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1. Introduction

During the last 20 years, computer-based simulation methods have revolutionized the way we approach
statistical analysis. This has been made possible by the rapid development of increasingly quick and
inexpensive computers. Important innovations in this field include the bootstrap methods for improving
standard asymptotic approximations [for reviews, see Efron (1982), Efron and Tibshirani (1993), Hall
(1992), Jeong and Maddala (1993), Vinod (1993), Shao and Tu (1995), Davison and Hinkley (1997),
and Horowitz (1997)] and techniques where estimators and forecasts are obtained from criteria evalu-
ated by simulation [see Mariano and Brown (1993), Hajivassiliou (1993), Keane (1993), Gouriéroux,
Monfort, and Renault (1993), Gouriéroux and Monfort (1996) and Gallant and Tauchen (1996)]. An
area of statistical analysis where such techniques can make an important difference is hypothesis testing
which often raises difficult distributional problems especially in view of determining appropriate critical
values.

This paper has two major objectives. First, we review some basic notions on hypothesis testing from
a finite-sample perspective, emphasizing in particular the specific role of hypothesis testing in statistical
analysis, the distinction between the level and the size of a test, the notions of exact and conservative
tests, as well as randomized and non-randomized procedures. Second, we present a relatively informal
overview of the possibilities of Monte Carlo test techniques, whose original idea originates in the early
work Dwass (1957), Barnard (1963) and Birnbaum (1974), in econometrics. This technique has the
great attraction of providing provably exact (randomized) tests based on any statistic whose finite sample
distribution may be intractable but can be simulated. Further, the validity of the tests so obtained does not
depend on the number of replications employed (which can be small). These features may be contrasted
with the bootstrap, which only provides asymptotically justified (although hopefully improved) large-
sample approximations.

In our presentation, we will try to address the fundamental issues that will allow the practitioners to
use Monte Carlo fest techniques. The emphasis will be on concepts rather than technical detail, and the
exposition aims at being intuitive. The ideas will be illustrated using practical econometric problems.
Examples discussed include: specification tests in linear regressions contexts (normality, independence,
heteroskedasticity and conditional heteroskedasticity), non-linear hypotheses in univariate and SURE
models, tests on structural parameters in instrumental regressions, and confidence intervals for ratio of
coefficients in discrete choice models. More precisely, we will discuss the following themes.

In Section 2, we identify the important statistical issues motivating this econometric methodology,
as an alternative to standard procedures. The issues raised have their roots in practical test problems and
include:

e An Exact Test Strategy: What Is It, and Why Should We Care?

e The Nuisance-Parameter Problem: What Does It Mean to Practitioners?

e Understanding the Size/Level Control Problem.

e Pivotal and Boundedly-Pivotal Test Criteria: Why Is this Property Important?

e Identification and Near non-identification: A Challenging Setting.

Further, the relevance and severity of the problem will be demonstrated using simulation studies and/or
empirical examples.



Sections 3 and 4 describe the Monte Carlo (MC) test method along with various econometric applic-
ations of it. Among other things, the procedure is compared and contrasted with the bootstrap. Whereas
bootstrap tests are asymptotically valid (as both the numbers of observations and simulated samples go
to 00), a formal demonstration is provided to emphasize the size control property of MC tests. Monte
Carlo tests are typically discussed in parametric contexts. Extensions to non-parametric problems are
also discussed. The theory is applied to a broad spectrum of examples that illustrate the usefulness of
the procedure. We conclude with a word of caution on inference problems that cannot be solved by
simulation. For convenience, the concepts and themes covered may be outlined as follows.

e MC Tests Based on Pivotal Statistics: An Exact Randomized Test Procedure

e MC Tests in the Presence of Nuisance Parameters

» Local MC p-value
» Bounds MC p-value
» Maximized MC p-value

e MC Tests versus the Bootstrap

» Fundamental Differences/Similarities

» The Number of Simulated Samples: Theory and Guidelines
e MC tests: Breakthrough Improvements and ”Success Stories”

» The Intractable Null Distributions Problem (e.g. tests for normality, Uniform Linear hypo-
thesis in Multi-Equation models, tests for ARCH)

» MC tests or Bartlett Corrections?
» The Case of Unidentified Nuisance Parameters (test for structural jumps, test for ARCH-M)

e MC Tests May Fail: Where and Why? A Word of Caution.

‘We conclude in Section 5.

2. Statistical issues: a practical approach to core questions

The hypothesis testing problem is often presented as one of deciding between two hypotheses: the
hypothesis of interest (the null Hy) and its complement (the alternative H ). For the purpose of the
exposition, consider a test problem pertaining to a parametric model (), Py), i.e. the case where the
data generating process [DGP] is determined up to a finite number of unknown real parameters 6 € O,
where O refers to the parameter space (usually a vector space), ) is the sample space, Py is the family
of probability distributions on ). Furthermore, let Y denote the observations, and © the subspace of
© compatible with H).

A statistical test partitions the sample space into two subsets: a set consistent with Hy (the accept-
ance region), and its complement whose elements are viewed as inconsistent with H (the rejection



region, or the critical region). This may be translated into a decision rule based on a fest statistic S(Y'):
the rejection region is defined as the numerical values of the test statistic for which the null will be
rejected.

Without loss of generality, we suppose the critical region has the form S(Y') > c¢. To obtain a test
of level «, ¢ must be chosen so that the probability of rejecting the null hypothesis Py[S(Y') > ¢] when
H, is true (the probability of a type I error) is not greater than «, i.e. we must have:

supPy[S(Y) > ¢ <. (2.1)
0€0g

Further, the test has size « if and only if

supPy[S(Y) > ¢ =a. (2.2)
[ASCH)

To solve for ¢ in (2.1) or (2.2), it is necessary to extract the finite-sample distribution of S(Y') when the
null is true. Typically, S(Y') is a complicated function of the observations and the statistical problem
involved is often intractable. More importantly, it is evident from the definitions (2.1) - (2.2) that,
in many cases of practical interest, the distribution of S(Y’) may be different for different parameter
values. When the null hypothesis completely fixes the value of 6 (i.e. ©g is a point), the hypothesis
is called a simple hypothesis. Most hypotheses encountered in practice are composite, i.e. the set O
contains more than one element. The null may uniquely define some parameters, but almost invariably
some other parameters are not restricted to a point-set. In the context of composite hypotheses, some
unknown parameters may appear in the distribution of S(Y’). Such parameters are called nuisance
parameters.

When we talk about an exact test, it must be understood that attention is restricted to level-correct
critical regions, where (2.1) must hold for a given finite sample size, for all values of the parameter 6
compatible with the null. Consequently, in carrying out an exact test, one may encounter two problems.
The first one is to extract the analytic form of the distribution of S(Y'). The second one is to maximize
the rejection probability over the relevant nuisance parameter space, subject to the level constraint.
We will see below that the first problem can easily be solved when Monte Carlo test techniques are
applicable. The second one is usually more difficult to tackle, and its importance is not fully recognized
in econometric practice.

A reasonable solution to both problems often exists when one is dealing with large samples.
Whereas the null distribution of S(Y’) may be complicated and/or may involve unknown parameters, its
asymptotic null distribution in many common cases has a known form and is nuisance-parameter-free
(e.g., anormal or chi-square distribution). The critical point may conveniently be obtained using asymp-
totic arguments. The term approximate critical point is more appropriate here, since we are dealing
with asymptotic levels: the critical values which yield the desired size « for a given sample size can be
very different from these approximate values obtained through an asymptotic argument. For sufficiently
large sample sizes, the standard asymptotic approximations are expected to work well. The question
is, and will remain, how large is large? To illustrate this issue, we next consider several examples
involving commonly used econometric methods. We will demonstrate, by simulation, that asymptotic
procedures may yield highly unreliable decisions, with empirically relevant sample sizes. The problem,
and our main point, is that finite sample accuracy is not merely a small sample problem.



2.1. Instrumental regressions

Consider the limited-information (LI) structural regression model:

y = YB+Xyy,+tu=20+u, (2.3)
Y = XiIIi + Xl +V, 2.4)

where Y and X, are n x m and n X k matrices which respectively contain the observations on the
included endogenous and exogenous variables, Z = [Y, X1], 6 = (8',7})" and X5 refers to the excluded
exogenous variables. If more than rn variables are excluded from the structural equation, the system is
said to be over-identified. The associated LI reduced form is:

™ I ] (2.5)

[y Y] = XlI+[v V], H:[M L,
o= M+, m=15. (2.6)

The necessary and sufficient condition for identification follows from the relation 7o = II53. Indeed 8
is recoverable if and only if
rank(Ily) =m. 2.7

To test the general linear hypothesis R6 = r, where R is a full row rank ¢ x (m + k) matrix, the
well-known IV analogue of the Wald test is frequently applied on grounds of computational ease. For
instance, consider the two-stage least squares (2SLS) estimator

6= [Z'P(P'P)"'P Z7 2 P(P'P)"' Py (2.8)

where P is the following matrix of instruments P = [X , X (X'X) 'X'Y]. Application of the Wald
principle yields the following criterion

Ty = 8%(7“ — RY)[R(ZP(P'P)~'P'Z)7'R] (r — RY) (2.9)
where s2 = %(y -7 V(y—2Z ) )'. Under usual regularity conditions and imposing identification, 7, is
distributed like a x?(q) variable, where ¢ = rank(R).

Bartlett (1948) and Anderson and Rubin (1949, henceforth AR) suggested an exact test that can
be applied only if the null takes the form 8 = 3°. The idea behind the test is quite simple. Define
y* = y — Y Y . Under the null, the model can be written as y* = X 171 + u. On the other hand, if
the hypothesis is not true, y* will be a linear function of all the exogenous variables. Thus, the null
may be assessed by the F'— statistic for testing whether the coefficients of the regressors X, “excluded”
from (2.3) regressors are zero in the regression of y* on all the exogenous variables, i.e. we simply test
v, = 0 in the extended linear regression y* = X1y, + Xo7v, + u.

We first consider a simple experiment based on the work of Nelson and Startz (1990a, 1990b) and
Staiger and Stock (1997). The model considered is a special case of (2.3) with two endogenous variables
(p = 2) and k£ = 1 exogenous variables. The structural equation includes only the endogenous variable.
The restrictions tested are of the form Hy; : § = ($°. The sample sizes are set to n = 25, 100, 250.
The exogenous regressors are independently drawn from the standard normal distribution. These are



Table 2.1: IV-based Wald /Anderson-Rubin tests: empirical type I errors
Iy n =25 n = 100 n = 250
Wald | AR | Wald | AR | Wald | AR
1 .061 | .059 | .046 | .046 | .049 | .057
9 |.063 |.059 | .045 |.046 | .049 | .057
27 1.071 | .059 | .046 | .046 | .052 | .057
b | .081 | .059 | .060 | .046 | .049 | .057
2

1

.160 | .059 | .106 | .046 | .076 | .057
. 260 | .059 | .168 | .046 | .121 | .057
.05 | .332 | .059 | .284 | .046 | .203 | .057
.01 ].359 | .059 | .389 | .046 | .419 | .057

drawn only once. The errors are generated according to a multinormal distribution with mean zero and

covariance matrix
1 .95
Y= [ 95 1 ] . (2.10)

The other coefficients are:
ﬁzﬁozo;ﬂzzl,.g,.7,.5,.2,.1,.05,.01. (2.11)

In this case, the 2SLS-based test corresponds to the standard ¢-test [see Nelson and Startz (1990b)
for the relevant formulae]. 1000 replications are performed. Table 2.1 reports probabilities of type
I error [P(type I error)] associated with the two-tailed 2SLS ¢-test for the significance of 3 and the
corresponding Anderson-Rubin test. In this context, the identification condition reduces to II; # 0;
this condition can be tested using a standard F' test in the first stage regression.! It is evident that TV-
based Wald tests perform very poorly in terms of size control. Identification problems severely distort
test sizes. While the evidence of size distortions is notable even in identified models, the problem
is far more severe in near-unidentified situations. More importantly, increasing the sample size does
not correct the problem. In this regard, Bound, Jaeger, and Baker (1995) report severe bias problems
associated with I'V-based estimators, despite very large sample sizes. In contrast, the Anderson-Rubin
test, when available, is immune to such problems: the test is exact, in the sense that the null distribution
of the AR criterion does not depend on the parameters controlling identification. Indeed, the AR test
statistic follows an F'(m,n — k) distribution, regardless of the identification status. The AR test has
recently received renewed attention; see, for example, Dufour and Jasiak (1996) and Staiger and Stock
(1997). Recall however that the test is not applicable unless the null sets the values of the coefficients of
all the endogenous variables. On general linear structural restrictions, see Dufour and Khalaf (1998b).

Despite the recognition of the need for caution in the application of I'V-based tests, standard eco-
nometric software packages typically implement IV-based Wald tests. In particular, the ¢-tests on indi-
vidual parameters are routinely computed in the context of 2SLS or 3SLS procedures. Unfortunately,
the Monte Carlo experiments we have analyzed confirm that IV-based Wald tests realize computational
savings at the risk of very poor reliability.

"The problem is more complicated when the structural equation includes more than one endogenous variable. See Dufour
and Khalaf (1998b) for a detailed discussion of this case.



2.2. Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the
linear regression model:

Y=XB+u (2.12)
where Y = (y1, ..., yn)' is a vector of observations on the dependent variable, X is the matrix of
n observations on k regressors, 3 is a vector of unknown coefficients and v = (uy, ..., u,)" is an

n-dimensional vector of ¢.¢.d disturbances. The problem consists in testing:
Ho: f(2) = (2 0,0), 0 >0, (2.13)

where f () is the probability density function (pdf) of u;, and ¢(z; p, o) is the normal pdf with mean p
and standard deviation o. In this context, normality tests are typically based on the least-squares residual
vector

i=y—XB=Myu (2.14)

where 3 = (X'X) ' X'y and My = I, — X (X'X) "' X', Let G1p < Gian < ... < Tinn denote the
order statistics of the residuals, and

n

S=m-k)'> A, F=n'> a;,. (2.15)
=1

in ) in
i=1
Here we focus on two tests: the Kolmogorov-Smirnov (K S) test [Kolmogorov (1933), Smirnov (1939)],
and the Jarque and Bera (1980, 1987; henceforth JB) test.
The K S test is based on a measure of discrepancy between the empirical and hypothesized distri-
butions:

KS = max (D*, D”) (2.16)
where D = maxi<i<y, [(i/n) — %] and D™ = maxi<i<n [z — (1 — 1)/n], 2i = @(Uin/s), i =
1, ..., n, and ®(.) denotes the cumulative N (0, 1) distribution function. The exact and limiting distri-

butions of the K § statistic are non-standard and even asymptotic points must be estimated. We have
used significance points from D’Agostino and Stephens (1986, Table 4.7), although these were form-
ally derived for the location-scale model. The J B test combines the skewness (Sk) and kurtosis (ku)
coefficients:

l(Sk)2 L1 (Ku —3)? (2.17)
6 24

where Sk = n 'S0 43 /(6%)%2 and Ku = n=' 3" | @t /(5%)%. Under the null and appropri-
ate regularity conditions, the JB statistic is asymptotically distributed as x? (2); the statistic’s exact
distribution is intractable.

We next summarize relevant results from the simulation experiment reported in Dufour, Farhat,
Gardiol, and Khalaf (1998). The experiment based on (2.12) was performed as follows. For each
disturbance distribution, the tests were applied to the residual vector, obtained as @ = M,u. Hence,
there was no need to specify the coefficients vector 5. The matrix X included a constant term, k1 dummy
variables, and a set of independent standard normal variates. Table 2.2 reports rejection percentages
(from 10000 replications) at the nominal size of 5% under the null hypothesis, with n = 25, 50, 100,

JB=n



Table 2.2: Kolmogorov-Smirnov / Jarque-Bera residuals based tests: empirical type I errors
k1 n =25 n = 50 n = 100

KS JB KS JB KS JB

0 STD .050 .029 .055 .039 055 .041

MC .052 .052 .052 .050 .047 .048

2, (n=25) STD 114 04.8 163 .064 131 131
4, (n > 25) MC .053 05.2 .050 .050 .050 .050
k, (n <50) STD 282 06.7 .301 .084 322 322
8, (n =100) MC .052 04.8 .050 .047 .047 .047

Note: ST D refers to the standard normality test and M C denotes the (corresponding) Monte Carlo test.

k = the largest integer less than or equal to \/n and k; = 0, 2, 4, ..., k — 1. Our conclusions may
be summarized as follows. Although the tests appear adequate when the explanatory variables are
generated as standard normal, the sizes of all tests vary substantially from the nominal 5% for all other
designs, irrespective of the sample size. More specifically, (i) the KS test consistently overrejects,
and (ii) the JB test based on & underrejects when the number of dummy variables relative to normal
regressors is small and overreject otherwise. We will discuss the MC tests results in Section 4.

2.3. Uniform linear hypothesis in multivariate regression models

Multivariate linear regression (MLR) models involve a set of p regression equations with cross-
correlated errors. When regressors may differ across equations, the model is known as the Seemingly
Unrelated Regression model [SURE, Zellner (1962)]. The MLR model can be expressed as follows:

Y=XB+U (2.18)
where Y = [Y7, ..., Y] is an n x p matrix of observations on p dependent variables, X is an r x & full-
column rank matrix of fixed regressors, B = [, ... , Bp] is a k x p matrix of unknown coefficients
and U = [Uy, ..., Up] = [[71, e fjn]’ is an n X p matrix of random disturbances with covariance

matrix ¥ where det (X) # 0. To derive the distribution of the relevant test statistics, we also assume
the following:

Ui=JW;, 1=1, ..., n, (2.19)
where the vector w = vec(W1, ..., Wy,) has a known distribution and J is an unknown, non-singular
matrix; for further reference, let W = [Wy, ... , Wn]’ = UG', where G = J 1. In particular, this

condition will be satisfied when the normality assumption is imposed. An alternative representation of
the model is

p
Yy=o;+ Y ByXik,i=1,..,m, j=1,..,p. (2.20)
k=1

Uniform Linear (UL) constraints take the special form

Hy: RBC =D 2.21)



where R is a known r X k matrix of rank < k, C'is a known p X ¢ matrix of rank ¢ < p, and D is a
known r X ¢ matrix. An example is the case where the same hypothesis is tested for all equations

Hy :RB;=6;,i=1,...,p, (2.22)

which corresponds to C = I,,. Here we shall focus on hypotheses of the form (2.22) for ease of
exposition; see Dufour and Khalaf (1998c) for the general case.

Stewart (1997) discusses several econometric applications where the problem can be stated in terms
of UL hypotheses. A prominent example includes the multivariate test of the capital asset pricing model
(CAPM). Let rj, g =1, ... , p, be security returns for period ¢, ¢t = 1, ... ,T'. If it is assumed that a
riskless asset r ;- exists, then efficiency can be tested based on the following MLR-based CAPM model:

Tjt_TFt:aj+/6j(TMt_TFt)+ejta .7:]-7 ey Py t:]-a U Ta

where 7,7, are the returns on the market benchmark. The hypothesis of efficiency implies that the
intercepts «; are jointly equal to zero. The latter hypothesis is a special case of (2.22) where R is
the 1 x p vector (1, 0, ...,0). Another example concerns demand analysis. It can be shown [see, for
example, Berndt (1991, Chapter 9)] that the translog demand specification yields a model of the form
(2.20) where the hypothesis of linear homogeneity corresponds to

p
Ho:» Bjx=0,j=1,..,p. (2.23)
k=1

In this context, the likelihood ratio (LR) criterion is:
LR =n In(A), A =|UU,|/|U'U (2.24)

where (76 (70 and U'U are respectively the constrained and unconstrained SSE matrices. On observing
that, under the null hypothesis,

U = G'wmw (G7Y, (2.25)
U0y = G W MW (G, (2.26)

where My = [— X (X'X) N X'X—-R'(R(X'X)'R)'R)(X'X)"' X' and M = [-X (X' X)L X/,
we can then rewrite A in the form

A= |W' MW|/|W' MW | (2.27)

where the matrix W = UG’ has a distribution which does not involve nuisance parameters. As shown in
Dufour and Khalaf (1998c¢), decomposition (2.26) obtains only in the case of UL constraints. In Section
4 we will exploit the latter result to obtain exact MC tests based on the LR statistic.

To illustrate the performance of the various relevant tests, we consider a simulation experiment mod-
elled after demand homogeneity tests, i.e. (2.20) and (2.23) with p =5,7,8, n =20, 25,40, 50, 100.
The regressors are independently drawn from the normal distribution; the errors are independently gen-
erated as i.7.d. N(0,%) with ¥ = GG' and the elements of G drawn (once) from a normal distribution.



Table 2.3: Empirical type I errors of multivariate tests: uniform linear hypotheses

Sample Size 5 Equations 7 Equations 8 Equations
LR LR. LRyc | LR LR. LRyc | LR LR. LRpyc
20 295 100 051 | .599 250 .047 |.760 .404  .046
25 174075 .049 | 384 145 036 | .492 190 .042
40 130 066 056 | .191 .068  .051 | .230 .087  .051
50 097 058 055 | .138 .066 .050 |.191 .073  .053
100 070 052 .042 | .078 .051 .041 | .096 .052  .049

Note: LR, LR., LRy;c denote (respectively) the standard LR test, the Bartlett corrected test and the (corres-
ponding) MC test.

The coefficients for all experiments are available from Dufour and Khalaf (1998c). The statistics ex-
amined are the relevant LR criteria defined by (2.24) and the Bartlett-corrected LR test [Attfield (1995,
section 3.3)]. The results are summarized in Table 2.3. We report the tests empirical size, based on
a nominal size of 5% and 1000 replications. It is evident that the asymptotic LR test overrejects sub-
stantially. Second, the Bartlett correction, though providing some improvement, fails in larger systems.
In this regard, it is worth noting that Attfield (1995, section 3.3) had conducted a similar Monte Carlo
study to demonstrate the effectiveness of Bartlett adjustments in this framework, however the example
analyzed was restricted to a two-equations model. We will discuss the MC tests results in Section 4.

To conclude this section, it is worth noting that an exact test is available for hypotheses of the
form Hy : RBC = D, where min(r,c) < 2. Indeed, Laitinen (1978) in the context of the tests of
demand homogeneity and Gibbons, Ross, and Shanken (1989), for the problem of testing the CAPM
efficiency hypothesis, independently show that a transformation of the relevant LR criterion has an exact
F distribution given normality of asset returns.

2.4. Econometric applications: discussion

In many empirical problems, it is quite possible that the exact null distribution of the relevant test statistic
S(Y') will not be easy to compute analytically, even though it is nuisance-parameter-free. In this case,
S(Y') is called a pivotal statistic, i.e. the null distribution of S(Y) is uniquely determined under the
null hypothesis. In such cases, we will show that the MC test easily solves the size control problem,
regardless of the distributional complexities involved. The above examples on normality tests and the
UL hypotheses tests, all involve pivotal statistics. The problem is more complicated in the presence
of nuisance parameters. We will first discuss a property related to nuisance-parameter-dependent test
statistics which will prove to be fundamental in finite sample contexts.’

In the context of a right-tailed test problem, consider a statistic S(Y") whose null distribution depends
on nuisance parameters and suppose it is possible to find another statistic S*(Y") such that

S(Y) < S*(Y), V0€ Oy, (2.28)

and S*(Y') is pivotal under the null. Then S(Y') is said to be boundedly pivotal. The implications of

!The underlying distributional result is due to Wilks (1932).
2For a formal treatment see Dufour (1997).



this property are as follows. From (2.28), we obtain
Po[S(Y) > ¢] <P[S*(Y) >¢|], VA€ ©Oy.

Then if we calculate ¢ such that
PIS*(Y) > ¢] = a, (2.29)

we solve the level constraint for the test based on S(Y'). It is clear that (2.28) and (2.29) imply
Po[S(Y)>c]<a, Ve .

As emphasized earlier, the size control constraint is easier to deal with in the case of S*(Y") because it
is pivotal. Consequently, the maximization problem

sup Py[S(Y) > (]
[ASCH)

has a non-trivial solution (less than 1) in the case of boundedly pivotal statistics. If this property
fails to hold, the latter optimization problem may admit only the trivial solution, so that it becomes
mathematically impossible to control the significance level of the test.

It is tempting to dismiss such considerations assuming they will occur only in “textbook” cases. Yet
it can be shown (we will consider this issue in the next section) that similar considerations explain the
poor performance of the Wald tests and confidence intervals discussed in Sections 2.1 and 2.3 above.
These are problems of empirical relevance in econometric practice. In the next session, we will
show that the bootstrap will also fail for such problems! For further discussion of the basic notions
of statistical testing mentioned in this section, the reader may consult Lehmann (1986, Chapter 3),
Gouriéroux and Monfort (1995) and Dufour (1990, 1997).

3. The Monte Carlo test technique: an exact randomized test procedure

If there were a machine that could check 10 permutations a second, the job would run
something on the order of 1000 years. The point is, then, that an impossible test can be
made possible, if not always practical. [Dwass (1957)]

The Monte Carlo (MC) test procedure was first proposed by Dwass (1957) in the following context.

Consider two independent samples X, ..., X,, and Yy, ..., Y, , where Xy, ..., X, ud F(x),
Y, .., Y, Wop (x — 0) and the cdf F'(.) is continuous. No further distributional assumptions are
imposed. To test Hy : § = 0, the following procedure may be applied.
o Letz= (X1, ..., Xpp, Y1, ..o, Vy)and s = 23" X; — LSy,
e Obtain all possible @ = (n + m)! permutations of z, 2 ..., 29 and calculate the associated
“permuted analogues” of s
s =Lyt - st a”, i=1.. Q.
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e Let r denote the number of s(/)’s for which s < s(/). Reject the null (e.g. against H4 : § > 0) if
r < k, where k is a predetermined integer.

It is easy to see that P(r < k) = k/( under the null because the X’s and the Y’s are exchangeable. In
other words, the test just described is exactly of size k/Q.

The procedure is intuitively appealing, yet there are (n + m)! permutations to examine. To circum-
vent this problem, Dwass (1957) proposed to apply the same principle to a sample of P permutations
3, ..., 3@ in a way that will preserve the size of the test. The modified test may be applied as
follows.

e Let 7 denote the number of 5\)’s for which s < 3U). Reject the null (against § > 0)ifr < d,
where d is chosen such that
d+1 k

P+1 @
Dwass formally shows that with this choice for d, the size of modified test is exactly k/Q = the size of
the test based on all permutations. This means that, if we wish to get a 5%—level permutation test, and
99 random permutations can be generated, then d + 1 should be set to 5. The latter decision rule may
be restated as follows: reject the null if the rank of s in the series s, Eﬂ), en 5(P) is less than or equal to
5. Since each 5 is “weighted” by the probability that it is sampled from all possible permutations, the
modification due to Dwass yields a randomized test procedure.

The principles underlying the MC test procedure are highly related to the randomized permutation
test just described. Indeed, this technique is based on the above test strategy where the sample of
permutations is replaced by simulated samples. Note that Barnard (1963) proposed later a similar
idea.!

3.1. Monte Carlo tests based on pivotal statistics

In the following, we briefly outline the MC test methodology as it applies to the pivotal statistic context
and a right tailed test; for a more detailed discussion, see Dufour (1995) and Dufour and Kiviet (1998).

Let Sy denote the observed test statistic S, where S is the test criterion. We assume S has a unique
continuous distribution under the null hypothesis (S is a continuous pivotal statistic). Suppose we can
generate N 7.5.d. replications, S5, j = 1, ... , N, of this test statistic under the null hypothesis.
Compute

R 1, ifz€ A
G (S0) = & Xjii To,oe (85— S0) 5 Ta(2) = { 0 j . ¢ A

In other words, N G ~N(Sp) is the number of simulated statistics which are greater or equal to Sp, and
provided none of the simulated values Sj, j =1, ..., N,isequalto So, Ry (So) = N—NGn(Sp)+1

"Bera and Jarque (1982), Breusch and Pagan (1979, 1980) have also proposed related simulation-based techniques.
However, these authors do not provide finite-sample theoretical justification for the proposed procedures. In particular, in
contrast with Dwass (1957) and Barnard (1963) (and similarly to many other later authors who have proposed exploiting
Monte carlo techniques), they do not observe that appropriately randomized tests allow one to exactly control the level of a
test in finite samples.
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gives the rank of Sy among the variables Sp, Si, ..., Sy .! Then the critical region of a test with level
o is:

ﬁN(SO ) S 67 (31)
where , 0 < o < 1 and
~ NGN(:U) +1
=23 = 32
pn(z) N1l (3.2)

The latter expression gives the empirical probability that a value as extreme or more extreme than .Sy is
realized if the null is true. Hence px (Sp ) may be viewed as a MC p-value.
Note that the MC decision rule may also be expressed in terms of Ry (Sy). Indeed the critical region

NaN(So)—i-l <
N +1 -

is equivalent to R
Rn(So) >(N+1) (1 —«a)+1. (3.3)

In other words, for 99 replications a 5% MC test is significant if the rank of Sy in the series
So, S1, ..., Sy is at least 96, or informally, if Sy lies in the series top 5% percentile. We are now
faced with the immediate question: does the MC test just defined achieve size control?

If the null distribution of S is nuisance-parameter-free and (/N + 1) is an integer, the critical region
(3.1) is provably exact, in the sense that

Py [PN(So ) < o] = a

or alternatively
P (ko) [RN(So) >(N+1)(1—a)+ 1] =a.

The proof is based on the following theorem concerning the distribution of the ranks associated with a
finite dimensional array of exchangeable variables; see Dufour (1995) for a more formal statement of
the theorem and related references.

Theorem 3.1.1 Consider an M x 1 vector of exchangeable real random variables (Y1, ..., Yar) such
that PlY; = Y;] = 0 for i # j, and let R; denote the rank of Yj in the series Y1, ..., Yy Then

Pl 22| =105ME ) 0<o< (3.4)

where I(x) is the largest integer less than or equal to .

If S is a continuous pivotal statistic, it follows from the latter result that
0 [EN(SO) >N+ (1 -a)+1].

Indeed, in this case, the observed test statistic and the simulated statistic are exchangeable if the null
is true. Here it is worth recalling that the S;’s must be simulated imposing the null. Now using

"The subscript IV in the notation adopted here may be misleading. We emphasize that Ry (To) gives the rank of Sy in the
N + 1 dimensional array So, Si, ..., Sy . Throughout this section NV refers to the number of MC replications.

12



(3.4), it is easy to show that Py, ﬁN(SO) >(N+1)(1—a)+ 1] = q, provided N is chosen so
that (NN + 1) is an integer.

We emphasize that the sample size and the number of replications are explicitly taken into consid-
eration in the above arguments. No asymptotic theory has been used so far to justify the procedure just
described.

It will be useful at this stage to focus on a simple illustrative example. Consider the Jarque and Bera
normality test statistic,

1

1
B =n|-(Sk)?
J n6(5)+24

(KU - 3)2 ’

in the context of the linear regression model Y = X 3+u .! The MC test based on J B and N replications
may be obtained as follows.

Calculate the constrained OLS estimates B, s and the associated residuals .

Obtain the Jarque-Bera statistic based on s and @ and denote it JB(©).

Treating s as fixed, repeat the following steps for j =1, ... , N :

» draw an (n x 1) vector ) as i.i.d. N (0, s);
» obtain the simulated independent variable YU = x B +al);
» regress Y@ on X

» derive the Jarque-Bera statistic JBY) associated with the regression of Y @) on X.

Obtain the rank Ry (JB®) in the series JB(), JBY, ..., JBWN) .
Reject the null if Ry (JBO) > (N+1)(1—a)+1.

Furthermore, a MC p-value may be obtained as py (S ) = [N +1— Rx (So)]/(IV +1) . Dufour, Farhat,
Gardiol, and Khalaf (1998) show that the J B statistics can be computed from the standardized residual
vector u/s. Using (2.14), we see that

’17 MXU
@/ (n — k)72~

MXw
(w/MXw)1/2 ’

/s = (3.5)

= (n—k)'/?

where w = u/o s N(0,1) when u ~ N(0,021I,). It follows that the simulated statistics JB) may
be obtained using draws from a nuisance-parameter free (standard normal) null distribution.

3.2. Monte Carlo tests in the presence of nuisance parameters

In Dufour (1995), we discuss extensions of MC tests when nuisance parameters are present. We now
briefly outline the underlying methodology. In this section, n refers to the sample size and /N the number
of MC replications.

Consider a test statistic S for a null hypothesis Hy, and suppose the null distribution of .S depends
on an unknown parameter vector 6.

'See Section 2.2 for a formal presentation of the model and test statistics. Some equations are redefined here for conveni-
ence.
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e From the observed data, compute:
(1) the test statistic Sy, and

(i1) a restricted consistent estimator 6,, of 6.

e Using 6,,, generate N simulated samples and, from them, /N simulated values of the test statistic.

Then compute P, N(SO|§?1)7 where py (x|6) refers to px () based on realizations of S generated
given § = @ and py () is defined in (3.2).

e A MC test may be based on the critical region

For further reference, we denote the latter procedure a local Monte Carlo (LMC) test. Under general
conditions, this LMC test has the correct level asymptotically (as n — 00), i.e., under Hy,

. ~ ~0 ~
lim {P[px (Sof6,) < o] = Pl (Sol6) < a]} = 0. (3.6)
n—r00

In particular, these conditions are usually met whenever the test criterion involved is asymptotically
pivotal. We emphasize that no asymptotics on the number of replication is required to obtain (3.6).

e To obtain an exact critical region, the MC p-value ought to be maximized with respect to the
intervening parameters. Specifically, in Dufour (1995), it is shown that the test [henceforth called
a maximized Monte Carlo (MMC) test] based on the critical region

sup [pn(So|0)] < (3.7
0 € My

where M is the subset of the parameter space compatible with the null hypothesis (i.e., the
nuisance parameter space) is exact at level a.

The LMC test procedure is closely related to a parametric bootstrap, with however a fundamental differ-
ence. Whereas bootstrap tests are valid as N — 0o, the number of simulated samples used in MC tests
is explicitly taken into account. Further the LMC p-value may be viewed as exact in a liberal sense,
i.e. if the LMC fails to reject, we can be sure that the exact test involving the maximum p-value is not
significant at level a.

In practical applications of exact MMC tests, a global optimization procedure is needed to obtain
the maximal randomized p-value in (3.7). We use the simulated annealing (SA) algorithm [Corana,
Marchesi, Martini, and Ridella (1987), Goffe, Ferrier, and Rogers (1994)]. SA starts from an initial

point (it is natural to use /9\2 here) and sweeps the parameter space (user defined) at random. An uphill
step is always accepted while a downhill step may be accepted; the decision is made using the Metro-
polis criterion. The direction of all moves is determined by probabilistic criteria. As it progresses, SA
constantly adjusts the step length so that downhill moves are less and less likely to be accepted. In this
manner, the algorithm escapes local optima and gradually converges towards the most probable area for
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optimizing. SA is robust with respect to non-quadratic and even non-continuous surfaces and typically
escapes local optima. The procedure is known not to depend on starting values. Most importantly, SA
readily handles problems involving a fairly large number of parameters.'

To conclude this section, we consider another application of MC tests which is useful in the context
of boundedly pivotal statistics. Using the above notation, the statistic at hand S is boundedly pivotal if
it is possible to find another statistic S* such that

S <S8, Voe0y, (3.8)

and §* is pivotal under the null. Let ¢ and c¢* refer to the « size-correct cut-off points associated
with S and S*. As emphasized earlier, inequality (3.8) entails that ¢* may be used to define a critical
region for S. The resulting test will be the correct level and may be viewed as conservative in the
following sense: if the test based on c¢* is significant, we can be sure that the exact test involving the
(unknown!) c is significant at level «v. The main point here is that it is easier to calculate ¢*, because
S* is pivotal, whereas S' is nuisance-parameter dependant. Of course, this presumes that the null exact
distribution of $* is known and tractable; see Dufour (1989, 1990) for the underlying theory and several
illustrative examples. Here we argue that the MC test technique may be used to produce simulation-
based conservative p-values based on S* even if the analytic null distribution of §* is unknown or
complicated (but may be simulated). The procedure involved is the same as above, except that the S*
rather than S is evaluated from the simulated samples. We denote the latter procedure a Bound MC
(BMC) test.

A sound test strategy would be to perform the bounds tests first and, on failure to reject, to apply
randomized tests. We recommend the following computationally attractive exact « test procedure:

1. compute the test statistic from the data;
2. if abounding criterion is available, compute a BMC p-value; reject the null if: BMC p-value < o

3. if the observed value of the test statistic falls in the BMC acceptance region, obtain a LMC p-
value; declare the test not significant if: LMC p-value > «;

4. if the LMC p-value < o« < BMC p-value, obtain the MMC p-value and reject the null if the latter
is less than or equal to «.

4. Monte Carlo tests: econometric applications

4.1. Pivotal statistics

In Dufour and Kiviet (1996, 1998), Kiviet and Dufour (1997), Dufour, Farhat, Gardiol, and Khalaf
(1998), Dufour and Khalaf (1998a, 1998c), Bernard, Dufour, Khalaf, and Genest (1998), Saphores,
Khalaf, and Pelletier (1998), several applications of MC tests based on pivotal statistics are presented.
The problems considered include: normality tests, heteroskedasticity tests including tests for (G)ARCH

'Global optimization is generally considered to be (relatively) computationally demanding. We have experimented (see
Dufour and Khalaf (1998c¢, 1998b)) with several MMC tests where the number of nuisance parameters referred to the Simulated
Annealing algorithm was up to 20. Our simulations show that the method works well. Convergence was slow in some cases
(less than 5 per 1000). Recall however that for the problem at hand, one just practically needs to check whether the maximized
function exceeds «, which clearly reduces the computational burdens.

15



and tests for break in variance at unknown points, independence tests and tests based on autocorrela-
tions.! The reader will find in the above papers simulation results which show clearly that the technique
of Monte Carlo tests completely corrects often important size distortions due to poor large sample ap-
proximations; power studies are also reported on a case by case basis to assess the performance of MC
size corrected tests.

Relevant results pertaining to the examples considered above are included in Tables 2.2 - 2.3. It
is evident from Table 2.2 that the size of the JB and K S tests is perfectly controlled for all designs
considered.”? Table 2.3 includes the empirical size of the MC LR test for linear restrictions. From
(2.27), we see that under the distributional assumption (2.19), the simulated statistics may be obtained
using draws from a nuisance-parameter free null distribution, namely the hypothesized distribution of
the vector w. Consequently, application of the MC test procedure yields exact p-values. Indeed, it is
shown in Table 2.3 that the MC LR test achieves perfect size control.?

Now to illustrate the feasibility of MMC tests and the usefulness of BMC tests, we will focus on
examples involving nuisance parameters.

4.2. Monte Carlo tests in the presence of nuisance parameters: examples from the
multivariate regression model

In this section, we provide examples from Dufour and Khalaf (1998a, 1998b) pertaining to LR test
criteria in the MLR (reduced form) model. The model was introduced in Section 2.3. Consider the three
equations system

Yi = By +08uX1+Ur,
Y2 - ,820 + ,622X2 + U2 , (41)
Y5 = [30+ 033X5+Us,

imposing normality, and the hypothesis Hy : 31; = B9 = [33. First restate Hy in terms of the MLR
model which includes the SURE system as a special case, so that it incorporates the SURE exclusion
restrictions. Formally, in the framework of the MLLR model

YI = B+ BnXi+ B9 Xo + B13X3+ Uy,
Yo = Bgo+ BuX1+ ByXo+ By X5+ Us, 4.2)
Y3 = B30+ B35 X1 + 32X + B33X3 + Uz,

H, is equivalent to the joint hypothesis
Hg : By = Byg = B3 and By = B3 = By = Bag = P31 = P32 = 0. (4.3)

The associated LR statistic is
LR=nln(A), A=|%|/X] (4.4)

'In connection, it is worth mentioning that the MC test procedure applied to the Durbin-Watson test for AR(1) disturbances
solves the inconclusive region problem.

2See Dufour, Farhat, Gardiol, and Khalaf (1998) for the power study.

3See Dufour and Khalaf (1998c) for the power study.
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where io and ¥ are the restricted and unrestricted SURE MLE. We also consider
LR* =nln(A*), A* =S|/ (4.5)

where i\]u is the unconstrained estimate of X in the “nesting” MLR model. Since the restricted model is
the same in both LR and LR*, while the unrestricted model used in LR* includes as a special case the
one in LR, it is straightforward to see that LR < LR*, so that the distribution function of L R* provides
an upper bound on the distribution function of LR.

In order to apply a BMC test, we need to construct a set of UL restrictions that satisfy (4.3) so
that the corresponding LR* criterion conforming with these UL restrictions yields a valid bound on the
distribution of LR. Indeed, as emphasized above, the LR test statistic for UL restrictions is pivotal.
Furthermore, by considering UL restrictions obtained as a special case of H, we can be sure that the
associated statistic is always > LR. Here, it is easy to see that the constraints setting the coefficients
Bij» 1, J =1,..., 3, to specific values meet this criterion. Note that the statistic just derived serves to
bound both LR and LR*.

Define § = C(X) as the vector of the parameters on or below the diagonal of the Cholesky factor
T'(X) of the covariance matrix X [i.e., 7'(X) is the lower triangular matrix such that 7'(X)7(X)" = X].
The algorithm for performing MC tests based on LR*, at 5% level with 99 replications, can be described
as follows.

e Compute fo and i the restricted and unrestricted SURE (iterative) MLE .
e Compute fu is the unconstrained (OLS) estimate of X in the “nesting” MLR model.
e Compute A* = |Sg|/|S,| and LR* = nln(A*).

e Draw 99 realizations from a multivariate (n, 3, I) normal distribution: v, U@ . U® and
store.
e Consider the linear constraints
010 0 gw g” 530 Bu 0 0
Hyp: |0 010 22 B3l =10 By 0
00 0 1 Bz Baa Pz 0 0 B
P13 Baz O3 33

where 311 = 322 = 333 are the constrained SURE estimates calculated in the first step.

e Call the bound MC procedure BMC/(6), described below, for § = C/(Z). The Cholesky decom-
position is used to impose positive definiteness and avoid redundant parameters. The output is the
BMC p-value. Reject the null if the latter is < .05 and STOP.

e Otherwise, call the procedure MC(6), also described below, for § = C(5). It is important to
note here that X is the only relevant nuisance parameter, for the example considered involves
linear constraints [see Breusch (1980)]. The output is the LMC p-value. Declare the test not
significant if the latter exceeds .05 and STOP.
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e Otherwise, call the maximization algorithm (for example, Simulated Annealing) for the function
MC(6) using 0 = C (io) as a starting value. Obtain the MMC p-value and reject the null if the
latter is < .05. Note: if only a decision is required, the maximization algorithm may be instructed
to exit once as soon as a value larger than .05 is attained. This may save considerable computation
time.

> ‘ Description of the procedure M C'(#): ‘

e Construct a triangular {2 from 6 (this gives the Cholesky decomposition of the variance which will
be used to generate the simulated model).

e Doforj =1, ..., N (independently)

¢ Generate the random vectors Yl(j ) Yz(j ) Y3(j ) conformably with the nesting MLR model,
using the restricted SURE coefficient estimates, Ul ), the observed regressors, and ).

¢ Estimate the MLLR model with the observed regressors as dependant variable, and Yl(j ) YQ(j )

Y3(] ) as independent variables: obtain the unrestricted estimates and the estimates imposing
Hy.

¢ From these estimates, form the statistics LR*U) and store.

e Obtain the rank of LR* in the series LR*, LR*V) ..., LR*(%99),
e This yields a MC p-value as described above which is the output of the procedure.

e The BMC(6) procedure may be obtained as just described, replacing LR*Wby LR((;j ). Altern-
atively, the BMC procedure may be rewritten following the methodology relating to MC tests
of UL hypotheses so that no (unknown) parameters intervene in the generation of the simulated
(bounding) statistics. Indeed, the bounding statistic satisfies (2.27) under (2.19). Thus LREJ ) may
be obtained using draws from, e.g., the multivariate independent normal distribution.

In Dufour and Khalaf (1998c), we report the results of a simulation experiment designed according
to this example. In particular, we examine the performance of LMC and BMC tests. We show that the
MC test procedure achieves perfect size control and has good power. The same methodology may also
be applied in simultaneous equations models such as (2.3). In Dufour and Khalaf (1998b), we present
simulations which illustrate the performance of limited-information LR-based MC tests in this context.
We have attempted to apply the MC test procedure to the IV-based Wald-type test for linear restrictions
on structural parameters. In this case, the performance of the standard bootstrap was disappointing. The
LMC Wald tests failed completely in near-unidentified conditions. Furthermore, in all cases examined,
the Wald tests maximal randomized p-values were always one. This is a case (refer to Section 2.3) where
the MC procedure does not (and cannot) correct the performance of the test.

In other words, Wald statistics do not constitute valid pivotal functions in such models and
it is even impossible to bound their distributions over the parameter space (except by the
trivial bound 0 and 1). [Dufour (1997)]

These results are also related to the non-invariance problems associated with Wald tests in nonlinear
contexts [see, e.g., Dufour (1997) and Dagenais and Dufour (1991)]. Indeed, it is evident from (2.3)-
(2.5) that seemingly linear constraints on structural coefficients in instrumental regressions often involve
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non-linear hypotheses implied by the structure. Of course, not all Wald tests will suffer from such

problems. For instance, Wald tests for linear restrictions in linear regression models yield exact F'-tests.
We conclude this section with a specific problem where the MC test strategy conveniently solves a

difficult and non-standard distributional problems: the problem of unidentified nuisance parameters.

4.3. Non-identified nuisance parameters

The example we discuss here is the problem of testing for the significance of jumps in the context of a
jump-diffusion model. For econometric applications and references, see Saphores, Khalaf, and Pelletier
(1998). Formally, consider the following model written, for convenience, in discrete time:

ne
St_St—l ::U‘+O—£t+zln(y:‘,)a t:]-a e Ta
i=1
where ¢ YN (0,1) and In(Y) YN (0,6?) and n; is the number of jumps which occur in the inter-
val [ t—1, ¢ ] ; the arrival of jumps is assumed to follow a Poisson process with parameter A. The
associated likelihood function is as follows:

T o0 i .
T N 1 —(zy — p — 05)?
L =-TIn(\) — = In(27) + E In E — exp < ,
2 =1 =0 I o? + 6% 2(02 + %))

The hypothesis of no jumps corresponds to A = 0. It is clear that in this case, the parameters
0, 62 are not identified under the null, and hence, following the results of Davies (1977, 1987), the
distribution of the associated LR statistic is non-standard and quite complicated. Although this problem
is well recognized by now, a x?(3) asymptotic distribution is often (inappropriately) used in empirical
applications of the latter LR test. See Diebold and Chen (1996) for related arguments dealing with
structural change tests.

Let 11, 52 denote the MLE under the null, i.e. imposing a Geometric Brownian Motion. Here
we argue that in this case, the MC p-value calculated as described above, drawing i.i.d. N(fi,52)
disturbances (with 7i and 2 taken as given) will not depend on 6 and §2. This follows immediately from
the implications of non-identification. Furthermore, the invariance to location and scale (¢ and o) is
straightforward to see. Consequently, the MC test described in the context of pivotal statistics will yield
exact p-values.

The problem of unidentified nuisance parameters is prevalent in econometrics. Bernard, Dufour,
Khalaf, and Genest (1998) consider another illustrative example: testing for ARCH-in-mean effects,
and show that the MC method works very well in terms of size and power.

5. Conclusion

In this paper, we have demonstrated that finite sample concerns may arise in several empirically pertinent
test problems. But, in many cases of interest, the MC test technique produces valid inference procedures
no matter how small your sample is.
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We have also emphasized that the problem of constructing a good test - although simplified - cannot
be solved just using simulations. Yet in most examples we have reviewed, MC test techniques emerge
as indispensable tools.

Beyond the cases covered above, it is worthwhile noting that the MC test technique may be applied
to many other problems of interest. These include, for example, models where the estimators themselves
are also simulation-based, e.g., estimators based on indirect inference or involving simulated maximum
likelihood. Furthermore, the MC test technique is by no means restricted to nested hypotheses. It is
therefore possible to compare non-nested models using MC LR-type tests; assessing the success of this
strategy in practical problems is an interesting research avenue.

Of course, the first purpose of the MC test technique is to control the probability of type I errors
(below a given level) so that rejections can properly be interpreted as showing that the null hypothesis
is “incompatible” with the data. However, once level is controlled, we can (and should) devote more
attention to finding procedures with good power properties. Indeed, by helping to put the problem of
level control out of the way, we think the technique of MC tests should help econometricians devote
research to power issues as opposed to level. So an indirect consequence of the implementation of the
technique may well be an increased emphasis on the design of more powerful tests.

Your data is valuable, and the statistical analysis you perform is often policy oriented. Why tolerate
questionable p-values and confidence intervals, when exact or improved approximations are available?
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