satisfying aq9 7# 0, and a test statistic which has maximum power at level «
for this model. Specifically, this means that the probability that the test rejects the model (which we
denote 3) is higher than the probability that the test rejects any other model under the alternative. It
is always possible to transform the model as follows:

Zy = B(L)ey
where

B(L) = A(L)B,e; =B g

€ = Bilé‘t

and B is chosen such that b5, = 0. It si clear that the modified model satisfies the null, and
the rejection probability [ is not affected by the transformation, since the modified model and the
original model are observationally equivalent. It is also possible to modify the model further so
that the long run neutrality condition is satisfied, yet the rejection probability is only very slightly
altered. If the test is level-correct, then § < «, because the modified model satisfies the null.

The MC procedure cannot correct this problem. As emphasized above, the MC test technique
solves the problem of size control but even if size is controlled in this case, the test and any related
confidence interval are not useful.

4.4. Confidence intervals from MC tests '8

In this section, we reconsider the probit model discussed in Section 2.3.3 and propose two alternative
methods to obtain relevant confidence intervals for the parameter ratio 3;/3,. Both methods require
inverting relevant test statistics for the hypothesis

Hy(do) : B;/B; = o (4.30)

In other words, the (1 — a))— level confidence set corresponds to the values of dy for which the test
statistic considered fails to reject Hy(dp) at level a.
The first method is based on an approach proposed long ago by Fieller (1940, 1954) and relies
on inverting a ¢-type statistic
By - 60B;
SE(8; — dof3;)
using any consistent parameter and variance/covariance estimates including simulated maximum

likelihood (SML) criteria. The above procedure is justified on asymptotic grounds. It is easy to
show that the derived CI are not necessarily bounded; thus they will not suffer from the fundamental

£(60) (4.31)

3 This section draws on the results in Bolduc-Dufour-Khalaf (1998).
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limitations documented in Dufour (1997) which preclude valid inference. Indeed, inverting (4.31)
implies solving a 2nd degree polynomial where unbounded sets are possible solutions.

To explore the feasibility of Fieller-type CI, we have applied the ¢-test based procedure to a
trinomial logit model of travel demand analyzed in Ben-Akiva and Lerman (1985, Chapter 7). We
consider a CI for the ratio 33/35; where (35 is the coefficient for “round trip travel time” and (5
is the coefficient for “round trip travel cost” [see Ben-Akiva and Lerman (1985, p. 158)]. The
delta-method yields

[ —0.0002089, 0.0023483 ] (4.32)

whereas the Fieller methods gives
[ —oo, —0.0151209 | U [ 0.0003947, oo |. (4.33)

Although the Fieller-type region is unbounded and may appear too wide and uninformative using
traditional arguments, notice that (4.33) does not include zero. This implies that the ratio is sta-
tistically significantly different from zero; in terms of the hypothesis 35/05 = 0, the Fieller CI is
indeed quite informative. This contrasts with the inference based on (4.32), although both regions
are derived using the same asymptotically normal parameter and variance/covariance estimates.
This example illustrates a situation where the delta-method and our proposed method may be in
conflict. As demonstrated in Section 2.3.1, the former method is suspect, whereas the latter is more
likely to yield confidence sets immune to the severe size problems documented in Dufour (1997).

Similar non-standard confidence estimation techniques have gained popularity in recent econo-
metric practice, particularly in non-regular inference problems. Indeed, Staiger and Stock (1997),
Dufour and Jasiak (1994) and Stock and Wright (1997) derive inversion-based confidence sets to
solve the poor instrument problem in instrumental regressions. See also Abdelkhalek and Dufour
(1998) for related techniques in general equilibrium models.

We next suggest an alternative confidence estimation procedure based on a MC test. In view
of the results (cited above) documenting the good performance of bootstrap based tests in discrete
choice contexts, one would expect the associated confidence sets to work well. MMC techniques
provide a formal strategy for dealing with nuisance parameter so that exact confidence sets may be
obtained, regardless of the complicated non-linear structure of the model at hand. SML-based test
criteria may be used. The procedure may be implemented as follows.

First modify the above notation: let S denote any valid (“simulatable”) statistic for testing

HO:/Bi_(SOBjZO

and let (53;, Bjs 0) refer to the relevant intervening parameters (6 is a vector of extra nuisance
parameters on which the distribution of .S under Hy may depend). Define
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as the a—level MC p-value obtained following the lines described above. Conformably, let

ﬁN (60) = sup f?\N((SO,@]v /6]7 0) .

ﬂja

Then a valid confidence interval d is (qz, qr7),where
qL = iglf{éo :pn(60) > a}f, qu= S;lp{éo : pn(d0) > a}.
0 0

Indeed, it can be shown from the arguments in Dufour (1995) that

Plé € (qz, qv)] > 1 — .

Clearly, MC procedures are computationally intensive. However, they guarantee the desired cover-
age. Bolduc, Dufour, and Khalaf (1998) propose to construct feasible algorithms for practical use
and compare the relative merits of both the Fieller and MC procedure. Although we have discussed
the method in the context of probit models, both procedures are clearly applicable in various other
settings.

5. Conclusion

In this paper, we have demonstrated that finite sample concerns may arise in several empirically per-
tinent test problems. But, in many cases of interest, the MC test technique produces valid inference
procedures no matter how small your sample is.

We have also emphasized that the problem of constructing a good test - although simplified -
cannot be solved just using simulations. Yet in most examples we have reviewed, MC test tech-
niques emerge as indispensable tools.

Beyond the cases covered above, it is worthwhile noting that the MC test technique may be
applied to many other problems of interest. These include, for example, models where the estima-
tors themselves are also simulation-based, e.g., estimators based on indirect inference or involving
simulated maximum likelihood. Furthermore, the MC test technique is by no means restricted to
nested hypotheses. It is therefore possible to compare non-nested models using MC LR-type tests;
assessing the success of this strategy in practical problems is an interesting research avenue.

Your data is valuable, and the statistical analysis you perform is often policy oriented. Why
tolerate questionable p-values and confidence intervals, when exact or improved approximations
are available?
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