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Abstract

We propose two approaches for testing non-correlation between the innovations of

two nonstationary possibly cointegrated vector processes, in the general case where

the processes have infinite-order autoregressive representations. The first approach

is based on cross-correlation matrices, while the second approach uses partial cross-

correlation matrices. We show that, under the hypothesis of non-correlation, resid-

ual cross-correlation matrices follow the same asymptotic Gaussian distribution as the

corresponding cross-correlation matrices based on the true innovations, and similarly

for partial cross-correlations. Portmanteau tests based on both type of residual cross-

correlations are derived. A simulation study is presented to investigate the finite sample

properties of the proposed tests.
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1 Introduction

In many situations, one needs to study the relationship between two multivariate time

series. In econometrics, establishing the relationship between two multivariate time series

is an important question for understanding the associated economic mechanisms. In this

context, many papers have studied the problem of testing independence (or the absence

of serial cross-correlation, in the non-Gaussian case) between two vector processes; see

Haugh [12], Koch and Yang [14], Hong [11], El Himdi and Roy [7], Duchesne and Roy [4],

Pham, Roy and Cédras [19], Hallin and Saidi [9], and Bouhaddioui and Roy [2, 3]. In this

article, we consider this problem when the processes involved have dimensions potentially
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larger than one and may be nonstationary (integrated) as well as cointegrated with infinite-

order autoregressive [IVAR(∞)] representations.

Since the papers by Haugh [12], Koch and Yang [14], Hong [11] and Duchesne and

Roy [4] focus on testing non-correlation between two univariate series, the other papers

cited above are those most closely related to our setup. El Himdi and Roy [7] extend the

procedure developed by Haugh [12] in order to test non-correlation between two time series

which follow multivariate stationary invertible VARMA series, while Hallin and Saidi [9]

extend the results of Koch and Yang [14] – which takes into account patterns in residual

cross-correlations – to obtain more powerful tests under similar assumptions. For nonsta-

tionary series, it is usually preferable for power to directly work with the original series

(without differencing), but this can create distributional complications and lead to mislead-

ing results; see Engle and Granger [8]. To meet this purpose, Pham, Roy and Cédras [19]

generalize the main result of El Himdi and Roy [7] to the case of two cointegrated (partially

nonstationary) VARMA series.

Since a finite-order VAR process may be a rough approximation to the true data gen-

eration process (DGP) of a given multivariate time series, the work of El Himdi and

Roy [7] is extended in Bouhaddioui and Roy [2, 3] to the case of two multivariate station-

ary infinite-order autoregressive series VAR(∞). In [2], for the case of two uncorrelated

stationary VAR(∞) time series, the authors show that an arbitrary vector of residual cross-

correlation matrices, obtained by approximating the two multivariate series by a finite-order

autoregressions, has the same asymptotic distribution as the corresponding vector of cross-

correlation matrices between the true (unobservable) innovations, and portmanteau tests for

non-correlation are derived from this result. In [3], multivariate extensions of the spectral-

type procedures introduced by Hong [11] are supplied.

In this article, we propose two approaches for testing non-correlation between two

IVAR(∞) processes. The first approach is a generalization of the asymptotic result of

Bouhaddioui and Roy [2] mentioned above to the case of two infinite-order cointegrated

autoregressive models IVAR(∞). We first prove the consistency of a residual covariance

and correlation vectors. We also show that an arbitrary vector of residual cross-correlation

matrices, obtained by approximating the error correction model with a finite-order au-

toregression, follows asymptotically the same distribution as the corresponding vector of

cross-correlation matrices between the two innovation series. Using this result, we de-

velop portmanteau tests for non-correlation between two vector processes, which are based

on residual cross-correlation matrices. The second approach is based on the partial cross-

correlation matrices. These can easily be computed as parameters of multivariate regression

between the two residuals series. Under the null hypothesis, we find that the residual partial

cross-correlation vectors follow the same distribution asymptotically as the corresponding

vector of partial cross-correlations between the true innovations. Alternative portmanteau

tests are derived from this result. The partial cross-correlation approach is computationally
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simple, reliable form the viewpoint of size, and appears to yield power gains (as indicated

by simulation results) with respect to the tests based on usual cross-correlations.

The article is organized as follows. Section 2 contains preliminary results. In section

3, we study the asymptotic distribution of residual covariance and correlation vectors. In

section 4, we study the case where the process can be partitioned into two uncorrelated

processes and we present two procedures for testing the hypothesis of non-correlation. In

section 5, we present a simulation study where we investigate the finite sample properties

of the proposed tests and shows that the test based on the partial cross-correlations is more

powerful. We conclude in section 6.

2 Framework and Preliminary Results

Following the notations in Saikkonen [21], Saikkonen and Lütkepohl [22], we consider

a d-dimensional process X = {Xt , t ∈ Z} partitioned into two subprocesses Xi =

{Xit , t ∈ Z}, i = 1, 2, with d1 and d2 components respectively (d1 + d2 = d). The data

generation process has the following form

X1t = C1X2t + ε1t, (2.1)

∆X2t = ε2t, (2.2)

where C1 is a given (d1×d2) matrix, ∆ is the usual difference operator and ε = (ε′

1t, ε
′

2t)
′

is a stationary process with zero mean and continuous spectral density matrix which is

positive definite at zero frequency. X2t is an integrated vector process of order one with

no cointegrating relationship, while X1t and X2t are cointegrated.

Denoting by Id the (d × d) identity matrix, from (2.1), taking the first differences and

rearranging yields the triangular error correction representation

∆Xt =

[

−Id1
C1

0 0

]

Xt−1 + bt = JΘ
′Xt−1 + bt. (2.3)

where J ′ = [−Id1
: 0], Θ

′ = [Id1
: −C1], and bt = [b′

1t : b′

2t]
′ is nonsingular transfor-

mation of εt defined by b1t = ε1t + C1ε2t and b2t = ε2t. The notation A = [A1 : A2]

means that the matrix A is subdivided in matrices A1 consisting of the first columns and

A2 consisting of the last columns A.

Suppose that the process bt (and hence εt) has an infinite order autoregressive repre-

sentation

∞
∑

l=0

Gjbt−j = at, G0 = Im, (2.4)

where at is a sequence of continuous white noise with E(at) = 0 and E(ata
′

t) = Σa

is a definite positive matrix, and the fourth moment exists. Denoting by G(z) = Id −
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∑

∞

l=1 Glz
l, the stationarity hypothesis of the process bt implies that the zeros of the equa-

tion det{G(z)} = 0 all lie outside the unit circle |z| = 1, where det{A} denotes the

determinant of the square matrix A. A further assumption is that the coefficient matrices

Gl satisfy the summability condition so that

∞
∑

l=1

ln‖Gl‖ < ∞, n ≥ 1,

where ‖.‖ is the Euclidean matrix norm defined by ‖A‖2 = tr(A′A). This is a stan-

dard condition for weakly stationary processes. It ensures, for instance, that the process is

well defined. Depending on n, it imposes weak restrictions on the autocorrelation struc-

ture of the process bt. Also, it implies that the process bt and, consequently, Xt can be

approximate by a finite-order autoregression. The order p of the fitted autoregression is a

function of the sample size; i.e., p = p(N), where p increases, at some rate, simultaneously

with realization length N . In the sequel, we assume the following assumption on the finite

autoregressive order.

Assumption 2.1. N−1/3p → 0 and
√

N
∑

∞

l=p+1 ‖Gl‖ → 0 as N → ∞.

Using the equations (2.3) - (2.4) and rearranging terms then gives the autoregressive

error correction model (ECM) representation

∆Xt = ΨΘ
′Xt−1 +

p
∑

l=1

Πl∆Xt−l + et, t = p + 1, p + 2, . . . , (2.5)

where et = at −
∑

∞

l=p+1 Glbt−l, Ψ = −∑p
l=0 GlJ . Details for this derivation can

be found in Saikkonen and Lütkepohl [22]. The (d × d1) matrix Ψ is of full column

rank (at least for p large enough). Note that the coefficient matrices Πl(l = 1, . . . , p) are

functions of Θ and Gl(l = 1, 2, . . .), and they depend on p. Furthermore, the sequence

Πl(l = 1, . . . , p) is absolutely summable as p → ∞.

The autoregressive ECM in (2.5) can also be rewritten in a pure vector autoregressive

(VAR) form

Xt =

p+1
∑

l=1

ΦlXt−l + et (2.6)

where Φ1 = Id +ΨΘ
′+Π1, Φl = Πl−Πl−1, l = 2, . . . , p and Φp+1 = −Πp. Although

the parameters Πl depend on p, the same is not true for the Φl except for Φp+1.

Saikkonen and Lütkepohl [22] derive the asymptotic properties of the multivariate

least square (LS) estimators of the VAR coefficients under a standard assumption. Let

Φ(p) = (Φ1, . . . ,Φp) be the matrix of the first p autoregressive parameter matrices in the

representation (2.5) and denote by Φ̂(p) = (Φ̂1, . . . , Φ̂p) the corresponding LS estimator.

The following proposition gives a direct result on the asymptotic properties of the estima-

tor Φ̂(p). It can be proved using the same straightforward techniques that in part (i) of

Saikkonen [21, Theorem 3.2] (see also Saikkonen and Lütkepohl [22, Theroem 2]).
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Proposition 2.1. Let {Xt} a process given by (2.6) and assume that E|ai,taj,tak,tal,t| <

γ4 < ∞; 1 ≤ i, j, k, l ≤ d. Then, under the assumption 2.1,

‖Φ̂(p) − Φ(p)‖ = Op(
p1/2

N1/2
).

Note that this proposition is formulated for the first p coefficient matrices, whereas the

underlying process fitted to the data is a VAR(p + 1), where p goes to infinity with the

sample size N . A details of the estimates of the Φl are given in Saikkonen and Lütkepohl

[22]. This result can be considered as a generalization of Lewis and Reinsel [15, Theorem

1] in the infinite order stationary vector autoregressive case. Also, in the stationary case,

Paparoditis [18] established this result under the same assumption when the estimators of

the parameters are based on a bootstrap procedure.

3 Asymptotic Distribution of Residual Correlation Vector

Let X = {Xt, t ∈ Z} be a multivariate process of dimension m which follows an

infinite order cointegrated autoregressive model IVAR(∞) given by (2.3). The innovation

process a = {at, t ∈ Z} whose covariance and correlation matrices are denoted respec-

tively by Σa and ρ
a

. In the sequel, we suppose that the process a verify the following

assumption

Assumption 3.1. (i) {at} is a strong white-noise process of dimension m whose matrix of

covariance Σa and matrix of correlation ρ
a

.

(ii) The fourth-order moments of the vector at components {ai,t, i = 1, . . . ,m} exist, i.e.,

for all t ∈ Z,

E|ai,taj,tak,tal,t| < ∞ , i, j, k, l = 1, . . . , m.

Given a realization of process X1, . . . ,XN of length N , we approximate the series by

a finite order autoregression VAR(p) given by (2.6). The autoregressive order p depends on

the realization length N . The resultant residuals are given by

ât =







Xt −
∑p+1

l=1 Φ̂lXt−l if t = p + 2, . . . , N ,

0 if t ≤ p,

where Φ̂l are the OLS estimators of Φl. The residual covariance matrix Câ(j) =

(ĉls(j))m×m is given by

ĉls(j) =







N−1
∑N

t=j+1 âl,tâs,t−j if 0 ≤ j ≤ N − 1 ,

N−1
∑N

t=−j+1 âl,t+j âs,t if −N + 1 ≤ j ≤ 0 .
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If we denote by D{bi} a diagonal matrix whose elements are b1, . . . , bm, we define the

residual correlation matrix by

Râ(j) = D{cii(0)−1/2}Câ(j)D{cii(0)−1/2}, |j| ≤ N − 1. (3.1)

Denote by câ = (vec(Câ(j1))
′, . . . , vec(Câ(jn))′)

′

, where the symbol vec stands for the

usual operator that transforms a matrix into a vector by stacking its columns. râ is defined

as above by replacing the covariance matrix by the correlation matrix. These vectors were

used by El Himdi and Roy [7] in order to construct a non-correlation test between two

multivariate stationary VARMA. In the nonstationary case, we also need to study the sam-

ple covariance and the sample correlation of the innovation process instead of the sample

covariance of {Xt}, because E[XtX
′

t−j ] depends not only on the lag j but also on t.

The following theorem gives a consistent properties on the sample covariance matrix

of the residual series ât. The proof is given in the appendix of a technical report available

from the author.

Theorem 3.1. Let X be a linear process which satisfies the multivariate infinite order

cointegrated autoregressive model (2.5). Suppose also that the corresponding innovation

process satisfies Assumption 3.1. If the Assumption 2.1 is verified, then

√
N(câ − ca) = op(1). (3.2)

In the stationary case, this result can be deduced from the main result in Hannan [10]

which is also proved by Roy [20]. Thus,
√

Ncâ has asymptotically a multivariate normal

distribution with a complex formula for the covariance matrix which depends on the fourth-

order cumulants, see again Hannan [10]. If all of these cumulants are zero, the covariance

matrix formula still complex but has a more reduced form than the general case.

Using the same techniques as El Himdi and Roy [7, Theorem 1], we can deduce from

Theorem 3.1 the asymptotic distribution of the residual correlation vector.

Corollary 3.1. Let {Xt, t ∈ Z} satisfy (2.5). Under the same assumptions as in Theorem

3.1, we have

√
N(râ − ra) = op(1). (3.3)

4 Tests for Non-Correlation Between Subprocesses

Let X = {Xt, t ∈ Z} be a multivariate process of dimension m. Suppose that the

process X is partitioned into two subprocesses X(h) = {X(h)
t , t ∈ Z}, h = 1, 2, with m1

and m2 components respectively (m1 + m2 = m). In the sequel, we suppose that for h =

1, 2, X(h) follows an infinite order cointegrated vector autoregressive model IVAR(∞)
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given by (2.3) and are uncorrelated. The innovation process a = {[a(1)
t

′

: a
(2)
t

′

]′ , t ∈ Z}
whose covariance and correlation matrices are given respectively by

Σ =

(

Σ1 0

0 Σ2

)

, ρ =

(

ρ1 0

0 ρ2

)

.

4.1 Method based on cross-correlations

Given a realization of process X of length N , the residual covariance matrix is parti-

tioned as

Câ(j) =

(

C
(11)
â

(j) C
(12)
â

(j)

C
(21)
â

(j) C
(22)
â

(j)

)

, j ∈ Z, (4.1)

where C
(hh)
â

(j) is the residual covariance matrix of process a(h), for h = 1, 2, and

C
(12)
â

(j) is the residual cross-covariance matrix given by

C
(12)
â

(j) = N−1
N

∑

t=j+1

â
(1)
t â

(2)′

t−j , 0 ≤ j ≤ N − 1.

Also, for −N + 1 ≤ j ≤ 0, C
(12)
â

(−j) = C
(21)
â

(j)′ and C
(12)
â

(j) = 0 for |j| ≥ N . If

we denote by D{bi} a diagonal matrix whose elements are b1, . . . , bm, the sample cross-

correlation matrix at lag j is given by

R
(12)
â

(j) = D1{c−1/2
ii (0)}C(12)

â
(j)D2{c−1/2

ii (0)}. (4.2)

Let j1, . . . , jL a finite set of lags such that |ji| < N , i = 1, . . . , L. We denote by r
(12)
a

the cross-correlation vector of dimension Lm1m2 associated with the innovation series

{a(1)
t } and {a(2)

t }, that is

r(12)
a

=
(

vec(R(12)
a

(j1))
′, . . . , vec(R(12)

a
(jL))′

)

′

,

Note that the non-correlation between X(1) and X(2) is equivalent to the non-

correlation between the corresponding innovation processes a(1) and a(2), see the Propo-

sition 2.1 in Pham et al. [19]. The processes a(h) satisfy Assumption 3.1. The following

theorem provides the asymptotic distribution of cross-correlation vector r
(12)
â

under the

non-correlation assumption between the two processes. The proof is also presented in the

appendix of the technical report available from the corresponding author.

Theorem 4.1. Let X(1) and X(2) be two linear processes which satisfy the multivariate

infinite order cointegrated autoregressive model (2.3). Suppose also that the corresponding

innovation processes satisfy Assumption 3.1 and that all their fourth-order cumulants are

zero. If the two processes are uncorrelated and Assumption 2.1 is verified, then
√

Nr
(12)
â

asymptotically follow a multivariate normal distribution with mean 0 and covariance ma-

trix IL ⊗ (ρ2 ⊗ ρ1)).
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4.2 Method based on partial cross-correlations

Now, one can define the partial cross-correlation as an ordinary regression coefficient

matrix for the regression of a
(1)
t on a

(2)
t . The regression model is such that

a
(1)
t =

j
∑

l=1

P
(12)
l a

(2)
t−l + ut.

where u = {ut, t ∈ Z} is an i.i.d errors with mean 0 and regular covariance matrix Σu.

If we denote by

A(1) = (a
(1)
1 , . . . ,a

(1)
N ), A

(2)
t−1 =









a
(2)
t−1
...

a
(2)
t−j









, A(2) = (A
(2)
0 , . . . ,A

(2)
N−1)

and U = (u1, . . . ,uN ), the regression model can be written compactly as

A(1) = P
(12)
(j) A(2) + U ,

where P
(12)
(j) = [P

(12)
1 , . . . ,P

(12)
j ]. The OLS estimator of P

(12)
(j) is given by

P̃
(12)

(j) = A(1)A(2)′(A(2)A(2)′)−1. (4.3)

If we denote by p̃
(12)
(j) := vec(P̃

(12)

(j) ) = ((A(2)A(2)′)−1A(2)⊗Im1
)vec(A(1)) and p

(12)
(j) =

vec(P
(12)
(j) ), it has been proven, see Lütkepohl [17], that

√
N(p̃

(12)
(j) − p

(12)
(j) )

L→ N(0,Γ−1
j ⊗ Σu) (4.4)

where the jm2 × jm2 matrix Γj = E(A(2)A(2)′) has the (i, l)th block matrix equal to

Γ(i − l) = E(â
(2)
t−iâ

(2)′

t−l ). Thus, the residual partial cross-correlation matrices can be

defined by replacing the unknown innovations by the residuals series â
(1)
t and â

(2)
t . We

can write

P̂
(12)

(j) = Â
(1)

Â
(2)′

(Â
(2)

Â
(2)′

)−1, (4.5)

where Â
(1)

and Â
(2)

are defined as A(1) and A(2) by replacing their components by the

corresponding residuals series.

Proposition 4.1. Let X(1) and X(2) be two linear processes which satisfy the multivariate

infinite order cointegrated autoregressive model (2.3). If the Assumption 2.1 is verified, then

√
N(p̂

(12)
(j) − p̃

(12)
(j) )

p→ 0. (4.6)

The proof is also presented in the appendix of the technical report available from the

corresponding author.
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4.3 Portmanteau tests

In order to test that two infinite-order cointegrated autoregressive processes X(1)

and X(2) are uncorrelated, we consider two approaches. In the first one, we consider

a test statistic based on the residual cross-correlation matrices. For a finite set of lags

{j1, . . . , jn}, the asymptotic distribution of r
(12)
â

given by Theorem 4.1 is particularly sim-

ple to use in the construction of tests. Since ρ̂h = R
(hh)
â

(0), h = 1, 2, is a consistent

estimator of ρh, we can define a test based on the cross-correlation at individual lags. One

considers the test statistic

Qâ(j) = Nvec(R
(12)
â

(j))′
(

ρ̂−1
2 ⊗ ρ̂−1

1

)

vec(R
(12)
â

(j)),

and under the hypothesis of non-correlation, Qâ(j) is asymptotically distributed as χ2
m1m2

.

Thus, for a given significance level α, H0 is rejected if Qâ(j) > χ2
m1m2,1−α, where χ2

m,p

denotes the p-quantile of the χ2
m distribution.

Also, the Theorem 4.1 may permit to construct another type of test statistic which

depends on many lags. This type of test is a generalization of the global test proposed by

Haugh [12]. The test statistic is given by

Qâ,M = Nr
(12)′

ˆ
a,M

(

I2M+1 ⊗ ρ̂
−1
2 ⊗ ρ̂

−1
1

)

r
(12)
â,M =

M
∑

j=−M

Qâ(j),

where r
(12)
â,M = (vec(Râ(−M))′, . . . , vec(Râ(M))′)

′

, and M ≤ N − 1 is fixed with

respect to N . Under the null hypothesis, Qâ,M follows asymptotically a χ2
(2M+1)m1m2

distribution. This statistic can be also expressed by using the residual autocovariances

C
(hh)
â

(j), h = 1, 2, and the residual cross-covariances C
(12)
â

(j).

Let us note that, as in the univariate case (see Haugh [12]), computation of Qâ,M

in fact uses 1/N as the asymptotic variance of each component ĉ
(12)
uv (j) required in the

computation. The exact variances can be considerably smaller, and a better approximation

is provided by (N − j)/N2. The corresponding modified statistic Q̃â,M is defined by

Q̃â,M =

M
∑

j=−M

Q̃â(j) =

M
∑

j=−M

N

N − |j|Qâ(j). (4.7)

Simulation results presented by Pham et al. [19] indicate that the upper quantiles of the ex-

act distribution of Q̃â,M are better approximated by the asymptotic chi-square distribution,

particularly when M is large enough in comparison with N . See also Hosking [13] and Li

and McLeod [16].

The second approach is based on the residual partial cross-correlation matrices defined

by (4.3). The null hypothesis of non-correlation at lag j is equivalent to P
(12)
j = 0. Then,
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as defined in (4.4), we consider the following decomposition of Γj

Γj =

[

Γj−1 Γ
∗

(j−1)

Γ
∗
′

(j−1) Γ(0)

]

,

where Γ
∗

(j−1) = [Γ(m − 1), . . . ,Γ(1)]. It follows from a standard matrix inversion prop-

erties that Γ
−1
j has the lower right m2 × m2 block elements of the form H−1, where

H = Γ(0) − Γ
∗
′

(j−1)Γ
−1
j−1Γ

∗

(j−1). Now, since P̂
(12)

j is the OLS estimator of P
(12)
j , it can

be easily deduced from (4.4) and Proposition 4.1 that

√
N [vec(P̂

(12)

j ) − vec(P
(12)
j )]

L→ N(0,H−1 ⊗ Σu).

Then, under the null hypothesis, P
(12)
j = 0, the statistic test

Nvec(P
(12)
j )′(Σ−1

û
⊗ Ĥ)vec(P

(12)
j )

L→ χ2
m1m2

,

where Σû and Ĥ are a consistent estimators respectively of Σu and H . This test is

equivalent to the likelihood ratio (LR) test where the LR statistic is given by

Lj = −(N − jm1m2 − 1 − 1/2)ln[det(Σ̂
(j)

u
)/det(Σ̂

(j−1)

u
)], (4.8)

where Σ
(j)
û

= N−1
∑N

t=j+1 ûtû
′

t. Σ
(j−1)
û

can be viewed as the residual sum of square

matrix obtained from fitting a VAR model of order j − 1 to the same set of vector obser-

vations as used in fitting the VAR(j) model. Under the null hypothesis of non-correlation,

when P
(12)
j = 0, we have

Lj
L→ χ2

m1m2
.

We can also consider a global test which depends on many lags. The test statistic is

given by

LM = N p̂
(12)′

(M) (IM ⊗ Σ
−1
û

⊗ Ĥ)p̂
(12)
(M), (4.9)

and under the null hypothesis, LM follows asymptotically χ2
Mm1m2

distribution.

5 Simulation Study

In the previous sections, we have studied a few asymptotic results of the distribution of

the cross-correlation and partial cross-correlation vectors between two infinite cointegrated

vector. For the finite sample properties, we can apply the technique of Monte Carlo (MC)

tests to calculate the empirical frequencies of rejection of the null hypothesis. This pro-

cedure can be interpreted as a parametric bootstrap, see Dufour [5] and Dufour et al. [6].

We consider two different global models of dimension four which are described in Table

5.1. The submodels {X(1)
t } and {X(2)

t } are bivariate. Also, with the considered values for
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the autoregressive parameters as well as for the covariance matrix of the innovations, the

subprocesses {X(1)
t } and {X(2)

t } are uncorrelated.

The bootstrap procedure to test the hypothesis H0 is used in the following way.

1. The Gaussian white noise of dimension four {at} is generated and the Xt values

were obtained by directly solving the model difference equation. The initial values were

set at zero.

2. For both series {X(h)
t }, h = 1, 2, the true models were individually estimated by

conditional least square method. The autoregressive order was obtained by minimizing

the AIC criterion for p ≤ P , where P was fixed to 12. First, the residual series {â(h)
t },

h = 1, 2, were cross-correlated by computing R
(12)
â

(j) as defined by (4.2). The parameters

of a regression of the residual series {â(1)
t } on {â(2)

t−M}, M = 1, . . . 12, were estimated.

3. The values of the test statistic Q̃â(j) were computed for j = −12, . . . , 12 and those

for Q̃â,M and LM for M = 1, . . . , 12. We denote by Qâ,j(0)∗ and Qâ,M (0)∗ the test

statistic based on this first simulated data.

4. Using the model estimate in 2, we generate n = 99 simulated sample by Monte

Carlo methods. We repeat the step 2 and 3 and we denote by Qâ,j(k)∗ and Qâ,M (k)∗ the

test statistic under H0 based on the k-th simulated sample (1 ≤ k).

5. The simulated p-value p̂[Qâ,j(0)∗] is obtained, where

p̂[x] = {1 +

n
∑

k=1

I[Qâ,j(k)∗ − x]}/(n + 1), (5.1)

where I[x] = 1 if x ≥ 0 and I[x] = 0 if x < 0.

6. The null hypothesis is rejected at level α if p̂[Qâ,j(0)∗] ≤ α.

7. Finally, for each nominal level α = 1%, 5% and 10%, and for each series length N =

100, 200, we obtained from the 2000 realizations, the empirical frequencies of rejection of

the null hypothesis of non-correlation. The power analysis was conducted in the similar

way using the model VARδ for different values of δ.

The empirical levels of tests based on an individual lags, |k| = 0, 1, 2, 4, 6, 8, 10 and

12, and a global test for different values of M = 1, . . . , 12 are presented in Table 5.2. As

expected, the approximation of the exact distribution by the asymptotic one seems good

for both models. For the series length N = 100, the chi-square distribution provides a

relatively good approximation for all lags at the three significance levels. At level 1%,

we remark a little underrejection, especially for small lags. As expected, the chi-square

approximation is improving as the length series N increases from 100 to 200 and is better

when M becomes larger. Table 5.3 shows the results of the bootstrap procedure. This

procedure gives similar results but slightly better than the asymptotic distribution especially

for the levels 5% and 10%. In Table 5.4, we remark that we get a much better size control

by using the statistic based on the partial cross-correlations vectors. We also see that at

level 1%, the statistic LM performs better than Q̃M . For the series length N = 200, the
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Table 5.2: Empirical level of test at individual lags based on Q̃â(j) and global test based on Q̃â,M

defined by (4.7) for the VAR(1) and VAR(2) models.

Q̃â(j) Q̃â(j)

VAR(1) VAR(2)

N=100 N=200 N=100 N=200

α 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

k=-12 0.60 4.10 8.40 0.75 4.30 9.10 0.70 4.40 8.90 0.65 4.20 8.9

-10 0.65 4.10 8.30 0.65 4.40 9.30 0.80 4.70 8.80 0.85 4.60 9.20

-8 1.20 4.20 9.10 0.90 4.20 9.20 1.10 5.10 9.20 0.90 4.90 11.00

-6 0.80 5.60 10.70 1.00 5.40 10.20 0.75 4.50 10.50 0.85 4.40 10.30

-4 0.70 4.60 9.20 0.85 4.50 9.70 0.90 4.90 9.40 1.20 4.60 9.40

-2 1.10 4.50 9.30 0.90 5.10 9.60 0.95 5.20 9.50 0.90 4.70 9.80

0 1.20 5.20 11.10 1.10 5.20 10.20 0.95 5.00 10.60 0.95 5.10 10.50

2 0.90 4.20 9.10 1.30 4.50 9.50 0.90 4.70 9.20 0.85 4.30 10.20

4 0.90 4.40 9.30 0.90 5.90 11.2 1.10 5.10 10.70 1.30 5.60 11.00

6 1.30 4.50 9.50 1.40 4.10 9.90 1.20 4.70 9.75 1.40 5.30 10.10

8 1.20 4.80 9.30 0.90 4.40 9.80 1.30 5.60 10.80 0.90 5.40 10.80

10 0.90 4.85 10.60 1.10 4.90 10.40 0.90 5.10 10.85 0.85 4.80 10.70

12 1.10 5.10 10.30 1.30 4.60 11.00 1.10 4.70 11.20 0.90 4.80 10.30

Q̃â,M Q̃â,M

M = 1 0.70 5.20 10.50 0.80 5.40 10.60 0.70 4.90 9.80 1.10 5.60 11.00

2 0.70 5.10 9.70 0.90 5.50 9.40 0.70 5.20 9.20 0.80 4.00 10.50

3 0.90 4.60 9.30 1.00 5.20 10.10 0.90 4.50 9.60 0.90 5.40 10.20

4 0.85 5.10 10.40 0.80 5.30 10.60 0.70 5.40 9.20 0.75 5.60 10.80

5 0.60 4.30 8.40 0.70 4.50 8.70 0.55 4.30 8.30 0.60 4.70 8.65

6 0.65 5.20 9.40 0.70 5.40 11.00 0.75 4.50 9.30 0.75 5.10 10.85

7 0.70 4.55 9.60 0.70 6.00 11.10 0.60 4.75 9.50 0.70 5.60 10.50

8 0.65 4.55 9.40 0.80 5.10 9.50 0.70 4.40 9.45 0.80 4.80 9.70

9 0.55 3.90 9.30 0.70 4.60 9.70 0.65 4.20 9.50 0.65 4.80 9.65

10 0.80 4.65 10.30 0.70 4.80 10.50 0.70 5.70 9.90 0.80 5.10 10.45

11 0.90 4.55 9.80 0.70 4.50 9.70 0.80 5.50 9.90 0.80 4.80 11.00

12 0.85 4.40 10.25 0.80 4.90 9.80 0.80 5.60 10.85 0.90 5.20 10.80

results are better than N = 100. The rejection rates are much closer to nominal level for

all levels. Also, for this size, the statistic LM performs very good.

To study the power of the two tests based on the statistics Q̃M and LM respectively, we

consider the models V ARδ(1) where the cross-covariance matrix is different from zero

and depends on a parameter δ which controls the instantaneous dependence between the

two innovation processes. For the large values of δ, the correlation is stronger and the test

is more powerful. Results in Table 5.5 shows that the test based on partial cross-correlation
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Table 5.3: Empirical level of test at individual lags and global test based on bootstrap proccedure for

the VAR(1) and VAR(2) models.

Q̃â(j) Q̃â(j)

VAR(1) VAR(2)

N=100 N=200 N=100 N=200

α 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

k=-12 0.90 5.15 10.15 1.20 5.80 10.90 0.70 4.80 10.15 1.10 5.60 10.20

-10 0.95 4.90 10.60 0.90 4.80 10.50 0.85 5.05 10.60 0.80 5.20 9.90

-8 0.85 4.40 9.00 0.50 4.60 9.90 0.85 5.20 9.00 0.95 4.80 10.10

-6 0.95 5.20 10.55 1.00 5.20 10.20 0.75 4.60 10.55 1.20 5.00 10.20

-4 1.10 5.20 9.70 1.10 4.40 9.60 1.00 4.80 9.70 1.20 4.60 9.30

-2 0.85 4.20 9.15 0.90 5.20 9.70 0.65 5.10 9.15 0.70 4.40 9.80

0 1.05 5.15 11.00 1.20 5.90 10.90 1.15 5.15 11.00 0.80 5.20 10.50

2 0.80 5.10 9.55 1.10 4.90 10.00 0.90 4.90 9.55 0.80 4.40 10.00

4 0.80 5.20 10.30 1.10 6.30 11.7 0.90 4.80 10.30 1.10 5.10 10.30

6 1.00 4.75 9.75 0.90 4.20 9.70 1.20 4.75 9.75 0.90 5.30 9.70

8 0.95 4.80 10.30 0.70 4.30 9.10 0.80 5.20 10.30 0.75 5.30 9.80

10 1.20 5.20 11.00 1.30 5.80 10.60 1.40 5.50 10.70 0.90 5.90 10.50

12 1.40 5.90 10.50 1.70 5.50 11.00 1.60 5.70 10.30 1.30 5.60 10.60

Q̃â,M Q̃â,M

M = 1 0.60 5.05 10.50 0.90 5.50 11.10 0.70 4.65 9.60 0.80 5.40 10.40

2 0.90 4.55 9.35 0.60 5.20 11.10 0.75 4.80 9.80 0.80 4.80 9.50

3 0.95 4.40 9.40 1.00 5.60 11.10 0.70 4.40 9.70 0.90 5.30 11.20

4 0.80 4.80 10.10 0.80 5.40 10.60 0.60 5.10 9.60 0.85 5.30 10.60

5 0.50 5.05 10.15 0.60 5.70 11.40 0.55 5.30 9.40 0.60 4.90 9.45

6 0.55 5.10 9.75 0.70 6.30 11.10 0.50 4.30 9.30 0.55 5.10 9.85

7 0.60 4.45 9.70 0.70 6.10 11.10 0.55 4.75 9.50 0.70 5.50 10.30

8 0.65 4.35 9.45 0.80 5.10 9.30 0.80 5.40 9.45 0.85 4.70 9.70

9 0.55 3.90 9.30 0.70 4.60 9.70 0.65 4.20 9.50 0.65 4.80 9.65

10 0.85 4.55 10.00 0.60 4.70 10.10 0.70 5.60 9.90 0.80 5.10 10.45

11 0.90 4.35 9.80 0.60 4.30 9.80 0.70 4.50 9.90 0.90 4.70 11.00

12 0.80 4.45 9.85 0.80 4.90 9.50 0.60 4.85 9.65 0.95 5.10 10.60
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Table 5.4: Empirical level of the global tests based on Q̃â,M and LM defined by (4.7) and (4.8) for

the VAR(1) and VAR(2) models.

N = 100 N = 200

VAR(1) Q̃â(j) LM Q̃â(j) LM

α 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

M=1 1.15 5.00 9.40 1.35 5.10 10.60 0.80 5.50 10.50 0.90 5.60 9.70

2 1.10 5.60 9.90 0.95 5.90 9.20 0.90 5.10 10.70 1.00 5.20 9.50

3 0.80 6.00 11.10 1.10 5.70 9.60 1.00 4.70 8.90 1.15 4.70 9.30

4 0.85 5.50 8.10 0.80 4.70 10.40 0.85 4.10 9.90 0.85 5.90 8.50

5 0.90 4.90 8.70 1.40 5.40 8.60 1.45 5.20 9.70 1.35 5.40 10.50

6 1.30 4.20 10.80 1.15 5.50 9.40 1.20 5.80 9.10 1.45 4.50 8.90

7 1.20 4.60 8.80 1.30 4.90 11.00 1.40 5.00 8.70 1.20 5.30 10.70

8 1.45 4.00 9.80 1.20 4.40 8.80 1.30 5.70 10.10 1.10 4.20 8.70

9 0.70 5.80 9.30 0.90 5.00 10.80 1.15 4.40 11.30 1.50 5.50 10.10

10 1.05 4.80 9.70 0.75 4.30 10.00 0.90 4.30 10.30 1.30 5.70 9.90

11 0.75 4.40 10.30 1.25 5.20 8.40 1.10 5.30 9.30 1.05 5.80 9.10

12 1.50 5.10 11.40 1.45 4.80 9.00 1.50 4.90 11.50 1.40 4.90 10.30

VAR(2) Q̃â(j) LM Q̃â(j) LM

M=1 1.05 5.90 9.40 1.05 5.40 10.80 0.80 5.10 10.50 1.50 4.30 10.30

2 0,85 5.30 8.20 0.90 4.60 9.80 1.40 5.20 11.30 1.35 5.30 9.30

3 1.00 4.00 8.80 1.15 4.50 9.60 1.30 4.30 9.10 1.25 5.40 9.10

4 0.80 4.60 10.60 1.40 5.60 9.00 1.00 4.90 10.50 1.20 5.80 10.90

5 1.25 4.70 10.20 1.10 6.00 10.40 1.35 5.00 10.70 0.90 4.60 10.10

6 0.95 4.50 10.80 0.95 5.80 10.60 1.50 5.70 11.10 1.05 6.00 8.50

7 0.90 5.50 11.00 1.30 5.50 9.20 1.45 4.60 9.50 1.15 5.00 8.90

8 1.40 4.40 8.60 1.35 5.30 8.80 1.05 4.40 10.90 1.45 4.50 10.70

9 1.10 5.60 11.40 0.85 4.90 8.60 1.15 6.00 8.50 1.30 4.90 9.50

10 1.15 4.10 9.00 1.20 5.7 9.40 1.20 4.80 10.10 0.95 4.70 9.90

11 0.70 5.80 10.00 1.25 5.00 10.20 1.10 4.70 9.90 1.00 5.10 9.70

12 1.20 5.20 8.00 0.90 4.30 8.40 0.85 5.90 10.30 1.40 5.20 10.50

vectors seems more powerful than the one based on cross-correlation vectors. For the series

length N = 100 and δ = 2, the LM -test is more powerful. When N = 200, for all values of

δ, the power of the LM -test is significantly better. Finally, we note that the power decreases

as M increases since the test statistics use more lags and the considered processes have a

short memory.
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Table 5.5: Power level of the global tests based on Q̃â,M and LM defined by (4.7) and (4.8) under

the alternative model V ARδ=1.

Q̃â,M LM

M 1% 5% 10% 1% 5% 10%

5 38.3 40.2 44.3 47.6 41.6 43.6

δ = 1 10 34.2 37.4 38.6 36.4 40.3 43.4

15 32.6 35.3 34.8 35.4 34.2 36.8

5 44.2 48.1 50.3 46.2 48.3 52.1

N = 100 δ = 1.5 10 42.2 44.5 49.6 45.4 43.2 50.4

15 34.4 38.2 42.4 36.5 38.8 46.2

5 52.6 58.3 67.3 62.2 68.3 85.8

δ = 2 10 46.8 54.4 60.5 54.3 62.6 72.3

15 44.2 48.2 54.6 48.2 54.8 64.4

5 46.4 50.3 56.2 52.6 54.8 62.6

δ = 1 10 38.1 42.3 48.8 46.3 50.2 59.2

15 28.6 33.2 38.6 40.1 46.1 54.5

5 54.4 60.3 68.2 62.8 68.4 76.8

N = 200 δ = 1.5 10 48.3 52.6 60.4 56.2 62.1 70.2

15 40.8 44.2 51.7 53.1 58.3 66.8

5 62.2 68.1 72.2 74.1 79.6 91.2

δ = 2 10 60.8 63.5 66.2 70.5 74.2 85.8

15 52.3 57.4 60.6 62.2 70.8 79.6

6 Conclusion

In this paper, we were interested to test the non-correlation between two infinite order

cointegrated vector autoregressive series. We thus generalized the case of two cointegrated

VARMA series which is considered by Pham and al. [19]. First, at modeling stage, a possi-

ble high order autoregression is fitted to each series. As mentioned by Saikkonen [21] and

Saikkonen and Lütkepohl [22], the VAR modeling protects us against misspecifications of

the true underlying VARMA models that may invalidate the asymptotic theory and conse-

quently lead to possible wrong conclusions. Second, at testing stage, the methods proposed

permit us to be able to draw conclusions on the original variables than on the differenced

variables as used in the stationary case, see Bouhaddioui and Roy [2].

Thus, we have proposed two different methods to test the non-correlation between two

infinite order cointegrated vector autoregressive series. The first one is a generalization

of the method developed by Haugh [12] and El Himdi and Roy [7] for checking the non-

correlation of two univariate or multivariate stationary ARMA which was also used by

Pham and al. [19] in the case of two cointegrated VARMA series. We have shown that

this method still valid in our more general model. The test statistic depends on the vector

of residual cross-correlation matrices and we showed that asymptotically it can be approx-

imate by a chi-square distribution. We also proposed a global portmanteau test statistic
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which is based on the lags j such that |j| ≤ M . For the second method, we proposed a

test statistic based on partial cross-correlation matrices. We showed that this test statistic

follows asymptotically a chi-square distribution. We noted that this statistic appears more

simple and easier to implement than the portmanteau statistic. Using a bootstrap proce-

dure, we also proposed a small Monte Carlo experiment to study the size and power of the

two tests. Finally, we showed that the test based on the partial cross-correlation matrices is

usually at least as powerful as the statistic based on cross-correlation matrices.
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recherche sur la société et la culture (Québec), and the Fonds de recherche sur la nature
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[2] C. Bouhaddioui and R. Roy, (2006a). On the distribution of the residual cross-

correlations between two uncorrelated infinite order vector autoregressive series,

Statistics and Probability Letters, 76(1), 58–68.

[3] C. Bouhaddioui and R. Roy, (2006b). A generalized portmanteau test for indepen-

dence of two infinite order vector autoregressive series, Journal of Time Series Anal-

ysis, 27(4), 505–544.

[4] P. Duchesne and R. Roy, (2003). Robust tests of independence between two time

series, Statistica Sinica, 13, 827–852.

[5] J.-M. Dufour, (2006). Monte Carlo tests with nuisance parameters: A general ap-

proach to finite-sample inference and nonstandard asymptotics in econometrics, Jour-

nal of Econometrics, 133(2), 443–477.



94 Chafik Bouhaddioui and Jean-Marie Dufour
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