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Abstract

The technique of Monte Carlo (MC) tests [Dwass (1957, Annals of Mathematical Statistics
28, 181-187); Barnard (1963, Journal of the Royal Statistical Society, Series B 25, 294)]
provides a simple method for building exact tests from statistics whose finite sample
distribution is intractable but can be simulated (when no nuisance parameter is involved). We
extend this method in two ways: first, by allowing for MC tests based on exchangeable
possibly discrete test statistics; second, by generalizing it to statistics whose null distribution
involves nuisance parameters [maximized MC (MMC) tests]. Simplified asymptotically
justified versions of the MMC method are also proposed: these provide a simple way of
improving standard asymptotics and dealing with nonstandard asymptotics.
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1. Introduction

During the last 25 years, the development of faster and cheaper computers has
made Monte Carlo techniques more affordable and attractive in statistical analysis.
In particular, such techniques may now be used routinely for data analysis.
Important developments in this area include the use of bootstrap techniques for
improving standard asymptotic approximations (for reviews, see Efron, 1982; Beran
and Ducharme, 1991; Efron and Tibshirani, 1993; Hall, 1992; Jeong and Maddala,
1993; Vinod, 1993; Shao and Tu, 1995; Davison and Hinkley, 1997; Chernick, 1999;
Horowitz, 1997) and techniques where estimators and forecasts are obtained from
criteria evaluated by simulation (see McFadden, 1989; Mariano and Brown, 1993;
Hajivassiliou, 1993; Keane, 1993; Gouriéroux and Monfort, 1996; Gallant and
Tauchen, 1996).

With respect to tests and confidence sets, these techniques only have asymptotic
justifications and do not yield inferences that are provably valid (in the sense of
correct levels) in finite samples. Here, it is of interest to note that the use of
simulation in the execution of tests was suggested much earlier than recent bootstrap
and simulation-based techniques. For example, randomized tests have been
proposed long ago as a way of obtaining tests with any given level from statistics
with discrete distributions (e.g., sign and rank tests); see Lehmann (1986). A second
interesting possibility is the technique of Monte Carlo tests originally suggested by
Dwass (1957) for implementing permutation tests and later extended by Barnard
(1963), Hope (1968) and Birnbaum (1974). This technique has the great attraction of
providing exact (randomized) tests based on any statistic whose finite-sample
distribution may be intractable but can be simulated. The validity of the tests so
obtained does not depend at all on the number of replications made (which can be
small). Only the power of the procedure is influenced by the number of replications,
but the power gains associated with lengthy simulations are typically rather small.
For further discussion of Monte Carlo tests, see Besag and Diggle (1977), Dufour
and Kiviet (1996, 1998), Edgington (1980), Edwards (1985), Edwards and Berry
(1987), Foutz (1980), Jockel (1986), Kiviet and Dufour (1997), Marriott (1979) and
Ripley (1981).

An important limitation of the technique of Monte Carlo tests is the fact
that one needs to have a statistic whose distribution does not depend on
nuisance parameters. This obviously limits considerably its applicability. The main
objective of this paper is to extend the technique of Monte Carlo tests in order
to allow for the presence of nuisance parameters in the null distribution of the
test statistic.

In Section 2, we summarize and extend results on Monte Carlo (MC) tests when
the null distribution of a test statistic does not involve nuisance parameters. In
particular, we put them in a form that will make their extension to cases with
nuisance parameters easy and intuitive, and we generalize them by allowing for MC
tests based on exchangeable (possibly nonindependent) replications and statistics
with discrete distributions. These generalizations allow, in particular, for various
nonparametric tests (e.g., permutation tests) as well as test statistics where certain



J.-M. Dufour | Journal of Econometrics 133 (2006) 443—477 445

parameters are themselves evaluated by simulation. We deal with possibly
discrete (or mixtures of continuous and discrete distributions) by exploiting
Hajek’s (1969) method of randomized ranks for breaking ties in rank tests,
which is both simple to implement and allows one to easily deal with exchange-
able [as opposed to independent and identically distributed (i.i.d.)] simulations.
On the problem of discrete distributions, it is also of interest that the method
proposed by Jockel (1986) was derived under the assumption of i.i.d. MC
replications.

In Section 3, we study how the power of Monte Carlo tests is related to the
number of replications used and the sensitivity of the conclusions to the randomized
nature of the procedure. In particular, given the observed (randomized) p-value of
the Monte Carlo test, we see that the probability of an eventual reversal of the
conclusion of the procedure (rejection or acceptance at a given level, e.g. 5%) can
easily be computed.

In Section 4, we present the extension to statistics whose null distribution depends
on nuisance parameters. This procedure is based on considering a simulated p-value
function which depends on nuisance parameters (under the null hypothesis). We
show that maximizing the latter with respect to the nuisance parameters yields a test
with provably exact level, irrespective of the sample size and the number replications
used. For this reason, we call the latter maximized Monte Carlo (MMC) tests. As
one would expect for a statistic whose distribution depends on unknown nuisance
parameters, the probability of type I error for a MMC test can be lower (but not
higher) than the level of the test, so the procedure can be conservative. We also
discuss how this maximization can be achieved in practice, e.g. through simulated
annealing techniques.

In the two next sections, we discuss simplified (asymptotically justified)
approximate versions of the proposed procedures, which involve the use of
consistent set or point estimates of model parameters. In Section 5, we suggest a
method [the consistent set estimate MMC method (CSEMMC)] which is applicable
when a consistent set estimator of the nuisance parameters [e.g., a random subset of
the parameter space whose probability of covering the nuisance parameters
converges to one as the sample size goes to infinity] is available. The approach
proposed involves maximizing the simulated p-value function over the consistent set
estimate, as opposed to the full nuisance parameter space. This procedure may thus
be computationally much less costly. Using a consistent set estimator (or confidence
set), as opposed to a point estimate, to deal with nuisance parameters is especially
useful because it allows one to obtain asymptotically valid tests even when the test
statistic does not converge in distribution or when the asymptotic distribution
depends on nuisance parameters possibly in a discontinuous way. Consequently,
there is no need to study the asymptotic distribution of the test statistic considered or
even to establish its existence.! This consistent set estimator MMC method

'A case where the distribution of a test statistic does not converge in distribution is the one where the
associated sequence of distribution functions has several accumulation points, allowing different
subsequences to have different limiting distributions.
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(CSEMMC) may be viewed as an asymptotic Monte Carlo extension of finite-sample
two-stage procedures proposed in Dufour (1990), Dufour and Kiviet (1996, 1998),
Campbell and Dufour (1997), and Dufour et al. (1998). These features may be
contrasted with those of bootstrap methods which can fail to provide asymptoti-
cally valid tests when the test statistic simulated has an asymptotic distribution
involving nuisance parameters, especially if the asymptotic distribution has
discontinuities with respect to the nuisance parameters (see Athreya, 1987; Basawa
et al., 1991; Sriram, 1994; Andrews, 2000; Benkwitz et al., 2000; Inoue and Kilian,
2002, 2003).

In Section 6, we consider the simplest form of a Monte Carlo test with nuisance
parameters, i.e. the one where the consistent set estimate has been replaced by a
consistent point estimate. In other words, the distribution of the test statistic is
simulated after replacing the nuisance parameters by a consistent point estimate.
Such a procedure can be interpreted as a parametric bootstrap test based on the
percentile method (see Efron and Tibshirani, 1993, Chapter 16; Hall, 1992). The
term “‘parametric”” may however be misleading here, because such MC tests can be
applied as well to nonparametric (distribution-free) test statistics. We give general
conditions under which a Monte Carlo test obtained after replacing an unknown
nuisance parameter yield an asymptotically valid test in cases where the limit
distribution of the test statistic involves nuisance parameters. Following the
general spirit of Monte Carlo testing and in contrast with typical bootstrap
arguments, the proofs take the number of Monte Carlo simulations as fixed (possibly
very small, such as 19 to obtain a test with level 0.05). As in standard bootstrap
arguments, the conditions considered involve a smooth (continuous) dependence
of the asymptotic distribution upon the nuisance parameters. It is, however,
important to note that these conditions are more restrictive and more difficult to
check than those under which CSEMMC procedures would be applicable. We
conclude in Section 7.

2. Monte Carlo tests without nuisance parameters

Let us consider a family of probability spaces {(Z, .7 », Py) : 0 € Q}, where & is a
sample space, o/ » a g-algebra of subsets of &, and Q a parameter space (possibly
infinite dimensional). Let also S = S(w), w € &, be a real-valued o7 -measurable
function whose distribution is determined by Py —i.e., 0y is the “true” parameter
vector. We wish to test the hypothesis

Ho:@oego, (21)

where Q) is a nonempty subset of Q, using a critical region of the form {S>c}.
Although, in general, the distribution of S under H depends on the unknown value
of 6y, we shall assume in this section that this distribution does not depend on
(unknown) nuisance parameters, so that we can write

PoS<x] = F(x) for all 0 € Q, 2.2)



J.-M. Dufour | Journal of Econometrics 133 (2006) 443—477 447

where F(x) is the unique distribution that S can have under H,. In view of this
assumption, we shall—until further notice—compute probabilities under the
(unique) P = Py, when 0y € €. The constant c is chosen so that

P[S=c]=1- F(c)+ P[S = c]<aq, (2.3)
where o is the desired level of the test (0 <a < 1). Note that the critical region S>c can

also be put in two useful alternative forms, which are equivalent to S > ¢ with probability
one (i.e., they can differ from the critical region S> ¢ only on a set of zero probability):

G(S)< G(o), (2.4)

S=F'[(F(o) = P[S = '] = F'[(1 - G(e) '], (2.5)
where

G(x)=P[S=x]=1—-F(x)+ P[S = x] (2.6)

is the “tail-area” or “p-value” function associated with F, and F~! is the quantile
function of F, with the conventions

F ' (¢"= lim F~ ' (g+¢) =inf{F () : qo>q}, 0<g¢<l,

F~'(1*) = oo and F~'(0") = F~'(0). For any probability distribution function F(x),
the quantile function F~!(g) is defined as follows:

FYq) = inf{x: F(x)>q} if 0<g<]1,
= inf{x: F(x)>0} if¢g=0,
= sup{x: F(x)<l1} ifg=1; 2.7)
see Reiss (1989, p. 13). In general, F~!(g) takes its values in the extended real

numbers R = R U {—o0, +-00} and, for coherence, we set F(—o0) = 0 and F(oo) = 1.
Using (2.7), it is easy to see that

FU(F()-PIS=c)]=c,

when: 0<F(c¢)<1 and either P(S =¢)>0 or F(x) is continuous and strictly
monotonic in an open neighborhood containing ¢. However, formulation (2.5)
remains valid in all cases.

2.1. Monte Carlo tests based on statistics with continuous distributions

Consider now a situation where the distribution of S under Hy may not be easy to
compute analytically but can be simulated. Let Sy, ..., Sy be a sample of identically
distributed real random variables with the same distribution as S. Typically, it is
assumed that Sy,...,Sy are also independent. However, we will observe that the
exchangeability of Sy,..., Sy is sufficient for most of the results presented below.>

’The elements of a random vector (S1,8,..., Sy) are exchangeable (or P-exchangeable) if
(SrSr,- .. ,S,N)’N(SI,Sz, ..., Sy) for any permutation (r{,7,...,7y) of the integers (1,2, ..., N) under
the relevant probability measure P.
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This can accommodate a wide array of situations, where the simulated stati-
stics are not independent because they involve common (conditioning) variables,
such as: statistics obtained by permuting randomly a given set of obser-
vations (permutation tests), tests which are simulated conditionally on a common
set of initial values (e.g., in time series models), common regressors or a
common subsample [see the Anderson—Rubin-type split-sample test described in
Dufour and Jasiak (2001)], tests that depend on a common independent simulation
[e.g., tests based on a criterion evaluated by a preliminary simulation, such as
the simulated method of moments or indirect inference; see Gouriéroux and Monfort
(1996)], etc.

The technique of MC tests provides a simple method allowing one to replace the

theoretical distribution F(x) by its sample analogue based on Si,...,Sy:

. 1 &

Fn(x) = Fy[x; S(N)] = =~ ; 1(S; < (2.8)
where S(NV) = (S1,...,Sy) and 1(C) is the indicator function associated with the

condition C:

1(C) =1 if condition C holds,
=0 otherwise. (2.9)

In the latter notation, C may also be replaced by an event 4 € .o74, in which case
1(4) = 1(w € A) where w is the element drawn from the sample space.
We also consider the corresponding sample tail area (or survival) function:

N
Gylx; S(N)] = % > ASi=x). (2.10)
i=1

The sample distribution function is related to the ranks Ry, ..., Ry of the variables
Si,...,Sy (when put in ascending order) by the expression:

R; = NEy[S;; S(N)] = ZI(S j=1,...,N. (2.11)

The central property we shall exploit here is the following: to obtain critical values
or compute p-values, the “theoretical”” null distribution F(x) can be replaced by its
simulation-based “‘estimate” Fy(x) in a way that will preserve the level of the test in
finite samples, irrespective of the number N of replications used. For continuous
distributions, this property is expressed by Proposition 2.2 below, which is easily
proved by using the following simple lemma.

Lemma 2.1 (Distribution of ranks when ties have zero probability). Let (yy,...,yy)
be a N x 1 vector of P-exchangeable real random variables such that

P, =y)=0 fori#j, i,j=1,...,N, (2.12)
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and et R_,=E?;l 1(y;<y;) be the rank of y;, when y,,...,yy are ranked in
nondecreasing order (j =1,...,N). Then, for j=1,...,N,

P(R;/N<x) =I[xN]/N for 0<x<l, (2.13)

P(Ri/N=x)=1 if x<0,
=({[(1 —x)N]+ 1)/N if 0<x<1,
=0 if x>1, (2.14)
where I[x] is the largest integer less than or equal to x.

Note that we use the symbol /[x] rather than the common notation [x] to represent
the integer part of a number x, because we heavily use brackets elsewhere in the
paper, so that the notation [-] could lead to confusions. It is clear that condition
(2.12) is satisfied whenever the variables y,, ..., yy are independent with continuous
distribution functions (see Hajek, 1969, pp. 20-21), or when the vector (yy,...,yy)
has an absolutely continuous distribution (with respect to the Lebesgue measure
on RY).

Proposition 2.2 (Validity of Monte Carlo tests when ties have zero probability). Let
(S0, S1,...,Sy) be a (N + 1) x 1 vector of exchangeable real random variables such
that

P(S;=S)=0 for i#j, i,j=0,1,...,N, (2.15)

let Fy(x)= ﬁN[x; S(N)], GN(x) = GN[x; S(N)] and I};l (x) be defined as in
(2.792.10), and set

. NGy(x)+1
Py(x) = ]IVV(—JF)I (2.16)
Then,
. . Ioy N1+ 1
P[Gn(So)<a1] =P[Fn(Sp)=1— o] = % for 0<ay <1, 2.17)
~—1 IToy N1+ 1
P[S()}FN (1—061)]:]\74_’_1 fOV 0<OCI<1, (218)
and
I[a(N + 1))
< -/~ <o<
Plpn(So)<o] = NI Jor 0<u<l. (2.19)
The latter proposition can be used as follows: choose o; and N so that
Moy N1+ 1
=—N+1 (2.20)

is the desired significance level. Provided N is reasonably large, o; will be very close
to o; in particular, if «(N + 1) is an integer, we can take o = o — ((1 —a)/N), in
which case we see easily that the critical region GN(SO)<oc1 is equlvalent to GN(SO)
<o. Further, for 0<a<1, the randomized critical region Sy> F (1 — o) has the
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same level (o) as the nonrandomized critical region So=F ~1(1 — &), or equivalently
the critical regions py(So)<o and Gy(Sp)<a; have the same level as the critical
region G(Sy) =1 — F(Sy)<o.

2.2. Monte Carlo tests based on general statistics

Assumption (2.15), which states that ties have zero probability, plays an important
role in proving Proposition 2.2. However, it is possible to prove analogous results for
general sequences of exchangeable random variables (which may exhibit ties with
positive probability), provided we consider a properly randomized empirical
distribution function. For this purpose, we introduce randomized ranks which are
obtained like ordinary ranks except that ties are “broken” according to a uniform
distribution. More precisely, let us associate with each variable S;, j=1,...,N, a
random variable U;, j=1,..., N such that

U..... Uy U0, 1), (2.21)
U(N)=(Uy,...,Uy) is independent of S(N) = (S1,...,Sy) where U(0,1) is the
uniform distribution on the interval (0, 1). Then, we consider the pairs

Z;=(S;,Uj), j=1,...,N, (2.22)
which are ordered according to the lexicographic order:

(Si, UD<(S), Up<={S;i<S; or (S; = §; and U;<U))}. (2.23)
Using the indicator

11, u1) < (2, )] = 1(x1 <x2) + 0(x1 — x2)1(uy <wp), (2.24)

S1,...,Sy are then ordered like the pairs Z, ..., Zy according to (2.23), which yield
“randomized ranks’:

N
RS(N), UN) = > 1[(Si, UD<(S;, U)), (2.25)
i=1
j=1,...,N. By the continuity of the uniform distribution, the ranks Rj =
INQj[S(N), UWN)], j=1,...,N, are all distinct with probability 1, so that the
randomized rank vector (Rl,Rz,...,RN)’ is a permutation of (1,2,...,N) with
probability 1. Furthermore when S;# S; for all j#1, we have Rj = R;:if (2.15) holds,
then R_/ =R;, j=1,..., N, with probability 1 [where R; is defined in (2.11)]. We can
now state the following extension of Lemma 2.1.

Lemma 2.3 (Distribution of randomized ranks). Let y(N) = (y,...,yy) bea N x 1
vector of exchangeable real random variables and let R, = R/[y(N ), U(N)]be defined as
in (2.25) where UN) = (Uy, ..., Uy) is a vector of i.i.d. U(0, 1) variables independent
of y(N). Then, for j=1,...,N,

P(R;/N<x) = I[xN]/N for 0<x<1, (2.26)
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P(R//N=x)=1 if x<0,
=[(1—-x)N]+1)/N if 0<x<l,
=0 if x>1. (2.27)

To the above randomized rankings, it is natural to associate the following
randomized empirical (pseudo-)distribution function:

N
Falx: Up, SON), UN)] = - ¥ 2108 U<t )

=1 — Gn[x; SN + Twlx: U, S(N), UN)), (2.28)

where Uy is a U(0, 1) random variable independent of S(N) and U(N),

Ty [x: Uo. SOV), UV = Zé(s U U) =5 S U< UY)
i€eEN(x)

(2.29)

and Ey(x) = {i : S; = x, 1<i<N}. The function Fy[x; -] retains all the properties of
a probability distrlbutlon function, except for the fact that it may not be right
continuous at some of its jump points (where it may take values between its right and
left limits). We can also define the corresponding tail-area function:

N
Gnlx; Ug, S(N), UN)] = + Z [(Si, U = (x, Up)]

=1 — Fy[x; S(N)] + Tn[x; Uo, S(N), UWN)], (2.30)

N
Tl Uo, S(N), UV = Z 58 - IV U = S 1 Uy).

i€eEN(x)
(2.31)

From (2.28)-(2.31), we see that the following inequalities must hold:

1 — Gy[x; S(N)]< Fy[x; Uy, S(N), UN)I< En[x; S(N)], (2.32)

1 — Fy[x; S(N)< Gylx; Ug, S(N), UN)| < GN[x; S(N)]. (2.33)

When no element of S(N) is equal to x [i.e., when Ey(x) is empty], we have:

Gylx: Uo, S(N), UN)] = Gylx: S(N) = 1 — Fy[x; S(N)]
=1 — Fy[x; Uy, S(N), UN)]. (2.34)

Using the above observations, it is then easy to establish the following proposition.
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Proposition 2.4 (Validity of Monte Carlo tests for general statistics). Let
(S0, S1,...,8Sy) be a (N + 1) x 1 vector of exchangeable real random variables, let
(U, Ul,.. Uy) be a (N+1)x1 wvector of iid. U(0,1) random variables
independent of (So,S1,...,Sy), let Fy(x) = FN[x S(N)], GN(x) GN[x S(N)],
Fn(x) = Fy[x; Ug, S(N), UN)] and Gy(x) = Gy[x; Ug, S(N), U(N)] be defined as in
(2.8)-(2.10) and (2.28)-(2.30), with S(N) = (Si,...,Sy) and U(N) = (Uy,..., Uy),
and let

N _ NGy(x)+1
Py(x) = N+l (2.35)
Then for 0<o; <1,
PIGn(S0) <] <P[Gn(So) <] = P[Fn(So) =1 — 1]
1 N
_ % <P[Ay(Sp)>1— m] (2.36)

with P[Fy(So)=1— o] = P[SO>I:*;\,1(1 —oy)] for 0<ay <1, and defining py(x) as in
(2.16),

I[a(N + 1)]

Pon(So)<a]<P[py(So)<a] = Nl

Sfor 0<a<1. (2.37)

In view of the fact that Gy(Sp) = GN(SO) with probability one when the zero
probability tie condition [i.e. (2.15)] holds, it is straightforward to see that
Proposition 2.2 is entailed by Proposition 2.4.

3. Power functions and concordance probabilities

The procedures described above are randomized in the sense that the result of the
tests depend on auxiliary simulations. This raises the issue of the sensitivity of the
results to these simulations. To study this more closely, let us suppose that

So,S1,...,Sy are independent with
P(S;<x)=F(x), P(S;=zx)=G(x), PS;=x)=gkx), i=1,...,N,
P(So<x) = H(x), P(So=x)=K(x). (3.1)

Then, it is easy to see that NGy(x) follows a binomial distribution Bi(N, p) with
number of trials N and probability of “success” p = G(x, u), where

G(x,u) = PA[(S:, U= (x,u)] = 1) = P(S;>x) + P(S; = x)P(U; >u)
=1-Fx)+ gx)(1 — uw), (3.2)
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and we can compute the conditional probability given (So, Uo) of the critical region
Gn(So) <ot

5 N
PIGN(So) <o | (So, Ug)l =P [Z 1[(Si, Ui) = (So, Up)l< 1[0 N] | (So, Uo)
=1

RN - & A N—k
= G(So, Up)"[1 — G(So, Uo)I" ", (3.3)
= \k
where (’Z) = N!/[kI(N — k)!]. Similarly, we can also write

) I[o} N] N
PGy (So)<o | Sol = > (k

) G(So) (1 — G(So)V . (3.4)
k=0

When F(x) is continuous, so that g(x) = 0, we have

PLGN(So) <o | (So, Up)] = P[GN(So) <o | So]

I[o N] N
= ( k)“ — F(S)I F(Soy" ™. (3:5)
k=0

Using (3.3), we can find a closed-form expression for the power of the randomized
test G(Sp) <oy for any null hypothesis which entails that Sy has the distribution F(-)
against an alternative under which its distribution is H(-):

PlGy(Soy<a] = B (PIGN(So) <o | (So. Uo)l)

Iy N]

1
=Y (ZZ > / / G, w1 — G, )V * dud H(x). (3.6)
0

k=0

Furthermore, when F(x) is continuous everywhere, the latter expression simplifies
and we can write:

P[Gn(So)<ou] = P[Gn(So) <]
1[0 N] N
— Z ( k) / [1 — F)FF(x)YV* dH(x). (3.7)
k=0

The above formulae will be useful in establishing the validity of simplified
asymptotic Monte Carlo tests in the presence of nuisance parameters. They also
allow one to compute the probability that the result of the randomized test
GN(SO)<a1 be different of the corresponding nonrandomized test G(Sy)<o,
where o = ([Nay]+ 1)/(N + 1). For example, let 49 = G(Sy) the “p-value” one
would obtain if the function G(x) were easy to compute (the p-value of the
“fundamental test”). The latter is generally different from the p-value pn(Sp) or
Pn(So) obtained from a Monte Carlo test based on Si,...,Sy. An interesting
question here is the probability that the Monte Carlo test yields a conclusion
different from the one based on &y. To study this, we shall consider the test which
rejects the null hypothesis Hy when py(Sy) <o under assumptions (3.1).
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If &y > o (in which case H) is not rejected at level o by the fundamental test), the
probability that H be rejected at level o is
Phy(So) <2 | So] = PINGN(So) (N + Datg — 11 S]
= P[Bi(N, &) <(N + Doy — 1| So]
<P[Bi(NV, ) <(N + Do — 1]
Bi(N,a) — Noo _ N(ag —a) — (1 — o)
=P 7z S 12 >
(Ne(1 — o))/ (Nou(1 — a))"/

(3.8)

where the inequality follows on observing that &y > o and Bi(N, p) denotes a binomial
random variable with number of trials N and probability of success p. From (3.8), we
can bound the probability that a Monte Carlo p-value as low as o be obtained when
the fundamental test is not significant at level «. In particular, for o<, this
probability decreases as the difference |y — «| and N get larger. It is also interesting
to observe that

Jlim_Plpy(So) < | Sol = Jim P [BI(N, %)~ Noo _ Noo — ) — (1 — ao)] o

(N1 —2))!2 = (N1 — )2
(3.9)

for oy <a, so that the probability of a discrepancy between the fundamental test and
the Monte Carlo test goes to zero as N increases.

Similarly, for &y <o (in which case H, is rejected at level o by the fundamental
test), the probability that Hy not be rejected at level oy is

Plpn(S0)> a0 | Sol = P[Bi(N, &0)> (N + Deag — 1| So]

Bi(N,0) — Noo _ N(ag—a) — (1 — o)
<P LN“(I 2 < Va(l —a) 1 (3.10)
hence
A}im Plpy(So)=00 | So] =0 for op>a. (3.11)

Eq. (3.10) gives an upper bound on the probability of observing a p-value as high as
o9 when the fundamental test is significant at a level lower than «. Again, the
probability of a discrepancy between the fundamental test and the Monte Carlo test
goes to zero as N increases. The only case where the probability of a discrepancy
between the two tests does not go to zero as N — oo is when &y = o (an event with
probability zero for statistics with continuous distributions).

The probabilities (3.8) and (3.10) may be computed a posteriori to assess the
probability of obtaining p-values as low (or as high) as p,(Sp) when the result of the
corresponding fundamental test is actually not significant (or significant) at level o.
Note also that similar (although somewhat different) calculations may be used to
determine the number N of simulations that will ensure a given probability of
concordance between the fundamental and the Monte Carlo test (see Marriott,
1979).
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4. Monte Carlo tests with nuisance parameters

We will now study the case where the distribution of the test statistic S depends on
nuisance parameters. We consider a family of probability spaces {(Z, .o/ »,Py) : 0 €
2} and suppose that S is a real-valued .o »-measurable function whose distribution
is determined by Py, (i.e., 0y is the “true” parameter vector). We wish to test the
hypothesis

HO:HOGQO, (41)

where Q is a nonempty subset of 2. Again we take a critical region of the form S>c,
where c is a constant which does not depend on 6. The critical region S > ¢ has level o
if and only if

Po[S=c]<a, VO € Qy, 4.2)
or equivalently,

sup Py[S=c]<a. 4.3)

9690

Furthermore, S>c¢ has size oo when

sup Pyg[S=c] = o. 4.4
OEQO

If we define the distribution and p-value functions,

Flx 0] =Pg[S<x], xeR, (4.5)

Glx| 0] =Py[S=x], xeR, (4.6)
where 0 € Q, it is again easy to see that the critical regions

sup G[S | 0]<o, 4.7)

(')EQO

where o = sup Gfc | 6], and
UGQO
S=sup F[1=G[c| )T |0]=¢ (4.8)
OEQO

are equivalent to S>=c in the sense that ¢<¢, with equality holding when F[x | 0] is
discontinuous at x = ¢ for all 0 € Q, or both F[x | 0] and F~'[¢ | 0] are continuous at
x = ¢ and ¢ = F(c) respectively for all § € Q, and

sup Py[S=2]< sup Py[S=c] = sup Py[sup{G[S | 0o] : Oy € Qy} <c]. (4.9)

(')EQO 9690 HEQO

We shall now extend Proposition 2.2 in order to allow for the presence of nuisance

parameters. For that purpose, we consider a real random variable Sy and random
vectors of the form

S(N,0) = (S1(0),...,Sn(0)), 0eQ, (4.10)
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all defined on a common probability space (Z, .« #, P), such that

the variables Sy, S1(0y), ..., Sy(0y) are exchangeable for some 0y € Q,
each one with distribution function F[x | 0p]. (4.11)

Typically, Sy will refer to a test statistic computed from observed data when the true
parameter vector is 0y (i.e., 0 = 6p), while S;(0), ..., Sy(0) will refer to independent
and identically distributed (i.id.) replications of the test statistic obtained
independently (e.g., by simulation) under the assumption that the parameter vector
is 0 (i.e., P[S;(0)<x] = F[x | 0]).

Note that the basic probability measure P can be interpreted as Py, while the
dependence of the distribution of the simulated statistics upon other values of the
parameter 6 is expressed by making S;(f) a function of 0 (as well as w € ). In
parametric models, the statistic .S will usually be simulated by first generating an
“observation” vector y according to an equation of the form

y = (0.0 @12
where u has a known distribution (which can be simulated) and then computing
S(0) = S[g(0,u)] = g5(0,u). (4.13)

In such cases, the above assumptions can be interpreted as follows: Sy = S[y(0o, t0)]
and S;(0) = S[y(0,u;)], i=1,...,N, where the random vectors uy,uy,...,uy are
i.i.d. (or exchangeable). Note 6 may include the parameters of a disturbance
distribution in a model, such as covariance coefficients (or even its complete
distribution function), so that the assumption that # has a known distribution is not
restrictive. Assumptions on the structure of the parameter space Q2 (e.g., whether it is
finite-dimensional) will however entail real restrictions on the data-generating
process. More generally, it is always possible to consider that the variables
S0, S1(0), ..., Sn(0) are P-measurable by considering their representation in terms of
uniform random variables (see Shorack and Wellner, 1986, Chapter 1, Theorem 1):
So=F7'[Vy| 0] and S;(0) =F'[V;10], i=1,...,N, where Vo, V,,...,Vy are
P-exchangeable with uniform marginal distributions [V;~U(0,1), i =0,1,..., N].

A more general setup that allows for nonparametric models would consist in
assuming that the null distribution of the test statistic depends on 6 only through
some transformation 7°(y) of the observation vector y, which in turn only depends
upon 0 through some transformation 0, = h(0), e.g. a subvector of 0:

T(y) = glh(0),u] = g[0,u], 0. € Q,, (4.14)
where Q, = h(Q), hence
S(0) = S(T(y)) = S(glh(0), u]) = gs[h(0),u] = gs(0s, u). (4.15)

The setup (4.14)—(4.15) allows for reductions of the nuisance parameter space (e.g.,
through invariance). In particular, nonparametric models may be considered by
taking appropriate distribution-free statistics (e.g., test statistics based on signs,
ranks, permutations, etc.). What matters for our purpose is the possibility of
simulating the test statistic, not necessarily the data themselves.
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Let also
Fylx | 0] = Exn[x; S(N,0)], Gylx | 0] = Gy[x; SN, 0)], (4.16)
Al | 0] _ NGylx [ 0]+1 4.17)

N+1

be defined as in (2.8)—(2.10), and suppose the variables

sup{@N[So | 0]:0 € Q} and inf{FN[SO | 0]: 0 € Q) are .o/ y-measurable
where Q is nonempty subset of Q. (4.18)

For general discussions of measurability of conditions for extrema of random
functions, the reader may consult Debreu (1967), Brown and Purves (1973) and
Stinchcombe and White (1992).> We then get the following proposition.

Proposition 4.1 (Validity of MMC tests when ties have zero probability). Under the
assumptions and notations (4.10), (4.11) and (4.16)—(4.18), set So(0y) = So and suppose
that

P[Si(00) = Sj(00)] =0 for i#j, i,j=0,1,...,N. (4.19)
If 0y € Qq, then for 0<o; <1,

P[sup{éN[Sg |0]:0 € Q()}SO(]]SP[IHf{ﬁN[SO [0]:0€ Q=1 —a]
Iy N1+ 1

</ 4.2

N+1 (4.20)

where Plinf(Fy[So | 0]: 0 € Qo}=1— ] = P[So=> sup{Fy [1 — oy | 0]: 0 € Q)] for

O<oy <1, and

I[o(N + 1)]

Plsup(py[So | 0]: 0 € Qo) <o)< =

Jor 0<a<1. (4.21)

Following the latter proposition, if we choose o) and N so that (2.20) holds, the
critical region sup{Gy[So | 0] : 0 € Qo} <« has level « irrespective of the presence of
nuisance parameters in the distribution of the test statistic S under the null
hypothesis Hy : 0y € €£o. The same also holds if we use the (almost) equivalent
critical regions mf{FN[So [60]:0€ o} =1—0a;or Sop= sup{F [1 —oy | 0]:0 e Q.
We shall call such tests MMC tests.

3If measurability is an issue, notions of “near-measurability” can be substituted (see Stinchcombe
and White, 1992). From the viewpoint of getting upper bounds on probabilities, the probability operator
can also be replaced by the associated outer measure which is always well-defined (see Dufour, 1989,
Footnote 5).
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To be more explicit, if S(0) is generated according to expressions of the form
(4.14)—(4.15), we have

N
5 D HSI0). u) > 5]

i=1

Gn[So 1 6] = — Z 1[S,(0)> So] =

= N Z 1[g5(0. 1:) > So]. (4.22)
i=1

The function GN[SO | 0] (or pn[So | 0]), is then maximized with respect to 0 € Qq [or
equivalently, with respect to 0, € Q. = h(Qy)] keeping the observed statistic Sy and
the simulated disturbance vectors uy, ..., uy fixed. The function G N[So | 0] is a step-
type function which typically has zero derivatives almost everywhere, except on
isolated points (or manifolds) where it is not differentiable. Further, the supremum
of GN[SO | 0] is typically not unique, in the sense that several values of 0 will yield the
required supremum. So it cannot be maximized with usual derivative-based
algorithms. However, the required maximizations can be performed by using
appropriate optimization algorithms that do not require differentiability, such as
simulated annealing. For further discussion of such algorithms, the reader may
consult Goffe et al. (1994).

It is easy to extend Proposition 4.1 in order to relax the no-tie assumption (4.19).
For that purpose, we generate as in Proposition 2.4 a vector (U, Uy,..., Uy) of
N +11i.i.d. U(0,1) random variables independent of Sy, S;(6p),...,Sy(6y), and we
consider the corresponding randomized distribution, tail area and p-value functions:

Fylx | 0] = Fy[x; Uy, S(N, 0), UN)], (4.23)

Galx 01 = Galos U, SV.0, ULyl | 1 =2 IEL a0y
where

UN) = (Uy,...,Uyx) and Uy, Uy,..., Uy 2 U,1). (4.25)

Under the corresponding measurability assumption

sup{Gn[So | 0] : 0 € Q} and inf{Fy[Sy | 0] : 0 € Qy} are .o/ »-measurable
where € is nonempty subset of Q, (4.26)

we can then state the following generalization of Proposition 2.4.

Proposition 4.2 (Validity of MMC tests for general statistics). Under the assumptions
and notations (4.10), (4.11), (4.16)—(4.18) and (4.23)—(4.26), suppose Uy, Uy,..., Uy
are independent of S, S1(00),...,Sn(00). If 6y € Qy, then for 0<o; <1 and for
0<a<l,

Plsup{Gn[So | 0] : 0 € Qo} <o ]<P[sup{Gn[So | 0] : 0 € Qo} <]

CIERY
N+1



J.-M. Dufour | Journal of Econometrics 133 (2006) 443—477 459

Plsup{Gn[So | 0] : 0 € Qo} <ou]<P[sup{Fy[So | 0]: 0 € Qo} =1 — o]
MmN+
N+1

Plsup(pxlSo | 0]: 0 € Qo) <Al <PlsuplpylSo | 0] : 0 € Qo) <o)< %:11)]

One should note here that the validity results of Propositions 4.1 and 4.2
differ from those of the corresponding Propositions 2.2 and 2.4 in the sense that
equalities have been replaced by inequalities. This entails that the correspond-
ing maximized MC tests is exact in the sense that the probability of type I error
cannot be larger than the nominal level o of the test, but its size may be lower
that the level (leading to a conservative procedure). In view of the fact the
distribution of the test statistic involves nuisance parameters, this is not surpris-
ing: since the distribution of the test statistic varies as a function of nuisance
parameters, we can expect that the probability of type I error be lower than the level
o for some distribution compatible with the null hypothesis, even if we use the
tightest possible critical value that allows one to control the level of the test. Both
the fundamental (infeasible) test and its MC version are not similar. This is a feature
of the test statistic, not its MC implementation. Of course, it is preferable from
the power viewpoint that the discrepancy between the size of the test and its level
be as small as possible. This discrepancy would disappear if we could estimate and
maximize without error the theoretical p-value function G[x | 6] or the appro-
priate critical value, but this is not typically feasible. In general, the discrepancy
between the size and the nominal level of the test depends on the form of the test
statistic, the null hypothesis, and the number N of replications of the MMC
procedure. Studying in any detail this sort of effect would go beyond the scope of
the present.’

5. Asymptotic Monte Carlo tests based on a consistent set estimator

In this section, we propose simplified approximate versions of the procedures
proposed in the previous section when a consistent point or set estimate of 0 is
available. To do this, we shall need to reformulate the setup used previously in order
to allow for an increasing sample size.

Consider

St0,ST1(0),...,STn(0), T=1Ip, 0€Q, (5.1

“We say that a test procedure is conservative at level o if its size is strictly smaller than «. Note that a non-
similar test is not conservative as long as its size is equal to the level o (even though the probability of type
I error is smaller than « for certain distributions compatible with the null hypothesis).

SA question of interest here consists in studying the conditions under which the discrepancy will
disappear as the number of MC replications goes to infinity (N — o0). The reader will also find simulation
evidence on the size and power properties of MMC procedures in Dufour and Khalaf (2003a, b), Dufour
and Jouini (2005) and Dufour and Valéry (2005).
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real random variables all defined on a common probability space (%, .« », P), and set
S7(N,0) = (S1100),...,Stn(0), T=I,. (5.2)
We will be primarily interested by situations where

the variables S7g, S71(0p), ..., Sta(0y) are exchangeable for some 0y € Q,
each one with distribution function Fz[x | 0y]. (5.3)

Here S7¢ will normally refer to a test statistic with distribution function F7[- | ]
based on a sample of size T, while S7(0),...,S7y(0) are i.i.d. replications of the
same test statistic obtained independently under the assumption that the parameter
vector is 6 (i.e., P[S7(0)<x] = F7[x | 0], i=1,...,N). Let also

Frnlx | 0= Ex[x; St(N,0)], Gry[x | 0] = Gy[x; St(N, 0)], (5.4)

NGTN[X | 9] +1
N+1 ’
and let F;,l\,[x | 0] be defined as in (2.7)—(2.10).
We consider first the situation where p-values are maximized over a subset Cy of Q

(e.g., a confidence set for ) instead of . Consequently, we introduce the following
assumption:

Prylx | 0] = (5.5

Cr,T>=1 is a sequence of (possibly random) subsets of Q such that
sup{GTN[STO |0]:0 € Cr}and
inf{FTN[STO | 0]: 0 € Cr} are .o/ y-measurable,
for all T>1,, where Q) is nonempty subset of Q. (5.6)

Then we have the following proposition.

Proposition 5.1 (Asymptotic validity of confidence-set restricted MMC tests:
continuous distributions). Under the assumptions and notations (5.1) to (5.6), set
S70(00) = St0, suppose

PIS7i(00) = S7;(00)] =0 for i#j and i,j=0,1,...,N, (5.7)

forall T=1, and let Cr, T =1, be a sequence of (possibly random) subsets of Q such
that

Jim P[0y € Cr]=1. (5.8)
If 0y € Qq, then
Jim P[sup{Gry[Sto | 0]: 0 € Cr}<a]
< Jim Plinf(F7y[St010]:0 € Cr}>1 —a]

Iy N + 1

N+1 (59

= lim P[Sr> sup{Epy[1 — o1 1 0]: 0 € Cr)]<
— 00
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and
ITo(N + 1)]
N +1

It is quite easy to find a consistent set estimate of 6p whenever a consistent point
estimate 07 of 6, is available. Suppose 2 C RF and

lim Plsup(pyy[Sro | 0]: 0 € Cr}<al< for 0<a<1. (5.10)

lim PlI07 — Ooll<e] =1, Ve>0, (5.11)

where | - || is the Euclidean norm in R* [ie., ||x| = (x’x)1/2, x € R¥]. Note that
condition (5.8) need only hold for the true value 0 of the parameter vector 0. Then
any set of the form Cr = {0 € Q: |07 — 0] <c} satisfies (5.8), whenever c is a fixed
positive constant that does not depend on 7. More generally, if there is a sequence of
(possibly random) matrices A7 and a non-negative exponent  such that

Jim_ PIT°|A7(07 — 0)><c] =1, V>0, (5.12)
then any set of the form
Cr=1{0eQ:Or—0)ApAr(07 — 0)<c/T?)
={0eQ: || Ar(0r — 0)|><c/T?}, ¢>0 (5.13)
satisfies (5.8), since in this case,
Pl0y € Cr] = P[(07 — 00 Ay A7 (07 — 00)<c/T°]
=P[T°(Or — 00) Ay A7 (07 — 0p) <c] — L

In particular (5.12) will hold whenever we can find 6>0 (e.g., 5 = 1) such that
T°1% 4 T(@T — 6p) has an asymptotic distribution (as 7 — oo) and 9 is selected so that
0<J<J5. Whenever 6>0 and plimy_, (A7 Ar) = Cy with det(Cy)#0, the diameter
of the set Cr goes to zero, a fact which can greatly simplify the evaluation of the
variables sup{GTN}, inf{F 7y} and sup{pry} in (5.9) and (5.10).

The above procedure may be especially useful when the distribution of the test
statistic is highly sensitive to nuisance parameters, in a way that would make its
asymptotic distribution discontinuous with respect to the nuisance parameters. In
such cases, a simulation-based procedure where the nuisance parameters are replaced
by a consistent point estimate—such as a parametric bootstrap procedure—may not
converge to the appropriate asymptotic distribution (because the point estimate does
not converge sufficiently fast to overcome the discontinuity). Here, possible
discontinuities in the asymptotic distribution are automatically taken into account
thorough a numerical maximization over a set that contains the correct value of the
nuisance parameter with a probability asymptotically equal to one: using a
consistent set estimator as opposed a point estimate (which does not converge fast
enough) can overcome such a high sensitivity to nuisance parameters. Of course, the
procedure can also be helpful in situations where the finite-sample distribution is
highly sensitive to nuisance parameters, even though it does not lead to asymptotic
failure of the bootstrap.
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Again, it is possible to extend Proposition 5.1 to statistics with general
(possibly discrete) distributions by considering properly randomized distribution,
tail-area and p-value functions:

Frylx | 01 = Fy[x; U, St(N; 0), UN)], (5.14)
Grnlx | 0] = Gy[x; Ug, ST(N;0), U(N)], (5.15)

NGTN[X | 9] + 1
N+1 ’
where Fy[-], Gy[-], Uy and U(N) are defined as in (4.23)—(4.25).

Prylx | 0= (5.16)

Proposition 5.2 (Asymptotic validity of confidence-set restricted MMC tests: general
distributions). Under the assumptions and notations (5.1)—(5.6) and (5.14)—(5.16),
suppose the sets Cr C Q, T>=1,, satisfy (5.8). If Oy € Qy, then for 0<o; <1 and
0<a<l,

Tlim Plsup{Grn[S7o | 0]: 0 € Cr}<ay]

) o Iy N1+ 1
< Jim Plsup(Gry[Sro | 0]: 0 € Crj<a]< % (5.17)
Jim Plsup{Grn[Sto | 0]: 0 € Cry<ai]
. - Iy N1+ 1
< Jim_ Plsup(Fra{Sro | 0]:0 € Cr) >1 - 2]< % (5.18)

Tlim Plsup{pn[St0 | 0]: 0 € Cr}<a]< Tlim Plsup{pn[So | 0]: 0 € Cr}<a]

- ITo(N + 1)]
SN+
6. Asymptotic Monte Carlo tests based on consistent point estimate

(5.19)

Parametric bootstrap tests may be interpreted as a simplified form of the
procedures described in Propositions 5.1 and 5.2 where the consistent confidence set
Cr has been replaced by a consistent point estimate Or. In other words, the
distribution of S7(0), 0 € Qo, is simulated at a single point 0, leading to a local (or
pointwise) MC test. It is well known that such bootstrap tests are not generally valid,
unless stronger regularity conditions are imposed. In the following proposition, we
extend earlier proofs of the asymptotic validity of such bootstrap tests. In particular,
we allow for the presence of nuisance parameters in the asymptotic distribution of
the test statistic considered. Further, our proofs have the interesting feature of being
cast in the MC test setup where the number of replications N is kept fixed even
asymptotically.

Such pointwise procedures require stronger regularity assumptions (such as
uniform continuity and convergence over the nuisance parameter space)—so that
they may fail in irregular cases where the maximized procedures described in the
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previous sections succeed in controlling the level of the test (at least asymptotically).
But they are simpler to implement and may be taken as a natural starting point for
implementing maximized procedures. In particular, if a pointwise MC p-value is
larger than the level a of the test (so that the pointwise MC test is not significant at
level @), it is clear that the maximized p-value must be larger than o (so that the
maximized MC test is not significant at level o).

In order to establish a clear asymptotic validity result, we will use four basic
assumptions on the distributions of the statistics S7(0) as functions of the parameter
vector 0:

S71(0),...,Stn(0) are i.i.d. according to the distribution
Fr[x | 0] =P[Sr(0)<x], VO0eQ, (6.1)

Q is a nonempty subset of R¥, (6.2)

for everyT =1y, Sty is a real random variable and éT an estimator of 0,
both measurable with respect to the probability space (Z, o7 », P),

and F7[Sto | 07] is a random variable; (6.3)

Vey >0, Ve; >0, 30>0 and a sequence of open subsets D7y(g) in R such that
1171’}1 inf P[ST() € DT()(So)]Zl — & and
— 00

10 — Ohl| <O = lim sup{ sup |Fr[x|0]— Fr[x | 00]|}<£1. (6.4)

T—o0 xeDry(ep)

The first of these four conditions replaces the exchangeability assumption by an
assumption of ii.d. variables. The two next ones simply make appropriate
measurability assumptions, while the last one may be interpreted as a local
equicontinuity condition (at 0 = 0y) on the sequence of distribution functions
Fr(x|0), T>=1,. Note that St¢ is not assumed to follow the same distribution as the
other wvariables S71(0),...,S7y(0). Furthermore, Sr¢ and Fr(x|6) do not
necessarily converge to limits as 77— oo. An alternative assumpption of interest
would consist in assuming that Sy converges in probability (—>) to a random
variable Sy as T — oo, in which case the “global”” equicontinuity condition (6.4) can
be weakened to a “local” one:

Sro —> S, (6.5)
T—00

Dy is a subset of R such that P[Sy € Dy and Sto € Dy for all T>1] =1,
(6.6)
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Vx € Dy, Ve>0, 36>0 and an open neighborhood B(x, ¢) of x such that

10 — 0ol <6 = lim Sup{ sup |Fr[y | 0] - Frly | 90]|}<8-

T—o00 yeB(x,e)NDy
6.7)
We can now show that Monte Carlo tests obtained by simulating S7;(0),
i=1,...,N, with § = 07 are equivalent for large 7 to those based on using the

true value 0 = 0,.

Proposition 6.1 (Asymptotic validity of bootstrap p-values). Under the assumptions
and notations (5.1), (5.2), (5.4), (5.5), (5.14)~(5.16) and (6.1)—(6.3), suppose the random
variable Sto and the estimator Or are both independent of St(N,0) and Uy. If
plimy_, 0r = 0y and condition (6.4) or (6.5)—(6.7) hold, then for 0<o; <1 and
0<axl,

Jim (P[Gry[So | O7]<on] = PIGrv[Sto | Bo]<ou]}
= lim {P[G7[Sro | O7]<o1] = PlG1[S7o | Ol <er]} = 0 (6.8)
and
Jim (P{p7y[Sto | Or]<o] = Plpry[Sto | o] <a])
= lim {P[pyy[Sto | Or]<a] = Plpry[Sto | o] <o) = 0. (6.9)

It is worth noting that condition (6.7) holds whenever Fr[x | 0] converges to a
distribution function F.[x | 0] which is continuous with respect to (x,0'), for
x € Dy, as follows:

Vx € Dy, Ve>0, 36; >0 and an open neighborhood Bi(x,¢) of x such that

10— 0]l <0 = lim sup( sup |FT[)/|9]_F00[)’|0]|><5, (6.10)
T—o0 YEB(x,6)NDy
Vx € Dy, Ve>0, 35, >0 and an open neighborhood B;(x,¢) of x such that

10— 0ol <02 = sup [Foo[y | 0] = Fuoly | bo]l<e. (6.11)
YeBy(x,6)NDy

It is then easy to see that (6.10)—(6.11) entail (6.7) on noting that
|Frlx | 01— Frlx | O]l <IFrlx | 0] = Foo[x | 0]| + |Fr[x | Oo] — Foo[x | Oo]|
+ [Foo[x | 0] = Foolx | Op]l,  Vox.
Note also that (6.11) holds whenever F[x | 0] is continuous with respect to (x, '),
although the latter condition is not at all necessary (e.g., in models where Dy is a

discrete set of points). In particular, (6.10)—(6.11) will hold when Fr[x | 8] admits an
expansion around a pivotal distribution:

Fr[x 0] = Foo(x) + T77g(x,0) + hr(x,0), (6.12)
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where Foo(x) is a distribution function that does not depend on 0,y >0, with the
following assumptions on g(x, 0) and Azr(x, 0):

Vx € Dy, 3 an open neighborhood B(x, ) of (x,0;) such that
gy, 0)| < C(x,0), forall (y,0) € B(x,00) N Dy,
where C(x,0) is a positive constant, and
T hr(y,0) = 0 uniformly on B(x, 0y) N Dy. (6.13)

The latter is quite similar (although somewhat weaker) to the assumption considered
by Hall and Titterington (1989, Eq. (2.5)).

When Sty is distributed like S7(0p), i.e., P[Sto<x] = Fr[x | 6y], we can apply
Proposition 2.4 and see that P[Grx[Sto | O] <] = (I[o1 N] + 1)/(N + 1), hence

EUES!

Tlgr;o P(Grx[Sto | Or]<ou] = N1l

(6.14)

7. Conclusion

In this paper, we have made four main contributions. First, for the case where we
have a test statistic whose distribution does not involve nuisance parameters under
the null hypothesis, we have proposed a general form of Monte Carlo testing which
allows for exchangeable (as opposed to i.i.d.) Monte Carlo replications of general
test statistics whose distribution can take an arbitrary form (continuous, discrete or
mixed). In particular, this form is not limited to permutation tests, which has
received considerable attention in the earlier literature on Monte Carlo tests (see
Dwass, 1957; Green, 1977; Vadiveloo, 1983; Keller-McNulty and Higgins, 1987,
Lock, 1991; Edgington, 1995; Manly, 1997; Noreen, 1989; Good, 1994]. Second, we
have shown how the method can be extended to models with nuisance parameters as
long as the null distribution of the test statistic can be simulated once the nuisance
parameters have been specified. This leads to what we called maximized Monte Carlo
tests which were shown to satisfy the level constraint. Thirdly, we proposed a
simplified version of the latter method which can lead to asymptotically valid tests,
even if the asymptotic distribution depends on nuisance parameters in a
discontinuous way. This method only requires one to use a consistent set esti-
mator of the nuisance parameters, which is always feasible as long as a consis-
tent point estimate of the nuisance parameters is available. Further, in the latter
case, no additional information is required on the asymptotic distribution of
the consistent estimator. Fourth, we showed that Monte Carlo tests obtained
upon replacing unknown nuisance parameters by consistent estimates also lead to
asymptotically valid tests. However, it is important to note that stronger condi-
tions are needed for this to occur and such conditions may be difficult to check
in practice.

The main shortcoming of the proposed MMC tests comes from the fact that such
tests may be computationally demanding. We cannot study here the appropriate
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numerical algorithms or detailed implementations of the theory described above. But
a number of such applications are presented in companion papers (which are based
on earlier versions of the present paper). For example, for an illustration of the
adjustment for discreteness proposed here, the reader may consult Dufour et al.
(1998) where it is used to correct the size of Kolmogorov—Smirnov tests (which
involve a discrete statistic) for the normality of errors in a linear regression. The
method of maximized Monte Carlo tests can of course be applied to a wide array of
models where nuisance parameters problems show up: for example, inference in
seemingly unrelated regressions (Dufour and Khalaf, 2003a), simultancous
equations models (Dufour and Khalaf, 2003b), dynamic models (Dufour and
Jouini, 2005; Dufour and Valéry, 2005), and models with limited dependent variables
(Jouneau-Sion and Torres, 2005). It is clear many more applications are possible.
The size and power properties of the proposed procedures are also studied by
simulation methods in this work.
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Appendix. Proofs

Proof of Lemma 2.1. By condition (2.12), the variables y, y,,...,yy are all distinct
with probability 1, and the rank vector (R, Rs,...,Ry) is with probability 1 a
permutation of the integers (1,2,...,N). Furthermore, since the variables
V1>V, ..., Yy are exchangeable, the N! distinct permutations of (y;,y,,...,yy) have
the same probability 1/N!. Consequently, we have:

1
P(R,:i)zﬁ, i=1,2,...,N,
P(R;/N<x)=I[xN]/N, 0<x<lI,
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from which (2.13) follows and

P(R;/N <x) = (I[xN] - 1)/N if xN € Z,
= I[xN]/N otherwise,

where Z is the set of the positive integers. Since, for any real number z,

I[N —z]= N —z if zis an integer,
=N —1I[z]— 1 otherwise,

we then have, for 0<x<1,

P(Ri/N=x)=1—-P(Ry/N<x)=(N—I[xN]+1)/N if xN € Z4,
= (N — I[xN]))/N otherwise,
hence
P[R;/N=x]=([(1 — x)N]+ 1)/N if 0<x<l,
=1 if x=0,
from which we get (2.14). O
Proof of Proposition 2.2. Assuming there are no ties among Sy, Sy, ..., Sy (an event
with probability 1), we have
- 1 Y 1 < 1 Y
G(S0) = 1 D 1Si=S0) = > (1= 1Si<So)) =1 -5 > 1(S;<So)

i=1 i=1 i=1

_1__

1+Z 1(S; < So)] =(N+1—Ry)/N,

where Ry = Zfio 1(S; < Sp) is the rank of Sy when the NV + 1 variables So, S1,..., Sy
are ranked in nondecreasing order. Using (2.15) and Lemma 2.1, it then follows that

A N+1-Ry Ry (1—061)N+1
P <oyl]=P|————< =P >

[GN(So) <] [ ~ 061} [N+1 N+l
_ I[N+ 1
O N+1

for 0<oy<1. Furthermore, Fy(So)=1— GN(SO) with probabllllty 1, and (2.17)
follows. We then get (2.18) on observing that: FN(y)>q<:>y>F (9) for y € Rand
0<g<1 (see Reiss, 1989, Appendix 1). Finally, to obtain (2.19), we note that

NGy (Sp) + 1
N+1

aN+1)—1

<oe=Gr(S)) < i

Pn(So) =
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hence, since that 0< GN(SO)<1 and using (2.17),

. A o N+1)—1
Pl (S0 <] = P| Gu(soy < "N E D=1
0, if a<1/(N + 1),
) ROV K WP TR [ S
N+1 N+1 N+1
1, if a>1,

from which (2.19) follows upon observing that Ifo(N +1)]=0 for 0<a<l1/
N+1. O

Proof of Lemma 2.3. From (2.23) and the continuity of the U(0, 1) distribution, we
see easily that P[(y;, U;) = (y;, UpI<P[U; = U;] = 0, for i#}, from which it follows
that P[R R; i1 = 0 for i#j and the rank vector (R1, R», ..., Ry)is with probablhty 1
a random permutation of the integers (1,2,...,N). Set V =0,U), i=1,....N
By considering all possible permutations (V;,, V,z, Ve of (Vi Va, ..., Vy), and
since (Vy, Viysooos Vi )~(V1,Va,...,Vy) for all permutations (r1,72,.. rN) of
(1,2,...,N) [by the exchangeability assumption], the elements of (R1 R,
Ry) are also exchangeable. The result then follows from Lemma 2.1. The reader may
note that an alternative proof could be obtained by modifying the proof of Theorem
29A of Hajek (1969) to relax the independence assumption for y,...,yy. O

Proof of Proposition 2.4. Since the pairs (S;, U;), i =0,1,..., N, are all distinct with
probability 1, we have almost surely:

N

N
Gr(S) = 5 > (S U2 (S0, Up)l = 1 = 3 1S, U) < (S0, Uy)
i=1 i=1

N
=1 —%{—1 + 2 1S U< (S, Uo)]} = (N +1—Ry)/N.

where Ry = Zf\; o H(Si, U))<(So, Up)] is the randomized rank of Sy obtained when
ranking in ascending order [according to (2.23)] the N + 1 pairs (S;, U;), i =0,
., N. Using Lemma 2.3, it follows that
Ry _(—a)N +1
N+1~  N+1

PIGN(So)<o] = P[(N + 1 — Ry)/N<oy] = P[

0 if o <0,
Iy N1+ 1 .
AT e <o <,
N+1 " Us%
1 if oy > 1.

Since ~the pairs (S;, {],-), i=0,1,...,N, are all distinct with probability 1, we also
have Fn(So) = 1 — Gy (Sp) with probability 1, hence using inequalities (2.33)—(2.36),

PLGN(S0) <ou]<P[Gn(So) <] = PIFn(So)=1 — oy ]<P[FN(Sp) =1 — o]
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and (2.36) is established. The identity P[FN(é‘(l)lzl —o] = P[so>ﬁjvl(1 —oy)]
follows from the equivalence: Fy(y)=gq<=y=F, (¢), Vy € R, 0<g<1. Finally,
to obtain (2.37), we observe that

N NG (So) + 1 N aN+1)—1
Pn(So) = ]’;(7;))1 <a<=Gn(So) < %
hence, using (2.36),
R ~ oN+1)—1
Plpy(S0) <o) = P|Gr(spp< "N F D1
0 if a<1/(N+ 1),
= N+ 1D~ 1+1 I[N + )] I 1 <a<l,
N+1 N+1 N+1

from which (2.19) follows on observing that I[a(N+1)]=0 for 0<a<l/
~N+1D. O

Proof of Proposition 4.1. Since

GnISo | 01=1 — Fy[So | 0], (A.T)
we have

Plsup{Gn[So | ] : 0 € Qo) <o] <P[inf(Fy[Sy | 0]: 0 € 2} >1 - en].

When 0y € Q, it is also clear that: infyeq, FN[SO 0121 — o = FN[SO | 60]=1 — ay.
Thus, using Proposition 2.2,

Plinf(Fy[So | 0]: 0 € Qo) =1 — oy ]<PLFN[So | Op] =1 — o] = I["‘%ﬂl
Furthermore,
(}ggfo FN[So | 0121 — ay = Fy[So | 0]1=1 — a1, VO € Q
= So=Fy 1 —ay | 0], Y0 e Que=So> sup £y [1 — o | 0] (A2)

(')EQO

so that, using Proposition 2.2,

P[So> sup{Fy [1 — o | Op] : 0 € Qo}] = Plinf{Fy[So | 0]: 0 € Q}=>1 — a]
NI+ 1
N+1
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and (4.20) is established. Eq. (4.21) follows in the same way on observing that
SUPgeq, Av[So | O1<supgeq, Py[So | 0] and

sup pyl[So | 01<a = py[So | Op]<a, when 0y € Q. |
9690

Proof of Proposition 4.2. Using (2.32)—(2.33), we have:

1 — Fn[So | 0]
1 — Gn[So | 0]

GnlSo | 01<Gn[So | 0], V0,
FnlSo | 01<En[So | 0],

//\ //\

hence

sup Gy[So | 01< sup Gy[So | 0],

GEQO HEQO

1 — sup Gy[So | 0] = inf {1 — Gn[So | O]} < inf En[So | 0],
0eQ, 0eQq 0eQy

sup py[So | 0]< sup PwlSo | 0].

GEQO 0

Furthermore, when 0y € Q,

sup Gy[So | 0]<oq = Gy[So | Ol <ou,
GEQO

inf Fy[So | 0]1=1— o = Fn[So | Oo]=1— o,
HEQO

sup pylSo | 0]<o = py[So | Dol <o,
GEQO

hence, using Proposition 2.4, for 0<o; <1 and for 0<a<1,

P[sup{Gx[So | 0] : 0 € Qo} <an]<P[sup{Gn[S | 0] : 0 € Qp} <]
I[on N+ 1

<P[GN[So | Qo] <] = Nil

[sup{GN[So | 9] 0 e Q()}<OC]] [1nf{FN[S0 | 0] 0 e Qo}?l — OC]]
Iy N + 1

<P[FN[So | 00]=1 — o] = NoT

Plsup{py[So | 0] : 0 € Qo} <e] <P[sup{py[So | 0] : 0 € Qo}<c]

<Ppy[So | Oo]<2] _ N+ 1]

O
N+1
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Proof of Proposition 5.1. Using arguments similar to the ones in the proof of
Proposition 4.2 [see (A.1)-A.2)], it is easy to see that
Plsup{G7x[Sro | 0]: 0 € Cr}<on]<P[inf(Fry[Sr0 | 0]: 0 € Cr}>1— o]
A1
= P[S70= sup{Fy[l —a1 1 0]: 0 € Cr}].

Further,

Plinf{F7n[S70 1 0]:0 € Cr}=1— o]
= Plinf{Fy[S70 | 0]: 0 € C7}=1—o; and 0y € Cy]
+ P[inf{F7y[S70 | 0]: 0 € Cr}=1— 0y and 6y ¢ Cr]
Il N1+ 1

<P[Fn[St0 | 00]=1 — ay] + P[6o ¢ Cr] = N+

+ P[0y ¢ Cr],

where the last identity follows from Proposition 2.2, hence, since limy_, », P[0y ¢ Cr]
=0,

. . A Iy N1+ 1 .
Jim POnf(Ery[Sro | 0120 € C)>1 - 2] I E L4 lim Loy €]
_ IuN]+1
- N+1

from which (5.9) and (5.10) follow. O

Proof of Proposition 5.2. The result follows from arguments similar to the ones used
in the proofs of Propositions 4.1 and 5.2 (with @, replaced by Cy). O

In order to prove Proposition 6.1, it will be convenient to first demonstrate the
following two lemmas

Lemma A.1 (Continuity of p-value function). Under the assumptions and notations
(5.1), (5.2), (5.4), (5.5), (5.14)—(5.16) and (6.1), set

Orn(0,x,u9,010) = P[Gry[x | 0]1<oy | Ug = ug), (A.3)

Orn(0,x,00) = P[Gry[x | 0]<a1], 0<a <], (A.4)

and suppose U is independent of S7(N, 0). For any 0, 0y € Q, x € R and uy, o € [0, 1],
the inequality

|FT[]/|0]—FT|—_]/|60]|<8, Vye(x_5:x+(s)’
where 0> 0, entails the inequalities:

|QTN(6: X, Uo, OC]) - QTN(GO; X, Uo, (xl)l < 3C(Na 061)8, (AS)

|QTN(9, X,00) — QTN(Ho,x, up)| <3C(N, 0)e, (A.6)
where C(N,o) = NZIICZBN] (II\C/ )
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Proof. It is easy to see [as in (3.3)] that

Orn(0,x, g, o) = P[Grn(x | 0)<ay | Uy = ug)
TN A )
= Z ( )GT(X, uo | O [1 — Gr(x,ug | IV,
= \k

where

Gr(x,ug | 0) = PA[(ST:(0), Up) = (x,up)] = 1)
= P[S7:(0) > x] + P[S7:(0) = x]P[U; = up]
=1—=Fr[x | 0]+ gr(x| O —u), 1<i<T.

Note also that g;(x | 0) = Fr[x | 0] — lim+ Fr[y — ¢ | 0]. Then the inequality
(50—)0
|Fr[y | 01— Frly | Ooll<e, Vy e (x—0,x+0),
entails the following inequalities:
[1 —Fr[x| 0] — 1+ Frlx | 0o]|<e,
lgr(x | 0) — gr(x | 0o)| = {1 — Frlx | 0]} — {1 — Fr[x | Oo]}
+ lim {Fr[y — 0o | 0] = Frly — do | Ool}|
5p—0F
<IFrlx| 0] = Frlx | Goll + lim |Frly— oo 0]
0*)
— Frly =00 | Oo]l <2,
hence, for all uy € [0, 1],

\Gr(x,u | 0) — Gr(x,ug | 00)|<|Fr[x | 0] — Frlx | 6]|
+ 1 = uollgr(x | 0) — gr(x | Oo)| <3,
Vuo € [0, 1],

| Q7w (0, x, 19, 01) — Oy (0o, X, g, 011)|

& [ (N - k = N—k
< Gr(x,up|0)[1 — Gr(x,ug|] "
; (k) 7(x, up)0)°[ 7(x, up|0)]
—Gr(x,u0)00)[1 — Gr(x,u0|00)]" H
[Noy] N _ s _ k

< Gr(x,up | ) — Gr(x,uy | 0
kz:; (k>| r(x,ug | 0) 7(x,u | 00)"

11 = Grx,uo | O F —[1 = Gr(x,uo | 00)]V ¥
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[Noy]

<) {()#iGrtxn 10~ Grxan 00

+ (N = k)IGr(x,ug | 0) — Gr(x,up | 90)|}
= C(N,a)|Gr(x,up | 0) — Gr(x,ug | 00)| <3C(N, 1)z,

where C(N, o) = NZI[“‘N (%), from which (A.5) follows. The inequality (A.6)
follows in a similar way on noting that Qpy(0,x,a1)= /M (V)Gr(x | 0)F

[1 - Gr(x | 0", where Gr(x | 0) = Py[Sr(0)>x], 1<i<N. O

Lemma A.2 (Convergence of Bootstrap p-values). Under the assumptions and
notations of Lemma A.1, suppose that (6.2) and (6.3) also hold. If 0r = 0y in
probability and condition (6.4) or (6.5)—(6.7) holds, then

sup Q7w (07, S0, o, %1) — Qry (00, S0, o, 21)| —> 0, (A7)
0<up<l1 T—o00
QTN(éT:STOaOCI) — Oyn(00, St0,0211) Tf; 0. (A.8)

We can now prove the following proposition.

Proof. Let o) € [0, 1], e>0 and g >0 and suppose first that (6.4) holds. Then, using
Lemma A.1, we can find 6 >0 and T, such that

x € Dyo(g), 10— 6oll<d and T>T),
= |Frx | 0] = Fr[x | 6p]|<e1 = ¢/[3C(N, )]
= 1Q7n(0, x,10,01) — Q7 (00, X, 19, 1) <&, Vup € [0, 1].
Thus

Sto € Dro(eo) and [|07 — 0pl| <5 = A7 (07, 0o, St0, 1) <,

where Arn (07,00, STo,011) = SUpg<yy <1 Q7N (07, S0, 0, 001) — Q7 (0o, X, 10, 01 ),
hence

P[A7n (07, 00, S70,01) <€l =>P[S70 € Dr0(e0) and |07 — 0ol <]
>1 = P[S70¢ Dro(eo)] = PlllOr — 0]l > 0]
= P[St0 € Dro(¢0)] — P[0 — 0ol > 4.
Since @T LA 0y, it follows that

li;n inf P[A7y(O7, 00, Sto,01) <] > li;n inf P[S79 € Dro(e0)] =1 — &

for any & >0, hence limz_ P[ATN(@T, 0o, S10,1)<e] = 1. Since the latter iden-
tity holds for any >0, (A.7) is established. (A.8) follows in a similar way upon
using (A.6).
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Suppose now (6.5)—(6.7) hold instead of (6.4). Then, (S, @T) Ti> (So, 0p) and
—>00
(S7,+07,) = (So,00), (A.9)
— 00

for any subsequence {(ka, (A)fk) k=1,2,..} of {(ST, @T) : T=1,}. Since Stg and @T,
T>1,, are random variables (or vectors) defined on &, we can write S79 = Sto(®),
07 = 07(w) and Sy = So(w), v € Z. By (6.6), the event

Ao = {w : So(w) € Dy and Sro(w) € Dy, for T =1y}

has probability one. Furthermore, by (A.9), the subsequence (S rfk,é/fk)/ contains a
further subsequence (S7,0, @/Tk)/, k=1 such that (St,0, @,T/ ) = (S0, 0y)" a.s. (where
< — 00

T,<T>< ---); see Bierens (1994, pp. 22-23). Consequently, the set
Co=1{w € Z :So() € Do, lim Sr,0(w) = So() and lim O, (w) = 0p)
K—> OO — 00

has probability one. Now, let ¢>0. By (6.7), for any x € Dy, we can find d(x, &) >0,
T(x,e)>0 and an open neighborhood B(x, ¢) of x such that

10— 0ol <d(x,¢) and T>T(x,¢) = [Fr[y | 0] — Frly | O]l <,
Vy € B(x,&) N Dy.

Furthermore, for w € Cy, we can find kq such that
k=ko = St,0(0) € B(So(), &) N Dy and |07, — 00| <5(So(w), &).

so that T} > max{T(So(w),e), Tx,} entails |Fr,[S7,0(®) |07, (0)]— Fr,[ST,0(®) |
Ooll<e. Thus limg, o (Fr,[ST0(®) | O (0)] — F1, [ST0(@) | O]} =0 for w € Co,
hence, wusing Lemma A.l, limy_o A7, n(07,(®),00,ST,0(®),%1) =0 and
ATkN(éTk,HO,STkO,oq) k—>0 0, a.s. This shows that any subsequence of the sequence
ATN(QT,HO,STO,al),TZIo, contains a further subsequence which converge a.s. to
zero. It follows that ATN(@)T, 0o, ST0,01) T—p> 0 and (A.7) is established. The proof of
—> 00
(A.8)) under the condition (6.5)—(6.7) is similar. [

Proof of Proposition 6.1. Using the fact that @)T, S7o and Uy are independent of
S7(N,0), we can write
P[Grn[Sto | Or]1<ai] — P[Gry[Sto | Oo]< o]
= E{P[Gx[S70 | O71<e1 | (07, S70, Uo)]
— PGrvISTo | o<1 | (B, S0, Uo)l)
= E[Qrw(07, S10, Us, 1) — Q7 (00, S0, Uo, o1)].
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From Lemma A.l and using the Lebesgue dominated convergence theorem, we
then get

IP[Grn[STol07]<01] — P[Grn[STol00] <o
= [E[Qry (07, ST0, Un, a1) — Q7y (00, St0, U, a1)]|
<E{1Qzv(0r, S10, Ug, 1) — Q7 (00, St0, U, 01)1}

<E| sup [Qrn(07,ST0,u0,01) — Q7n(0o, ST0, 110, 201)| | —> 0.
0<up<l T— o0

We can show in a similar way that
IPIGIS70 | Or]<en] = PIG[ST0 | Qo] <]l > 0.

from which we get (6.8). Eq. (6.9) then follows from the definitions of ppy(x | 0) and
pry(x10). O
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