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Abstract

Tests in vector autoregressive (VAR) models are typically based on large-sample

approximations, involving the use of asymptotic distributions or bootstrap techniques. After

documenting that such methods can be very misleading even with fairly large samples, we

propose a general simulation-based technique that allows one to control completely test levels

in parametric VAR models. In particular, we show that maximized Monte Carlo tests

[Dufour, 2005. Monte Carlo tests with nuisance parameters: a general approach to finite-

sample inference and nonstandard asymptotics in econometrics. Journal of Econometrics,

forthcoming] can provide provably exact tests for such models, whether they are stationary or

integrated. Applications to order selection and causality testing are considered as special cases.

The technique developed is applied to a VAR model of the U.S. economy.
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1. Introduction

Vector autoregressive (VAR) models are widely used for multivariate time series
analysis, especially in econometrics; see Sims (1980), Lutkepohl (1993, 2001), Reinsel
(1993), Hamilton (1994), Hendry (1995), Gouriéroux and Monfort (1997), Dhrymes
(1998) and Clements and Hendry (2002). One reason for this popularity is that VAR
models are easy to estimate and can account for relatively complex dynamic
phenomena. Important features and applications based on such models include
forecasting, causality analysis (in the sense of Wiener, 1956, and Granger, 1969),
impulse responses, cointegration, etc.

VAR models, however, typically involve large numbers of parameters, so that the
usual statistical difficulties associated with dynamic models are compounded by high
dimensionality. Not surprisingly, statistical inference (tests and confidence sets) in
such models is almost universally based on large-sample approximations. Even in
static multivariate linear regression models, it is well-known that asymptotic
approximations can be very unreliable; see Dufour and Khalaf (2002). These
problems get worse in VAR models (which can be interpreted as dynamic
multivariate linear regressions), even if strong regularity assumptions (e.g.,
stationarity) are made: finite-sample distributions of usual test statistics are
complicated and depend on large numbers of unknown nuisance parameters.
Further, the presence of non-stationary variables—such as integrated processes—
can affect the asymptotic distributions and lead to further reliability problems; see,
for example, Sims et al. (1990), Johansen (1995), Hatanaka (1996), Tanaka (1996),
Dhrymes (1998), Hansen and Johansen (1998), Maddala and Kim (1998), and
McAleer and Oxley (1999). In particular, the appropriate asymptotic distribution
may depend on unknown features of the process (e.g., the integration order or the
number of cointegrating relationships). This is the case, for example, in causality
testing; see Sims et al. (1990) and Toda and Phillips (1993, 1994).

In view of alleviating the unreliability of asymptotic distributions for inference in
VAR models, bootstrap techniques (see Efron and Tibshirani, 1993; Hall, 1992) have
also been proposed; see, for example, Jeong and Maddala (1993), Li and Maddala
(1996), Paparoditis (1996), Berkowitz and Kilian (2000), Kilian and Demiroglu
(1997), Kilian (1998a,b), Caner and Kilian (1999), Inoue and Kilian (2002a,b).
Bootstrap methods can lead to spectacular improvements over standard asymptotic
approximations, but their justification remains intrinsically asymptotic. Further, it is
well-known that bootstrapping can fail to provide asymptotically valid tests when
the simulated test statistic has an asymptotic distribution involving nuisance
parameters, especially if the asymptotic distribution has discontinuities with respect
to the nuisance parameters; see Athreya (1987), Basawa et al. (1991), Sriram (1994),
Andrews (2000), Benkwitz et al. (2000), and Inoue and Kilian (2002a, 2003). This
type of situation can easily occur in VAR models.

In this paper, we propose a finite-sample simulated-based inference technique
applicable to parametric finite-order VAR models that allows one to control
completely the level of the test, despite the presence of large numbers of nuisance
parameters and without further assumptions on the structure of the process (such as
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stationarity or the order of integration). The disturbances in the VAR model may
follow any distribution that is specified up to a linear transformation (or covariance
matrix), which allows for both Gaussian and non-Gaussian distributions. The
central assumption is that the model can be simulated once a finite number of
parameters have been specified. The technique proposed is based on an extension of
the old technique of Monte Carlo (MC) tests (Dwass, 1957; Barnard, 1963;
Birnbaum, 1974), which we call maximized Monte Carlo (MMC) tests (Dufour,
2005). This method involves maximizing a simulated p-value function over the
nuisance’ parameter space. Two main variants of this method are considered: the
first one maximizes the simulated p-value function over the full nuisance parameter
space and yields provably exact tests of general restrictions on model parameters,
while the second variant considers a maximization restricted to a consistent set

estimator of the nuisance parameters. The latter can be viewed as an approximate
simplified version of the fully exact procedure (because the set over which the p-value
function is maximized can be much smaller); it provides asymptotically valid tests
without the need to establish the asymptotic distribution of the test statistic or to
make further assumptions on the structure of the process. We also consider local
Monte Carlo (LMC) tests which can be viewed as a degenerate version of the
simplified maximized procedure, obtained by replacing the consistent set estimator
by a consistent point estimate, and may be interpreted as parametric bootstrap test.
Of course, the latter procedure is not exact in finite samples and requires stronger
assumptions (to yield asymptotically valid tests) than the consistent set MC
procedure.

The method proposed is obviously computer intensive, and an important
contribution of this paper consists in showing that the proposed theoretical
approach can indeed be implemented in a high-dimensional setup, such as a VAR
model. For that purpose, we focus on likelihood ratio (LR) tests for two categories
of hypotheses: (1) the order of a VAR model; (2) Granger non-causality. We present
simulation evidence on tests for Granger non-causality which document three things.
First, standard tests based on asymptotic critical values can have catastrophic size
properties. Second, the LMC approach (or bootstrapping) does provide improve-
ments from that viewpoint, but can still allow for sizeable overrejection rates. Third,
under the same circumstances, the MMC approach does control level perfectly, even
we only use a consistent set estimator for the nuisance parameters, and provides
good power. In other words, the maximization operated by the MMC approach
yields effective corrections for possible failures of the bootstrap (both in finite
samples and asymptotically). We also apply the proposed method to causality testing
in a quarterly model of the U.S. economy, based on data previously studied in
Bernanke and Mihov (1998) and Dufour et al. (2005), involving non-borrowed
reserves, the federal funds rate, real gross domestic product, and the GDP deflator.

The paper is organized as follows. Section 2 describes the model and the main test
problems that will be studied. Section 3 presents the principles of MC tests and
MMC tests. In Section 4, we discuss how such procedures can be applied to LR-type
tests in VAR models. The results of our simulation study are presented in Section 5
and the empirical macroeconomic application in Section 6. We conclude in Section 7.
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2. Framework

In this paper, we consider a general k-dimensional finite-order VAR process fY t :
t 2 Zg of the form

Y t ¼ mþ
Xp

i¼1

FiY t�i þ ut; t ¼ 1; . . . ;T , (2.1)

ut ¼ Ret; t ¼ 1; . . . ;T , (2.2)

where the vectors Y t ¼ ðY 1t; . . . ;Y ktÞ
0, t ¼ �pþ 1; . . . ;T , are observable, p is a

specified non-negative integer ðpX1Þ; m ¼ ðm1; . . . ;mkÞ
0 is an unknown k � 1 vector

of intercept terms, Fi ¼ ½Fijl �j;l¼1;...;k, is an unknown k � k matrix of fixed coefficient
matrices ð1pippÞ, R is an unknown fixed non-singular matrix, and the conditional
distribution of the vector eðTÞ ¼ vecðe1; . . . ; eT Þ, given the initial values
Y 0; . . . ;Y�pþ1, is completely specified. A common special case here would consist
in assuming that

et �
i:i:d:

N½0; Ik�; t ¼ 1; . . . ;T , (2.3)

given the initial values, so that the errors are independent and identically distributed
(i.i.d.) according to a multinormal distribution N½0;S� with S ¼ RR0. But, from the
viewpoint of implementing the procedures proposed in this paper, assumptions
(2.1)–(2.2) will be sufficient. For example, there is no need to assume normality or
even the existence of moments.

Setting

FðzÞ ¼ Ik �
Xp

i¼1

Fiz
i; z 2 C, (2.4)

the model is said to be stationary if

detfFðzÞga0 for all jzjp1 (2.5)

and it is stable (non-explosive) if

detfFðzÞga0 for all jzjo1; (2.6)

stable models allow for the presence of roots on the unit circle for the equation
detfFðzÞg ¼ 0. Note, however, that stationarity (or stability) assumptions will not be
needed for the validity of the procedures proposed in this paper, so cointegrating
relations may be present. The central feature we shall exploit is the fact that the
model can be easily simulated, once a finite number of parameters is specified.

In this paper, we consider the problem of testing general hypotheses of the form

H0 : vecðFÞ 2 G0, (2.7)

where F ¼ ½F1; . . . ;Fp�, and G0 � Rk2p. This covers both linear and nonlinear
hypotheses on model coefficients. In our simulations and applications, however, we
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shall focus on linear hypotheses, more precisely:
1.
 hypotheses on individual coefficients:

H0ðF0
ijlÞ : Fijl ¼ F0

ijl , (2.8)
2.
 hypotheses on the order of the process:

H0ðiÞ : Fi ¼ 0 (2.9)

and

H0½i; p� : Fi ¼ � � � ¼ Fp ¼ 0, (2.10)
3.
 non-causality in the sense of Granger (1969):

H0ðY lQY jÞ : Fijl ¼ 0; i ¼ 1; . . . ; p. (2.11)

The distribution of most standard test statistics (such as Wald-type, LM-type or
LR-type statistics) for hypotheses on the coefficients of VAR models typically
depends (under the null hypothesis) on both the hypothesis tested and unknown
nuisance parameters. To be more precise, if we denote by H0 the set of data
distributions F—or data generating processes (DGPs)—compatible with H0, the null
hypothesis can be written in the form

H0 : F 2H0. (2.12)

Then a test of H0 has level a iff

PF ½Rejecting H0�pa for all F 2H0 (2.13)

or, equivalently,

sup
F2H0

PF ½Rejecting H0�pa (2.14)

and the test has size a iff

sup
F2H0

PF ½Rejecting H0� ¼ a, (2.15)

see Lehmann (1986, Chapter 3). If we also had

PF ½Rejecting H0� ¼ a for all F 2H0, (2.16)

the test would be similar. But, in complex models, this appears extremely difficult to
achieve with any reasonable procedure that depends on the data. So we will focus on
designing tests that satisfy as closely as possible the level restriction (2.13) in finite
samples. So one needs a method that can adapt readily to both these features. We
will now describe such a method.
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3. Monte Carlo tests

In this section, we describe in a succinct way the general approach that will allow
us to construct finite-sample tests for any VAR model, such as the one described in
Section 2. To ensure clarity, we describe first the basic principle underlying MC tests
by considering two basic cases: (1) the distribution of the test statistic under the null
hypothesis does not depend on nuisance parameters; (2) the distribution of the test
statistic depends on nuisance parameters. Of course, the second case is the relevant
one for inference in VAR models. To deal with it, we consider three alternative
approaches: (a) MMC tests over the full nuisance parameter case; (b) MMC tests
over a consistent set estimator of the nuisance parameters; (c) LMC tests, i.e. MC
tests obtained after replacing the unknown nuisance parameters by a point estimate.
To simplify exposition, we limit ourselves to the case where the test statistic has a
continuous distribution, although it is relatively easy to extend MC test methods to
situations where the statistic follows a discrete distribution under the null hypothesis.
Further details and proofs are provided in Dufour (2005) and Dufour and Khalaf
(2001).

3.1. Monte Carlo tests without nuisance parameters

Let S � SðY 1; . . . ;Y T Þ be a test statistic for testing an hypothesis H0, with critical
region of the form:

SXc. (3.1)

We will denote by S0 the value of the test statistic based on the observed data.
Suppose now that the distribution of S under H0 does not depend on unknown
nuisance parameters (and is continuous). The test has level a if

P½S0Xc�pa (3.2)

and size a if

P½S0Xc� ¼ a. (3.3)

Suppose now we can generate by simulation N i.i.d. replications of S under H0,

S1; . . . ;SN (3.4)

independently of S0. We can then estimate the survival function

GðxÞ ¼ P½SXx� (3.5)

from the simulated samples

ĜN ½x;SðNÞ� ¼
1

N

X
i¼1

N

sðSi � xÞ, (3.6)

where

SðNÞ ¼ ðS1; . . . ;SN Þ
0, (3.7)
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sðxÞ ¼ 1 if xX0,

¼ 0 if xo0. ð3:8Þ

Let us also consider

p̂NðxÞ ¼
NĜN ½x;SðNÞ� þ 1

N þ 1
(3.9)

the simulated p-value function associated with SðNÞ. Then, if N is chosen so that
aðN þ 1Þ is an integer, it can be shown that, under H0,

P½p̂NðS0Þpa� ¼ a. (3.10)

In other words, the test which rejects H0 when p̂ðS0Þpa has level a exactly.

3.2. Monte Carlo tests with nuisance parameters

We will now study the case where the distribution of the test statistic depends on
nuisance parameters. In other words, we consider a model fðZ;AZ;PyÞ : y 2 Og
where we assume that the distribution of S is determined by Pȳ (i.e. ȳ is the ‘‘true’’
parameter vector). We wish to test the hypothesis

H0 : ȳ 2 O0, (3.11)

where O0 � O. The critical region fSXcg, where c is a constant which does not
depend on y, has level a if and only if

Py½SXc�pa 8y 2 O0, (3.12)

or, equivalently,

sup
y2O0

G½S j y�pa, (3.13)

where

G½x j y� ¼ Py½SXx�. (3.14)

Suppose now that, for each y 2 O0, we generate N i.i.d. replications of S,

SðN; yÞ ¼ ½S1ðyÞ; . . . ;SNðyÞ�1

and compute a simulated p-value function

p̂N ½x j y� ¼
NĜN ½x;SðN; yÞ� þ 1

N þ 1
. (3.15)

If aðN þ 1Þ is an integer, then, under H0,

P½supfp̂N ½S0 j y� : y 2 O0gpa�pa, (3.16)

which means that the critical region supfp̂N ½S0 j y� : y 2 O0gpa has level a. This
procedure will be called a MMC test. It allows one to obtain provably exact tests
based on any statistic that can be simulated once a finite number of nuisance
parameters have been specified.
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The simulated p-value function p̂N ½S0 j y� is not continuous, so standard gradient-
based methods cannot be used to maximize it. But search methods applicable to non-
differentiable functions are applicable, e.g. simulated annealing (see Goffe et al.,
1994).

3.3. MMC tests based on consistent set estimators

Suppose now that the test statistic depends on a sample of size T ,

S ¼ ST , (3.17)

and we have a consistent set estimator CT of y (under H0Þ:

lim
T!1

P½ȳ 2 CT � ¼ 1. (3.18)

For example, if ŷT is a consistent point estimate of ȳ and c is any positive constant,
the set

CT ¼ fy 2 O : kŷT � ykocg (3.19)

is a consistent set estimator of ȳ:

lim
T!1

P½ȳ 2 CT � ¼ lim
T!1

P½kŷT � ȳkoe� ¼ 1; 8e40. (3.20)

Assuming that, for each y 2 O0, we can generate N i.i.d. replications of ST , say
ST1ðyÞ; . . . ;STN ðyÞ, we have, under H0:

lim
T!1

P½supfp̂TN ½ST0 j y� : y 2 CT gpa�pa, (3.21)

where ST0 is the value of ST based on the observed data, and

p̂TN ½x j y� ¼
NĜN ½x;ST ðN ; yÞ� þ 1

N þ 1
; ST ðN; yÞ ¼ ½ST1ðyÞ; . . . ;STN ðyÞ�0. (3.22)

In other words, the critical region supfp̂TN ½ST0 j y� : y 2 CT gpa has level a. No
assumption on the asymptotic distribution of ST is needed.

An obvious alternative would consist in taking

CT ¼ fŷT g, (3.23)

which suggests one to use a critical region of the form

p̂TN ½ST0 j ŷT �pa. (3.24)

We shall call this procedure a LMC test. Under additional regularity conditions, it is
possible to show that

lim
T!1

P½p̂TN ½ST0 j ŷT �pa�pa, (3.25)

but the conditions under which this holds are notably more restrictive than those
under which (3.21) obtains. This procedure may also be interpreted as a parametric

bootstrap, except for the fact that the number of replications N is explicitly taken into
account.
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A good consistent restricted estimate ŷT is typically a reasonable starting point for
computing the MMC p-value. Since

p̂TN ½ST0 j ŷT �p supfp̂TN ½ST0 j y� : y 2 O0g, (3.26)

it is clear that

p̂TN ½ST0 j ŷT �4a (3.27)

implies

supfp̂TN ½ST0 j y� : y 2 O0g4a. (3.28)

A non-significant bootstrap p-value entails a non-significant MMC p-value. The
MMC procedure offers protection against failures of the bootstrap.
4. Tests in VAR models

We will now consider the problem of testing restrictions on the coefficients F of
model (2.1)–(2.2). Even though various procedures, such as Wald-type, LM-type or
LR-type tests, may be used, we will concentrate here on LR tests based on statistics
of the form

LR ¼ 2½lnLðd̂Þ � lnLðd̂
0
Þ�, (4.1)

where Lð�Þ is the likelihood function, d̂ is the unconstrained maximum likelihood
(ML) estimator of parameter vector d � vec½m;F;R� obtained by maximizing the
likelihood function over the full feasible parameter space, and d̂

0
is the constrained

ML estimator. Since a specific likelihood function must be specified, we shall focus
on Gaussian LR statistics.

Under the assumption that the errors ut; t ¼ 1; . . . ;T , conditional on the initial
values Y�p ¼ vec½Y 0; . . . ;Y�pþ1�, are i.i.d. N½0;S�, the likelihood function is

LðdÞ ¼ k�
T

2
ln jSj �

1

2

XT

t¼1

u0tS
�1ut, (4.2)

where k is a constant and

ut ¼ Y t � m�
Xp

i¼1

FiY t�i; t ¼ 1; . . . ;T . (4.3)

Then the (conditional) LR statistic for testing any hypothesis of the form H0 :
vecðFÞ 2 G0 is

LRG ¼ T lnðL0
T Þ (4.4)

with

L0
T ¼ jŜ

0

T j=jŜT j, (4.5)
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where Ŝ
0

T and ŜT are, respectively, the restricted and unrestricted ML estimators of
the error covariance matrix S. For stationary processes, under standard regularity
conditions, the asymptotic distribution of the LR statistic under the null hypothesis
is chi-square with number of degrees equal to the number of (linearly independent)
constraints. This will be the case in particular for zero coefficient restrictions
(2.8), restrictions on the order of the process (2.10) and Granger non-causality
restrictions (2.11).

For example, consider the problem of testing a Granger non-causality hypothesis,
such as H0ðY lQY jÞ in (2.11). Here, all the coefficients of the VAR which are not
fixed by this null hypothesis—i.e. the unknown coefficients of m, F or R—may
appear as nuisance parameters in the distribution of LRG. Further, once the
nuisance parameters are set, model (2.1)–(2.2) and the corresponding test statistic
can be simulated. So we propose using MC test procedures adapted to the presence
of nuisance parameters, in particular MMC tests. This means applying the MMC
procedures described in Section 3 with SðyÞ replaced by LRG, where y may stand for
the elements of d which are fixed by the null hypothesis.

Such procedures are obviously computer intensive and require dynamic
simulations of the process under various parameter configurations (compatible with
the null hypothesis). Explosive parameter are not necessarily excluded by the
estimation procedure or the model considered. But parameter values can lead to
numerical problems (overflows), so one may wish to exclude explosive processes. In
VAR models, such restrictions may not be easy to impose. For that purpose, it is
useful to note that the roots of the determinantal equation det½FðzÞ� ¼ 0 are identical
with the inverses of the eigenvalues of the matrix

F̄ ¼

F1 F2 � � � Fp�1 Fp

Ik 0 � � � 0 0

0 Ik � � � 0 0

..

. ..
. ..

. ..
.

0 0 � � � Ik 0

2
66666664

3
77777775
. (4.6)

The corresponding VARðpÞ process is stationary when these eigenvalues are all inside

the unit circle (see Lütkepohl, 1993, Chapter 2; Dufour and Jouini, 2004, Appendix).
Given the availability of efficient algorithms for computing eigenvalues, this can
provide a useful way of excluding explosive processes or limiting the degree of
explosion.

The algorithm for computing the MC p-values can be described as follows:
1.
 choose the restricted subset of the parameter space O0 over which the
maximization required by the MMC procedure will be performed; O0 may be
the whole parameter space restricted by the null hypothesis (and, eventually, by
stationarity or stability restrictions) or a consistent restricted set estimator;
2.
 compute the test statistic LRð0Þ based on the observed data;
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3.
 generate i.i.d. error vectors eðlÞ ¼ ½eðlÞ1 ; . . . ; e
ðlÞ
T �, l ¼ 1; . . . ;N, according to the

selected distribution—for example, eðlÞt �
i:i:d:

N½0; Ip�, t ¼ 1; . . . ;T—and construct

pseudo-samples as functions of the model parameter vector d ¼ vec½m;F;R�:

Y
ðlÞ
t ¼ mþ

Xp

i¼1

FiY
ðlÞ
t�i þ ReðlÞt ; t ¼ 1; . . . ;T ; l ¼ 1; . . . ;N; (4.7)
4.
 compute the corresponding test statistics as LRðlÞðdÞ; l ¼ 1; . . . ;N, which in turn
can be viewed as functions of d and eðlÞ;
5.
 compute the simulated p-value function

p̂N ½x j d� ¼
NĜN ½x j d� þ 1

N þ 1
; ĜN ½x j d� ¼

1

N

X
l¼1

N

sðLRðlÞðdÞ � xÞ; (4.8)
6.
 compute the LMC p-value p̂N LRð0Þ j d̂
0

T

h i
, where d̂

0

T is the constrained estimator

based on the observed data; if p̂N ½LRð0Þ j d̂
0

T �4a, the LMC test is not significant at

level a and it is clear the MMC test does not reject either at level a (so the process
can be stopped).

The procedure just described can be interpreted as the generation of a parametric
bootstrap p-value. Of course, to the extent that the point estimate is typically
different from the ‘‘true’’ parameter, the test so obtained is not exact. The MMC
procedure involves maximizing the p-value function over the nuisance parameter
space, as follows:
1.
 compute the maximized p-value

p̂MMC ¼ supfp̂N ½LRð0Þ j d� : d 2 O0g; (4.9)
2.
 reject the null hypothesis at level a if p̂MMCpa.

When evaluating p̂MMC, it is important to note that d is the only free variable; the
observed test statistic and the simulated errors eðlÞ, l ¼ 1; . . . ;N, are treated as fixed.
Even if the LMC test procedure is not significant, it may still be of interest to
compute p̂MMC to get a better idea how strongly the null is accepted. As indicated
above, the maximization yields a procedure such that the probability of rejection
under the null hypothesis is not larger than the level, irrespective of the unknown
value of the nuisance parameters. In practice, a reasonable strategy would consist in

maximizing the p-value function by taking d ¼ d̂
0

T as the starting value: even if the

maximization is not complete, this provides an immediate safeguard against
bootstrap p-values that would be highly sensitive to nuisance parameters. As
described in Section 3.3, if the region over which we maximize is properly designed
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(as a consistent set estimator), this yields an asymptotically valid test even if the
parametric bootstrap test does not.
5. Simulation experiment

In this section, we present simulation evidence on the performance of three basic
types of procedures for hypothesis testing in VAR models: (1) standard tests based
on asymptotic chi-square critical values; (2) LMC tests (or parametric bootstrap
tests), based on a single consistent restricted estimator of model nuisance parameters;
(3) MMC tests. In view of allowing for VAR processes which are non-stationary
(integrated) or with roots close to unit circle, we also consider lag-augmented Wald
tests proposed by Dolado and Lütkepohl (1996), Toda and Yamamoto (1995),
Yamada and Toda (1998) and Dufour et al. (2005).1 The latter procedure has the
feature of leading to usual normal (or chi-square) asymptotic distributions, even
when the process is integrated, so that we can expect smaller size distortions. Below,
we shall consider parametric and non-parametric bootstrap versions of this
procedure. A detailed description of the way lag-augmented Wald tests were
implemented in this study is presented in Appendix A.2

For the purpose of this experiment, we considered standard VARðpÞ models with
Gaussian disturbances:

Y t ¼
Xp

i¼1

FiY t�i þ ut; t ¼ 1; . . . ;T , (5.1)

ut ¼ Ret; t ¼ 1; . . . ;T , (5.2)

et �
i:i:d:

N½0; Ik�; t ¼ 1; . . . ;T . (5.3)

The null hypothesis tested is Granger non-causality

H0 : ðY 2; . . . ;Y kÞQY 1 (5.4)

which is equivalent to

H0 : Fi1l ¼ 0; i ¼ 1; . . . ; p; l ¼ 2; . . . ; k. (5.5)

Various dimensions ðk ¼ 2; . . . ; 6Þ, autoregressive orders ðp ¼ 1; . . . ; 5Þ, sample
sizes (T ¼ 30; 50; 100; 200; 300) and parameter structures ðFÞ were considered. Under
the null hypothesis, the data generating processes have the following relatively
simple structure:

FðLÞ ¼ ð1� jLÞp 	 Ik, (5.6)
1For related results, see also Sims et al. (1990), Park and Phillips (1989), Choi (1993), Yamamoto (1996),

and Kurozumi and Yamamoto (2000).
2We are grateful to a referee for suggesting that we study such a method in the context of our

simulation.
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where j is scalar which determines the degree of persistence in the series. Clearly, the
process is stationary when jjjo1. R is a non-singular lower triangular matrix (the
values of R used in this experiment are given in Appendix B). The nominal level of
the tests is 0:05. The test statistic considered is the LR-type statistic described in
Section 4. MC tests (local and maximized) are based on N ¼ 99 replications for
Tables 1, 5 and 6, N ¼ 999 for Tables 2–4, while the number of trials used for
evaluating rejection frequencies is 1000.3 LMC tests are based on the restricted ML
estimator, while the MMC tests are based on maximizing the p-value in a box
obtained by taking 5 units on each side of the restricted ML estimator. Some of the
results of our experiment are presented in Tables 1–5 (rejection proportions are
expressed in percentages). In Table 1, models M0, M1, M2, M3, M4 are based,
respectively, on the following values of the persistence parameter: j ¼ 0:9, 0.95, 0.99,
ð0:95Þkp, ð0:99Þkp. In Table 5, models M2 (panel A) and M0 (panels B, C) are the
basic models used, except for modifications to Fi1l in order to evaluate power.
Namely, power is assessed by changing the values of the coefficients Fi1l , i ¼ 1; . . . ; p,
as follows: Fi1l ¼F̄i1lðpÞa0, l ¼ 2; . . . ; k, where F̄i1lðpÞ depends on the order p of the
process: F̄i1lð1Þ ¼ 0:1, F̄i1lð2Þ ¼ 0:02, and F̄i1lðpÞ ¼ 0:01 for p ¼ 3; 4; 5. Initial values
were set equal to zero. The simulations were all run with GAUSS.

From the results in Tables 1 and 5, we see clearly that asymptotic tests based on
standard chi-square critical values can have catastrophic size properties, with
rejection frequencies as high as 0.97 (instead of 0.05). Using LMC (or bootstrap)
tests does provide important improvements, but overrejections can still be much
higher than the level (for example, 0.59 rather than 0.05). Interestingly, the lag-
augmented Wald tests can also severely over-reject, even when they are implemented
using bootstrap methods (Tables 2–4). By contrast, in Table 5, we can see that the
MMC procedure controls very well the level of the test allows and provides good
power under the alternative. Indeed it is the only method that allows one to do that.4

Finally, Table 6 shows that the MMC has power which behaves in a normal way,
increasing as the model moves away from the null hypothesis.
6. Application to a VAR model of the U.S. economy

In this section, we present an application of the techniques proposed above to test
Granger causality in a context of a VAR model involving four U.S. macroeconomic
variables. The data used come from a study of U.S. monetary policy due to
Bernanke and Mihov (1998); see also Dufour et al. (2005). This data set consists of
monthly observations on non-borrowed reserves (NBR, also denoted M), the federal
funds rate (FFR, r), real gross domestic product (GDP, y), the GDP deflator
(GDPD, P). The monthly data on GDP and GDP deflator were constructed by state
3This relatively small number was used because the restricted model requires a nonlinear estimation and

the simulation-based tests are themselves computer intensive.
4We do not report power evaluations for the asymptotic and bootstrap tests, because the level of these

procedures cannot be controlled in practice.
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Table 1

Empirical levels of Granger causality tests with nominal level a ¼ 0:05: (A) VAR(1) models with different

dimensions k ¼ 2; 3; 4; 5; 6; T ¼ 30; (B) bivariate VARðpÞ models, p ¼ 1; 2; 3; 4; 5; T ¼ 30; (C) VAR

models [(5.6) with j ¼ 0:90]

k Model M0 Model M1 Model M2

ASYlr LMC
pa
lr

ASYlr LMC
pa
lr

ASYlr LMC
pa
lr

(A)

2 9.9 6.1 12.7 7.1 15.3 7.7

3 13.4 6.5 16.3 7.6 19.5 8.6

4 17.7 7.1 21.3 8.7 26.2 9.3

5 21.8 7.9 25.2 9.4 29.6 10.7

6 26.3 8.8 32.4 10.2 35.1 12.1

p Model M0 Model M3 Model M4

ASYlr LMCpa
lr

ASYlr LMCpa
lr

ASYlr LMCpa
lr

(B)

1 10.0 5.3 14.1 7.6 16.3 7.8

2 25.9 10.6 28.0 10.4 32.5 10.2

3 44.9 17.9 39.8 13.3 50.1 18.0

4 64.8 26.5 47.8 14.7 64.5 25.9

5 76.7 36.4 60.0 16.8 75.3 30.8

T k 2 3 4 5

p ASYlr LMCpa
lr

ASYlr LMCpa
lr

ASYlr LMCpa
lr

ASYlr LMCpa
lr

(C)

50 1 7.9 4.8 10.6 5.9 13.1 7.8 16.5 7.2

2 16.8 7.8 30.6 9.8 45.8 13.6 60.5 18.6

3 35.3 11.8 62.2 19.8 81.7 26.2 91.7 37.9

4 57.0 18.9 83.2 34.1 93.5 49.5 97.0 59.0

5 69.4 26.5 91.0 49.8 96.9 58.2 97.7 59.3

100 1 7.2 5.2 9.5 5.9 10.3 6.7 10.5 4.9

2 11.0 5.9 16.7 7.2 24.6 8.0 36.7 10.9

3 20.2 8.8 34.9 10.0 60.6 14.1 78.0 20.3

4 34.4 10.2 68.7 16.6 88.8 33.5 96.8 48.6

5 53.4 15.0 87.2 33.5 98.8 45.4 98.1 50.2

200 1 5.7 5.5 6.0 4.3 7.2 5.1 7.5 5.1

2 8.9 5.7 10.5 6.3 14.4 7.4 17.8 6.0

3 11.7 5.9 18.8 7.2 26.5 7.5 42.6 10.7

4 16.2 6.8 30.6 8.8 54.4 11.5 73.9 18.2

5 24.5 9.0 51.4 12.0 82.6 19.1 96.0 25.0

300 1 5.5 4.4 6.5 5.4 6.6 4.6 8.3 6.1

2 7.4 5.5 9.0 6.3 9.3 4.3 14.0 6.7

3 8.3 4.8 13.1 5.7 18.0 7.3 23.9 7.5

4 10.4 4.8 17.0 5.2 28.3 5.8 49.7 9.8

5 13.1 5.8 27.0 7.1 55.6 11.8 78.9 16.1

Note: ASYlr stays for the asymptotic test based on the likelihood ratio statistic while LMCpa
lr is the

corresponding local MC (parametric bootstrap) p-value. Models M0, M1, M2, M3 and M4 correspond to

(5.6) with j ¼ 0:90, 0.95, 0.99, ð0:95Þkp, ð0:99Þkp, respectively. The proportions in this table as well

subsequent tables are written in percentages.
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Table 2

Causality tests based on lag-augmented Wald statistics

T 50 100 200 300

ðk; pÞ ASYaw LMCpa
aw LMCnp

aw ASYaw LMCpa
aw LMCnp

aw ASYaw LMCpa
aw LMCnp

aw ASYaw LMCpa
aw LMCnp

aw

ð2; 1Þ 8.1 5.4 5.3 6.9 5.9 5.4 4.8 4.5 4.5 4.7 4.3 4.5

ð2; 2Þ 11.6 5.0 5.2 9.0 5.7 5.5 6.6 5.0 4.8 4.7 4.1 4.1

ð2; 3Þ 30.7 9.3 9.6 15.8 6.4 6.5 11.0 7.0 7.1 7.1 4.8 4.7

ð2; 4Þ 58.3 16.1 15.9 30.0 9.3 9.1 11.5 4.7 4.5 9.1 5.5 5.2

ð2; 5Þ 79.5 22.9 23.2 50.9 13.2 13.0 19.4 4.7 4.8 11.6 4.3 4.5

ð3; 1Þ 9.9 5.7 5.5 7.5 5.3 5.9 6.5 5.4 4.8 6.2 5.6 5.9

ð3; 2Þ 24.9 8.4 8.4 9.9 5.1 4.8 6.7 3.8 4.0 7.0 5.0 4.6

ð3; 3Þ 63.1 13.1 13.6 32.8 8.7 8.7 14.2 5.5 5.9 10.1 5.0 4.8

ð3; 4Þ 90.8 29.6 28.9 63.1 15.3 15.4 31.1 9.0 8.9 17.3 5.9 6.0

ð3; 5Þ 98.4 41.3 40.4 89.6 31.4 32.0 53.4 10.4 10.4 25.6 6.1 6.2

ð4; 1Þ 13.2 5.4 4.8 8.3 5.1 5.6 7.2 5.5 5.7 5.3 4.4 4.4

ð4; 2Þ 40.6 9.3 9.6 19.9 6.6 6.4 9.9 4.6 5.1 7.3 4.9 4.8

ð4; 3Þ 84.4 21.1 21.0 53.9 12.9 12.5 23.9 6.6 7.1 15.2 6.2 6.2

ð4; 4Þ 99.0 38.5 37.4 88.6 26.7 26.4 49.5 10.4 10.4 28.3 7.1 7.1

ð4; 5Þ 100 49.8 49.6 98.7 50.0 49.7 83.6 19.4 19.5 52.9 8.2 8.7

ð5; 1Þ 16.2 6.1 6.4 6.8 3.7 3.5 7.6 5.9 5.8 6.6 4.8 5.0

ð5; 2Þ 54.5 9.8 9.8 29.0 8.4 8.3 12.6 5.4 5.7 9.9 5.7 5.7

ð5; 3Þ 95.2 25.1 24.8 73.0 16.2 17.3 37.9 7.9 7.8 22.0 5.7 5.9

ð5; 4Þ 100 46.6 47.3 97.4 39.0 38.9 75.5 16.4 16.2 41.7 8.6 8.7

ð5; 5Þ 100 61.4 60.9 100 65.9 65.5 96.5 33.5 33.6 76.7 14.4 14.8

Note: ASYaw represents asymptotic p-values for the lag-augmented Wald statistic, while LMCpa
aw and

LMCnp
aw are the related parametric and non-parametric bootstrap p-values, respectively.

Empirical levels of asymptotic, parametric bootstrap and non-parametric bootstrap procedures ða ¼ 0:05Þ.
Autoregressive matrix polynomials of the form (5.6) with j ¼ 0:90.
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space methods from quarterly observations (see Bernanke and Mihov, 1998, for
more details). The sample goes from January 1965 to December 1996. In what
follows, all the variables were transformed by a logarithmic transformation. For the
purpose of the study, the data were also aggregated to get quarterly observations
(using arithmetic averages) and put in first differences so that we roughly consider
growth rates.5 MC tests in this example are based on N ¼ 999 replications, while the
MMC tests are based on maximizing the p-value in a box obtained of five units on
each side of the restricted ML estimator.

The first problem we face consists in specifying the order of the VAR. Using
quarterly data, we found that the MC tests reject much less often than the
asymptotic procedure: LMC tests are significant procedure at level 5% for the orders
0; 1; 2; 3; 8; 9 (plus 7 at level 10%), while the MMC tests are significant at level 5%
only for the orders 0; 1; 2; 3 (plus the orders 7; 8 and 9 at level 10%). In view of these
5The results on the monthly models are available in a discussion paper (Dufour and Jouini, 2004).
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Table 3

Causality tests based on lag-augmented Wald statistics

T 50 100 200 300

ðk; pÞ ASYaw LMCpa
aw LMCnp

aw ASYaw LMCpa
aw LMCnp

aw ASYaw LMCpa
aw LMCnp

aw ASYaw LMCpa
aw LMCnp

aw

ð2; 1Þ 6.5 3.8 3.9 5.2 4.2 3.6 5.6 5.3 5.4 5.6 5.5 5.2

ð2; 2Þ 18.3 7.2 7.0 8.9 4.8 4.8 6.4 4.2 4.3 5.9 5.1 5.2

ð2; 3Þ 38.0 11.4 11.6 22.3 8.3 8.2 14.2 6.1 6.3 10.7 6.3 6.2

ð2; 4Þ 70.4 24.1 24.1 51.1 18.0 17.4 25.0 8.0 8.2 15.4 7.6 6.6

ð2; 5Þ 85.5 31.4 31.3 68.7 22.8 23.1 41.3 11.4 11.3 28.4 8.5 8.1

ð3; 1Þ 11.9 6.6 6.1 7.0 4.8 4.8 4.8 4.1 3.8 6.5 5.6 5.6

ð3; 2Þ 28.9 8.2 8.2 17.9 8.0 7.0 10.4 6.5 6.5 7.6 5.2 5.4

ð3; 3Þ 72.5 19.8 19.7 48.3 15.3 15.3 24.0 6.9 7.0 16.5 7.9 7.9

ð3; 4Þ 92.9 37.1 37.3 79.5 31.0 31.0 54.8 17.7 17.9 35.1 10.5 10.7

ð3; 5Þ 99.0 43.7 43.5 94.9 46.4 46.2 81.9 24.2 24.0 62.5 12.1 12.5

ð4; 1Þ 13.8 5.5 6.2 9.5 6.3 6.1 5.0 3.4 3.7 6.3 5.4 5.5

ð4; 2Þ 47.6 10.9 10.9 24.6 6.8 7.2 14.1 6.6 6.5 10.4 5.7 5.7

ð4; 3Þ 89.1 27.7 27.6 68.3 18.1 18.7 45.3 13.5 13.6 28.2 9.5 9.5

ð4; 4Þ 99.1 44.0 44.6 94.7 42.6 43.3 83.5 25.6 24.5 64.2 15.1 15.3

ð5; 1Þ 17.4 6.5 6.5 10.4 5.2 5.1 5.6 3.6 3.4 6.3 5.3 5.1

ð5; 2Þ 60.2 12.7 12.1 37.3 10.0 9.7 19.1 6.5 6.4 15.3 6.4 6.2

ð5; 3Þ 97.7 33.9 34.3 81.8 27.3 27.2 63.3 17.2 17.2 43.1 11.6 11.7

ð5; 4Þ 100 56.0 55.9 98.7 56.0 55.7 94.7 38.1 37.2 82.3 22.0 21.8

Empirical levels of asymptotic, parametric bootstrap and non-parametric bootstrap procedures ða ¼ 0:05Þ.
Autoregressive matrix polynomials of the form (5.6) with j ¼ 0:95.
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results and the quarterly frequency of the data, we present here results based on a
VAR(4) for Granger causality testing.6 The results on testing Granger causality are
presented in Table 7.

Based on the VAR(4) model, we can identify the following significant relationships
(according to MMC tests): at level 5%,

M �! r  ! y (6.1)

and at level 10%

M �! r  ! y

#

P

. (6.2)

Interestingly, these results appear to be consistent with a monetarist interpretation of
the relationship between money and income, where money Granger causes interest
rates which in turn causes (and is caused by) income.
6Detailed results on order selection tests are available in a discussion paper (Dufour and Jouini, 2004).
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Table 4

Causality tests based on lag-augmented Wald statistics

T 50 100 200 300

ðk; pÞ ASYaw LMCpa
aw LMCnp

aw ASYaw LMCpa
aw LMCnp

aw ASYaw LMCpa
aw LMCnp

aw ASYaw LMCpa
aw LMCnp

aw

ð2; 1Þ 7.9 4.4 4.5 6.8 5.5 5.2 5.5 5.2 5.3 4.9 4.5 4.8

ð2; 2Þ 21.2 8.7 8.3 12.4 5.7 5.7 9.1 5.4 6.0 6.6 4.9 4.8

ð2; 3Þ 48.5 16.4 16.6 36.6 14.6 15.1 18.2 6.8 7.2 12.3 6.7 6.9

ð2; 4Þ 70.2 29.1 29.0 61.2 24.1 24.4 38.2 14.3 13.8 22.0 8.9 9.0

ð2; 5Þ 84.4 27.4 27.8 73.8 23.6 23.8 57.0 14.2 14.4 31.7 10.4 9.7

ð3; 1Þ 10.8 5.4 5.3 6.8 4.6 4.6 6.9 5.9 5.8 6.3 5.6 6.1

ð3; 2Þ 34.8 11.3 11.5 22.9 9.5 9.8 11.7 4.9 5.0 9.4 6.1 6.6

ð3; 3Þ 75.9 27.0 26.8 60.2 22.2 22.3 40.4 14.6 14.6 21.3 6.2 6.3

ð3; 4Þ 95.2 45.5 45.2 86.5 38.1 38.5 70.8 24.0 23.2 46.7 13.4 14.0

ð3; 5Þ 98.4 42.1 41.7 94.2 36.9 37.4 87.2 30.2 30.2 72.1 16.4 16.0

ð4; 1Þ 15.3 6.5 6.5 8.7 5.8 5.8 7.5 6.0 6.2 6.5 5.4 5.4

ð4; 2Þ 50.3 13.3 13.1 32.5 9.9 10.5 19.9 9.1 9.2 13.1 7.1 6.7

ð4; 3Þ 92.0 34.9 34.6 79.9 29.5 29.3 57.0 17.5 18.3 35.8 9.4 10.2

ð4; 4Þ 99.1 49.9 51.1 95.4 52.1 51.7 88.9 38.0 37.8 73.6 19.7 19.5

ð5; 1Þ 17.2 5.2 5.2 9.2 4.3 4.4 8.1 5.4 5.6 6.5 4.8 5.1

ð5; 2Þ 66.3 16.1 15.1 42.0 13.6 13.5 24.2 8.6 8.8 17.9 7.6 7.8

ð5; 3Þ 98.3 38.4 38.7 90.2 35.7 35.6 71.9 22.6 22.1 51.7 14.4 14.4

ð5; 4Þ 100 56.5 56.1 99.6 59.6 59.7 97.5 47.1 47.6 91.1 29.9 30.4

Empirical levels of asymptotic, parametric bootstrap and non-parametric bootstrap procedures (a ¼ 0:05Þ.
Autoregressive matrix polynomials of the form (5.6) with ðj;TÞ ¼ ð0:99; 50Þ, ð0:98; 100Þ, ð0:97; 200Þ and
ð0:96; 300Þ.
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7. Conclusion

In this paper, we have proposed a general simulation-based method to produce
finite-sample tests in parametric VAR models with known lag order (or a known
upper bound on the order of the process). The method has the important feature that
no other assumption is needed on the structure of the underlying process: all that is
required is the possibility of simulating the model once a finite number of parameters
has been specified. For example, the VAR process may be integrated of any order.
We also showed that the proposed method can be implemented in practice, despite
the presence of a large number of nuisance parameters. In a simulation experiment,
we saw clearly that both standard asymptotic as well as bootstrap procedures can
suffer from severe size distortions, while, under the same conditions, the MMC
method controls the level of the test perfectly (as expected), although its size could be
lower than the test. To best of our knowledge, no other available procedure has these
features. We also provided an application to Granger causality testing in a four-
variable macroeconomic model of the U.S. economy.

Even though we have focused here on tests on the order of a VAR and Granger
causality, the approach proposed here can be applied in principle to any set of
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Table 5

Empirical levels of asymptotic, LMC and MMC Granger causality tests with nominal level a ¼ 0:05: (A)

VAR(1) models with different dimensions k ¼ 2; 3; 4; 5; 6; T ¼ 30; (B) bivariate VAR(p) models of

different orders p ¼ 1; 2; 3; 4; 5; T ¼ 30; (C) k-dimensional VARðpÞ models with different sample sizes

k Level Power

ASYlr LMCpa
lr MMCpa

lr MMCpa
lr

(A)

2 15.5 7.7 3.2 84.7

3 22.0 9.0 3.3 95.1

4 24.7 9.7 2.8 99.8

5 32.2 11.9 3.1 99.4

6 35.1 12.1 2.7 92.1

p

(B)

1 10.5 5.1 0.4 70.0

2 25.7 8.9 0.9 56.4

3 45.2 15.8 2.3 74.2

4 64.3 25.3 4.7 85.1

5 78.0 39.2 4.2 96.2

T 50 100 200 300

ðk; pÞ ASYlr LMCpa
lr MMCpa

lr
ASYlr LMCpa

lr MMCpa
lr

ASYlr LMCpa
lr MMCpa

lr
ASYlr LMCpa

lr MMCpa
lr

(C)

ð2; 1Þ 10.2 6.5 1.6 6.4 5.3 1.1 5.9 4.9 0.8 6.4 5.2 1.0

ð2; 2Þ 18.9 8.9 1.2 11.1 5.2 0.6 8.4 6.2 0.7 7.7 4.8 0.4

ð2; 3Þ 36.8 11.9 2.2 19.2 6.1 0.3 10.5 5.1 1.2 7.5 4.9 0.6

ð2; 4Þ 60.1 18.6 4.4 33.2 10.7 1.5 16.2 5.5 0.3 11.1 6.9 0.3

ð2; 5Þ 69.2 25.9 3.8 51.8 15.3 2.7 24.8 8.2 1.2 12.4 5.6 0.8

ð3; 1Þ 12.2 7.2 0.8 9.0 5.4 1.4 6.1 5.7 1.1 6.5 5.0 1.8

ð3; 2Þ 29.2 9.9 1.5 18.0 7.8 2.3 10.3 5.2 1.1 8.1 5.0 0.9

ð3; 3Þ 63.8 18.5 2.0 37.6 10.5 1.7 19.5 6.5 0.3 11.7 5.7 0.2

ð3; 4Þ 85.2 36.5 2.2 69.3 18.9 4.1 31.2 8.6 1.2 18.3 5.9 0.4

ð3; 5Þ 92.1 48.3 3.6 88.1 32.7 4.3 50.8 11.4 1.7 26.3 7.4 1.3

ð4; 1Þ 15.1 6.7 1.2 9.3 6.1 1.0 7.0 4.4 1.0 6.2 5.1 1.7

ð4; 2Þ 45.4 13.4 3.1 26.6 8.6 1.4 12.7 5.4 0.1 10.6 5.5 0.1

ð4; 3Þ 82.0 28.6 3.3 59.4 15.5 0.2 28.7 6.7 0.1 17.2 6.4 0.1

ð4; 4Þ 93.8 48.9 3.2 86.9 34.1 2.9 52.7 10.9 0.6 27.3 6.2 0.9

ð4; 5Þ 97.8 58.5 4.1 98.9 46.3 3.1 84.1 18.7 2.1 57.9 11.2 1.9

Note: ASYlr stays for the asymptotic test based on the likelihood ratio statistic while LMCpa
lr and MMCpa

lr

are the corresponding local MC (parametric bootstrap) and maximized MC p-values, respectively. Panel A

is based on model M2 ðj ¼ 0:99Þ, while panels B and C are based on model M0 ðj ¼ 0:90Þ. Power is

obtained under alternatives where Fi1l ¼ F̄i1l ðpÞa0, l ¼ 2; . . . ; k, i ¼ 1; . . . ; p, where F̄i1lðpÞ depends on the

order p of the process: F̄i1lð1Þ ¼ 0:1, F̄i1l ð2Þ ¼ 0:02, and F̄i1lðpÞ ¼ 0:01 for p ¼ 3; 4; 5.
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Table 6

Power of the MMC causality tests. VAR(1) models, T ¼ 30

Fi1l MMCpa
lr

k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6

0.01 3.4 1.9 3.8 2.9 1.9

0.02 3.4 4.2 7.1 6.4 4.2

0.03 7.3 7.7 23.3 15.7 6.7

0.04 10.2 15.4 41.3 30.1 14.0

0.05 18.6 22.6 65.4 49.2 25.1

0.06 26.6 37.3 78.5 65.9 41.1

0.07 40.3 54.8 88.8 77.4 53.4

0.08 50.1 63.6 95.2 87.7 63.9

0.09 62.0 77.1 97.9 94.1 75.3

0.10 70.0 84.5 98.8 96.8 82.0

0.15 91.8 98.3 100 99.9 98.8

0.20 98.9 99.8 100 100 99.7

Note: These results are based on model M0 ðj ¼ 0:90Þ. Power is obtained under alternatives where Fi1l ¼

F̄i1l ðpÞa0, l ¼ 2; . . . ; k, i ¼ 1; . . . ; p, where F̄i1lðpÞ depends on the order p of the process: F̄i1l ð1Þ ¼ 0:1,
F̄i1l ð2Þ ¼ 0:02, and F̄i1l ðpÞ ¼ 0:01 for p ¼ 3; 4; 5.
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restrictions on the model, such as unit root or cointegration hypotheses. In such
cases, even though the unit root hypothesis (for example) could be taken into
account by an asymptotic distributional theory or a bootstrap procedure, large roots
in the stationary region but close to the unit-circle could still lead to large size
distortions. By construction, the MMC procedure remains valid irrespective of the
structure of the VAR. It is also important to note that the error distribution need not
be normal: any assumption that specifies completely the distribution of
eðTÞ ¼ vecðe1; . . . ; eT Þ, i.e. the disturbance distribution up to an unknown linear
transformation (or covariance matrix) can be used. No assumption on the existence
of moments is needed, so one could consider distributions with heavy tails. One
could also introduce further free parameters in the error distribution: such
parameters can be treated as extra nuisance parameters.

The main limitations of the approach proposed here lie in the parametric setup
required to perform the MC tests and the computational cost. On the first issue, it is
important to note that parametric assumptions involve putting a bound on the maximal
order of the process (which is equivalent to assuming that the order of VAR process is
‘‘known’’). In the case of testing Granger non-causality (as well as for many hypotheses
of interest), this means that the lag order is an integral part of the null hypothesis: there
is no way to ‘‘separate’’ Granger non-causality from an assumption on the order of
the process. Allowing for a data-based-order selection would require simulating as well
the model selection procedure. Note, however, that producing finite-sample inference
without putting an explicit upper bound on the order of the process is fundamentally an
impossible task (see the discussions in Sims, 1971a,b; Cochrane, 1991; Blough, 1992;
Faust, 1996, 1999; Pötscher, 2002; Dufour, 2003). So, from the viewpoint of developing
valid tests in finite samples, the assumption of a ‘‘known order’’ is unavoidable.
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Table 7

Pairwise Granger non-causality tests based on a quarterly VAR(4) model

H0 ASYlr LMCpa
lr MMCpa

lr

M Q r 0.495*** 1.300** 2.100**

Q P 42.195 49.600 49.600

Q y 61.352 69.500 69.500

r Q M 88.927 92.200 92.200

Q P 2.108** 3.900** 5.300*

Q y 1.671** 2.400** 3.800**

P Q M 55.120 61.000 61.000

Q r 22.472 29.400 29.400

Q y 65.790 72.700 72.700

y Q M 33.619 41.600 41.600

Q r 0.021*** 0.100*** 0.200***

Q P 25.144 33.100 33.100

Note: The numbers in the table are p-values in percentage. *** and ** highlight p-values not larger than

1.00% and 5.00%, respectively, while * highlights p-values not larger than 10%.

J.-M. Dufour, T. Jouini / Journal of Econometrics 135 (2006) 229–254248
If one is prepared to accept a procedure which has only an ‘‘asymptotic
justification’’, it is also important to note that the proposed ‘‘exact procedures’’
remain asymptotically valid (in the usual sense of pointwise asymptotic validity)
under much weaker assumptions, including an ‘‘unknown’’ order which may be
‘‘consistently estimated’’. As long as the MC tests are performed using a distribution
which is covered by the assumptions of the limiting distributional theory, the
probability of type I error will satisfy the level condition asymptotically. Of course,
under usual assumptions, such a convergence will not typically be uniform—which
opens the possibility of arbitrary deviations from the nominal level of the test—but
this simply reflects the fact that typical regularity assumptions are simply too weak
to even allow the existence of provably valid finite-sample procedures (see Dufour,
2003). It is worthwhile to note also that the MMC procedure automatically adapts to
possible dependence of the distribution of the test statistic upon the autoregressive
coefficients.

On the second issue, it is clear that MMC tests are computer intensive. The code
that we used to perform the simulations and applications presented is certainly not
optimal (given that these were performed with GAUSS) and we are working on
improving it. Given the regular improvements in computer speeds, the importance of
this type of consideration should decline in the future.
Acknowledgements

The authors thank an anonymous referee and the Editors, Graham Elliott and
Norman Swanson, for several useful comments. This work was supported by the



ARTICLE IN PRESS

J.-M. Dufour, T. Jouini / Journal of Econometrics 135 (2006) 229–254 249
Canada Research Chair Program (Chair in Econometrics, Université de Montréal), the
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Appendix A. Lag-augmented Wald tests for causality

We give here a brief description of the lag-augmented Wald tests considered in the
simulation. In order to test Granger non-causality, the first step consists in
estimating by ordinary least squares an unrestricted VARðpþ 1Þ model, rather than
a VARðpÞ model:

Y t ¼
Xpþ1
i¼1

FiY t�i þ ut; t ¼ 1; . . . ;T . (A.1)

Even though we know that Fpþ1 ¼ 0, this restriction is not used in order to compute

the test statistic. Second, we consider hypothesis (5.5) which is equivalent to H0 :
ðY 2; . . . ;Y kÞQY 1 under the VARðpÞ model (leaving Fpþ1 as a free coefficient), and

compute the corresponding Wald-type test statistic (say W
ð0Þ
G ). In accordance with

(5.5), H0 may be expressed as a set of zero restrictions on the ðpþ 1Þk2
� 1 coefficient

vector fpþ1 ¼ vecð½F1;F2; . . . ;Fp;Fpþ1�
0Þ, i.e. H

0

0 : Cpþ1fpþ1 ¼ 0, where Cpþ1 is a

full-rank pðk � 1Þ � ðpþ 1Þk2 matrix containing only 0 and 1. The Wald statistic
then has the form

W
ð0Þ
G ¼ TðCpþ1f̂pþ1Þ

0
½Cpþ1Ŝðf̂pþ1ÞC

0
pþ1�

�1ðCpþ1f̂pþ1Þ, (A.2)

where f̂pþ1 ¼ vecð½F̂1; F̂2; . . . ; F̂p; F̂pþ1�
0

Þ and F̂i, i ¼ 1; . . . ; pþ 1, are the uncon-

strained least-squares estimates for (A.1),7 Ŝðf̂pþ1Þ is the usual asymptotic

covariance estimator for T1=2ðf̂pþ1 � fpþ1Þ, namely Ŝðf̂pþ1Þ ¼ Ŝpþ1 	 Ĝ
�1

pþ1 with

Ŝpþ1 ¼
1

T

XT

t¼pþ2

ûtðpþ 1Þûtðpþ 1Þ0; Ĝpþ1 ¼
1

T
Y ðpþ 1;TÞY ðpþ 1;TÞ0, (A.3)

ûtðpþ 1Þ ¼ Y t �
Xpþ1
i¼1

F̂iY t�i; t ¼ pþ 2; . . . ;T , (A.4)

Y ðpþ 1;TÞ ¼ ½Y pþ2ðpþ 1Þ;Y pþ3ðpþ 1Þ; . . . ;Y T ðpþ 1Þ�, (A.5)

and Y tðpþ 1Þ ¼ ½Y 0t�1;Y
0
t�2; . . . ;Y

0
t�p�1�

0.
7Such estimates can easily be obtained by applying OLS to each equation.



ARTICLE IN PRESS

J.-M. Dufour, T. Jouini / Journal of Econometrics 135 (2006) 229–254250
Under the VARðpÞ specification with H0, this statistic follows a chi-square
distribution asymptotically (with number of degrees of freedom equal to the number
of restrictions) even if the process Y t is integrated; see, for example, Toda and
Yamamoto (1995) and Dolado and Lütkepohl (1996). Of course, the finite-sample
distribution of the lag-augmented Wald statistic depends on nuisance parameters
(the coefficients which are not fixed by the hypotheses). So the chi-square
approximation may be quite unreliable in finite samples, and improvements (such
as bootstrapping) may be very important in this model. We consider here two ways
of bootstrapping such lag-augmented Wald tests, a ‘‘parametric’’ bootstrap and a
‘‘non-parametric’’ one.

In the parametric case, we first obtain consistent restricted estimates ~F
c

i ,
i ¼ 1; . . . ; p, of the VARðpÞ model (i.e. (5.1) with (5.5)) along with the Cholesky
factor ~R

c

T associated with the estimated error covariance matrix. In the present case,
the restricted estimates are obtained through maximization of the Gaussian
likelihood LðdÞ in (4.2). These values are then used to generate pseudo-samples
Y ðlÞ ¼ ½Y

ðlÞ
1 ; . . . ;Y

ðlÞ
T �, according to the equation

Y
ðlÞ
t ¼

Xp

i¼1

~F
c

i Y
ðlÞ
t�i þ

~R
c
eðlÞt ; t ¼ 1; . . . ;T ; l ¼ 1; . . . ;N, (A.6)

where the eðlÞt are simulated according to the distribution

eðlÞt �
i:i:d:

N½0; Ik�; t ¼ 1; . . . ;T . (A.7)

From each simulated sample Y ðlÞ, a VARðpþ 1Þ model is estimated and the
corresponding lag-augmented Wald statistic W

ðlÞ
G for H0 is computed. The initial

values are kept fixed at the realized values from the observed sample. The
corresponding simulated p-value p̂NðS0Þ then follows according to formula (3.9) with
Sl ¼W

ðlÞ
G , l ¼ 0; 1; . . . ;N. The null hypothesis is rejected when p̂N ðS0Þpa.

In the non-parametric case, we start from the estimated residuals

~uc
t ¼ Y t �

Xp

i¼1

~F
c

i Y t�i; t ¼ 1; . . . ;T . (A.8)

New residuals ~uðlÞ1 ; . . . ; ~u
ðlÞ
T are then drawn at random (with replacement) from the set

f ~uc
1; . . . ; ~u

c
T g, a pseudo-sample is built following the equation

~Y
ðlÞ

t ¼
Xp

i¼1

~F
c

i
~Y
ðlÞ

t�i þ ~uðlÞt ; t ¼ 1; . . . ;T , (A.9)

and the corresponding lag-augmented Wald statistic for H0—say ~W
ðlÞ

G—is computed.
On repeating this operation N times, the bootstrap p-value and test are finally
obtained as for the parametric bootstrap.
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Appendix B. Covariance matrix coefficients used in the simulation

In Section 5, the lower triangular matrices R which determine error covariance
matrices S ¼ RR0 were defined as follows:

R ¼
0:01 0:00

�0:02 0:03

� �
for k ¼ 2,

R ¼

0:01 0:00 0:00

�0:02 0:03 0:00

�0:01 0:01 0:02

2
64

3
75 for k ¼ 3,

R ¼

0:01 0:00 0:00 0:00

�0:02 0:03 0:00 0:00

�0:01 0:01 0:02 0:00

�0:03 0:02 0:01 0:01

2
6664

3
7775 for k ¼ 4,

R ¼

0:01 0:00 0:00 0:00 0:00

�0:02 0:03 0:00 0:00 0:00

�0:01 0:01 0:02 0:00 0:00

�0:03 0:02 0:01 0:01 0:00

0:01 �0:02 0:03 �0:01 0:02

2
6666664

3
7777775

for k ¼ 5,

R ¼

0:01 0:00 0:00 0:00 0:00 0:00

�0:02 0:03 0:00 0:00 0:00 0:00

�0:01 0:01 0:02 0:00 0:00 0:00

�0:03 0:02 0:01 0:01 0:00 0:00

0:01 �0:02 0:03 �0:01 0:02 0:00

0:02 �0:01 �0:03 0:02 0:01 0:03

2
666666664

3
777777775

for k ¼ 6.
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Dufour, J.-M., Pelletier, D., Renault, É., 2005. Short run and long run causality in time series: inference.

Journal of Econometrics, forthcoming.

Dwass, M., 1957. Modified randomization tests for nonparametric hypotheses. Annals of Mathematical

Statistics 28, 181–187.

Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap. In: , Monographs on Statistics and

Applied Probability, vol. 57. Chapman & Hall, New York.

Faust, J., 1996. Near observational equivalence problems and theoretical size problems with unit root

tests. Econometric Theory 12, 724–732.

Faust, J., 1999. Theoretical confidence level problems with confidence intervals for the spectrum of a time

series. Econometrica 67, 629–637.

Goffe, W.L., Ferrier, G.D., Rogers, J., 1994. Global optimization of statistical functions with simulated

annealing. Journal of Econometrics 60, 65–99.

Gouriéroux, C., Monfort, A., 1997. Time Series and Dynamic Models. Cambridge University Press,

Cambridge, UK.

Granger, C.W.J., 1969. Investigating causal relations by econometric models and cross-spectral methods.

Econometrica 37, 424–459.

Hall, P., 1992. The Bootstrap and Edgeworth Expansion. Springer, New York.

Hamilton, J.D., 1994. Time Series Analysis. Princeton University Press, Princeton, NJ.

Hansen, P.R., Johansen, S., 1998. Workbook on Cointegration. Oxford University Press, Oxford, UK.



ARTICLE IN PRESS

J.-M. Dufour, T. Jouini / Journal of Econometrics 135 (2006) 229–254 253
Hatanaka, M., 1996. Time-Series-Based Econometrics Advanced Texts in Econometrics. Oxford

University Press, Oxford, UK.

Hendry, D.F., 1995. Dynamic Econometrics. Oxford University Press, Oxford, UK.

Inoue, A., Kilian, L., 2002a. Bootstrapping autoregressive processes with possible unit roots.

Econometrica 70 (1), 377–391.

Inoue, A., Kilian, L., 2002b. Bootstrapping smooth functions of slope parameters and innovation

variances in VARð1Þ models. International Economic Review 43 (2), 309–332.

Inoue, A., Kilian, L., 2003. The continuity of the limit distribution in the parameter of interest is not

essential for the validity of the bootstrap. Econometric Theory 19 (6), 944–961.

Jeong, J., Maddala, G.S., 1993. A perspective on application of bootstrap methods in econometrics. In:

Maddala, G.S., Rao, C.R., Vinod, H.D. (Eds.), Handbook of Statistics 11: Econometrics. North-

Holland, Amsterdam, pp. 573–610.

Johansen, S., 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models Advanced

Texts in Econometrics. Oxford University Press, Oxford, UK.

Kilian, L., 1998a. Confidence intervals for impulse responses under departures from normality.

Econometric Reviews 17 (1), 1–29.

Kilian, L., 1998b. Small-sample confidence intervals for impulse response functions. Review of Economics

and Statistics 80, 218–230.

Kilian, L., Demiroglu, U., 1997. Residual-based bootstrap tests for normality in autoregressions. Working

Papers 14, Department of Economics, University of Michigan, Ann Arbor, MI.

Kurozumi, E., Yamamoto, T., 2000. Modified lag augmented vector autoregressions. Econometric

Reviews 19, 207–231.

Lehmann, E.L., 1986. Testing Statistical Hypotheses, second ed. Wiley, New York.

Li, H., Maddala, G.S., 1996. Bootstrapping time series models. Econometric Reviews 15, 115–158.

Lütkepohl, H., 1993. Introduction to Multiple Time Series Analysis, second ed. Springer, Berlin.

Lütkepohl, H., 2001. Vector autoregressions. In: Baltagi, B. (Ed.), Companion to Theoretical

Econometrics Blackwell Companions to Contemporary Economics. Basil Blackwell, Oxford, UK,

pp. 678–699 (Chapter 32).

Maddala, G.S., Kim, I.-M., 1998. Unit Roots, Cointegration and Structural Change. Cambridge

University Press, Cambridge, UK.

McAleer, M., Oxley, L. (Eds.), 1999. Practical Issues in Cointegration Analysis. Blackwell, Oxford, UK.

Paparoditis, E., 1996. Bootstrapping autoregressive and moving average parameter estimates of infinite

order vector autoregressive processes. Journal of Multivariate Analysis 57, 277–296.

Park, J.Y., Phillips, P.C.B., 1989. Statistical inference in regressions with integrated processes: part 2.

Econometric Theory 5, 95–131.

Pötscher, B., 2002. Lower risk bounds and properties of confidence sets for ill-posed estimation problems

with applications to spectral density and persistence estimation, unit roots and estimation of long

memory parameters. Econometrica 70 (3), 1035–1065.

Reinsel, G.C., 1993. Elements of Multivariate Time Series Analysis. Springer, New York.

Sims, C., 1971a. Distributed lag estimation when the parameter space is explicitly infinite-dimensional.

Annals of Mathematical Statistics 42, 1622–1636.

Sims, C., 1980. Macroeconomics and reality. Econometrica 48, 1–48.

Sims, C.A., 1971b. Discrete approximations to continuous time distributed lags in econometrics.

Econometrica 39, 545–563.

Sims, C.A., Stock, J.H., Watson, M.W., 1990. Inference in linear time series models with some unit roots.

Econometrica 58, 113–144.

Sriram, T.N., 1994. Invalidity of bootstrap for critical branching processes with immigration. The Annals

of Statistics 22, 1013–1023.

Tanaka, K., 1996. Time Series Analysis: Nonstationary and Noninvertible Distribution Theory. Wiley,

New York.

Toda, H.Y., Phillips, P.C.B., 1993. Vector autoregressions and causality. Econometrica 61, 1367–1393.

Toda, H.Y., Phillips, P.C.B., 1994. Vector autoregression and causality: a theoretical overview and

simulation study. Econometric Reviews 13, 259–285.



ARTICLE IN PRESS

J.-M. Dufour, T. Jouini / Journal of Econometrics 135 (2006) 229–254254
Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated

processes. Journal of Econometrics 66, 225–250.

Wiener, N., 1956. The theory of prediction. In: Beckenback, E.F. (Ed.), The Theory of Prediction.

McGraw-Hill, New York (Chapter 8).

Yamada, H., Toda, H.Y., 1998. Inference in possibly integrated vector autoregressive models: some finite

sample evidence. Journal of Econometrics 86, 55–95.

Yamamoto, T., 1996. A simple approach to the statistical inference in linear time series models which may

have some unit roots. Hitotsubashi Journal of Economics 37, 87–100.


	Finite-sample simulation-based inference �in VAR models with application to �Granger causality testing
	Introduction
	Framework
	Monte Carlo tests
	Monte Carlo tests without nuisance parameters
	Monte Carlo tests with nuisance parameters
	MMC tests based on consistent set estimators

	Tests in VAR models
	Simulation experiment
	Application to a VAR model of the U.S. economy
	Conclusion
	Acknowledgements
	Lag-augmented Wald tests for causality
	Covariance matrix coefficients used in the simulation
	References


