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We develop exact mean-variance efficiency tests of the market portfolio in the context of (conditional and 

unconditional) capital asset pricing models (CAPM), allowing for a wide class of possibly non-Gaussian 
error distributions. The proposed procedures are applicable in a general multivariate linear regression 
framework, and exactness is achieved through Monte Carlo test techniques. We also perform exact multi 
variate diagnostic checks. Empirical results show that the Gaussian assumption is rejected, temporal insta 
bilities are apparent, and mean-variance efficiency is rejected over several subperiods, but finite-sample 
methods that allow for nonnormality and conditioning information substantially reduce the number of 

rejections. 

KEY WORDS: Bootstrap; Capital asset pricing model; Generalized autoregressive conditional het 

eroscedasticity; Monte Carlo test; Multivariate linear regression; Nonnormality. 

1. INTRODUCTION 

The capital asset pricing model (CAPM) is one of the most 

commonly used models in theoretical and applied finance; 
(for reviews and references, see Campbell, Lo, and MacKin 

lay 1997; Shanken 1996; Cochrane 2001; DeRoon and Nij 
man 2001; Fama and French 2004). Since the work of Gibbons 

(1982), empirical tests on the CAPM are often conducted within 
a multivariate linear regression (MLR). In this context, stan 

dard asymptotic theory provides a poor approximation to the 

finite-sample distribution of test statistics, even with fairly large 
samples (see Shanken 1996, sec. 3.4.2; Campbell et al. 1997, 

chap. 5; Dufour and Khalaf 2002b). In particular, test size dis 
tortions grow quickly when the number of equations increases. 

As a result, the conclusions of MLR-based empirical studies on 

the CAPM can be strongly affected and can lead to spurious 
rejections. 

Consequently, several exact and Bayesian methods have 

been proposed to assess mean-variance efficiency (see Job 

son and Korkie 1982; MacKinlay 1987, 1995; Gibbons, Ross, 
and Shanken 1989 [henceforth GRS]; Stewart 1997; Kandel, 

McCulloch, and Stambaugh 1995). These methods typically 
require Gaussian distributional assumptions. However, it has 

long been recognized that financial returns exhibit nonnormal 
ities (Fama 1965). Although the CAPM can be derived from 

expected utility maximization under various non-Gaussian as 

sumptions on the return cross-sectional distribution, such as the 

multivariate t (see Ingersoll 1987; Berk 1997), finite-sample 
tests for mean-variance efficiency in non-Gaussian CAPMs are 

not yet available. 

Indeed, mean-variance efficiency tests that relax normal 

ity include (a) large-sample GMM or bootstrap techniques 
(Affleck-Graves and McDonald 1989; MacKinlay and Richard 
son 1991; Fama and French 1993; Jagannathan and Wang 
1996; Ferson and Harvey 1999; Groenwold and Fraser 2001); 
(b) semiparametric asymptotic procedures specific to ellipti 
cal distributions (Hodgson, Linton, and Vorkink 2002; Vorkink 

2003; Hodgson and Vorkink 2003); (c) parametric procedures 
based on postulating a non-Gaussian distribution, such as the 

multivariate t (Fiorentini, Sentana, and Calzolari 2003; Zhou 

1993); and (d) non-Gaussian Bayesian procedures (Tu and 
Zhou 2004). In all of these approaches, the distributional the 

ory of test statistics is either approximate or does not formally 
take into account nuisance parameter uncertainty in a fitted 

parametric distribution. In particular, Hodgson et al. (2002) 
reported size problems on high-dimensional systems and re 

stricted their analysis to systems with three or four portfolios, 
whereas Vorkink (2003) proceeded on a portfolio-by-portfolio 
basis, not on the whole system. In the parametric case, Zhou 

(1993) proposed simulation-based/? values for the GRS statis 
tic given a few elliptical distributions, while selecting their tail 
area parameters by trial and error. 

In this article we propose finite-sample unconditional and 
conditional multivariate mean-variance efficiency tests in pos 

sibly non-Gaussian CAPMs. The conditional specifications 
allow model coefficients to vary as functions of a number 
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of instruments, as described by Shanken (1996, sec. 2.3.4), 
Cochrane (2001, chap. 8), and DeRoon and Nijman (2001). 
Conditional testing is important because portfolios that are 

conditionally efficient might be unconditionally inefficient (see 
Hansen and Richard 1987; Cochrane 2001, chap. 8). 

We use finite-sample results from Dufour and Khalaf (2002b) 
on testing uniform linear (UL) restrictions in MLR models with 
a given, possibly non-Gaussian, disturbance distribution. For 

such hypotheses, the null distributions of standard test statis 

tics are invariant to MLR coefficients and error variances and 

covariances. In this case, Monte Carlo (MC) test techniques 
(see Dufour 2006) can be applied to obtain exact p values. 

On observing that mean-variance efficiency restrictions take 

the UL form when the risk-free rate is observable, we show 

that efficiency can be tested exactly under general distribu 
tional assumptions that include the Gaussian and a wide spec 
trum of non-Gaussian distributions, both elliptically symmetric 
and nonelliptical. Single- and multi-beta models are covered by 
these results. 

To control for the parameters that define the hypothesized 
non-Gaussian distribution, such as the degrees of freedom for 

the multivariate t (a problem not considered in Dufour and Kha 

laf 2002b), we use a two-stage procedure as follows: (1) We 

build an exact confidence set (with level 1 ? a \ ) for the nuisance 

parameter, through "inversion" of a distributional goodness 

of-fit (GF) test, and (2) maximize the p value for the mean 

variance efficiency test (which depends on the nuisance para 
meter) over this confidence set. Referring the latter maximized 
MC (MMC) p value to an ai cutoff provides a test with ex 

act level ai+ c^2 (see Dufour and Kiviet 1996; Dufour 2006). 
We stick here to the original notion of test level in the presence 
of nuisance parameters (Lehmann 1986, chap. 3): A test has 

level a if the probability of rejecting the null hypothesis is not 

greater than a for any data-generating process compatible with 

the null hypothesis. 
Furthermore, we evaluate the specification of the model us 

ing GF tests on the error distribution and serial dependence 
tests. All procedures rely on properly standardized multivari 
ate ordinary least squares (OLS) residuals, which provide sta 

tistics invariant to MLR coefficients and error variances and 

covariances and allows easy application of MC tests. The 

GF tests compare multivariate skewness and kurtosis criteria 

with a simulation-based estimate of their expected value un 

der the hypothesized (normal or nonnormal) distribution, which 
can be viewed as extensions of Mardia's (1970) procedures. 
The diagnostic checks combine (as in Shanken 1990) stan 

dardized individual-equation versions of the generalized au 

toregressive conditional heteroscedasticity (GARCH) tests sug 

gested by Engle (1982) and Lee and King (1993), and the 
variance-ratio tests of Lo and MacKinlay (1988); we also test 

for heteroscedasticity linked to conditioning on market returns 

(Vorkink 2003). Our exact combination method relies on sim 

ulation (as in Dufour and Khalaf 2002a and Dufour, Khalaf, 

Bernard, and Genest 2004) to avoid the Bonferroni bounds ap 

plied by Shanken (1990). Such bounds require one to divide 

the level of each individual test by the number of tests, lead 

ing to possibly large power losses if the MLR includes many 

equations (i.e., many portfolios). All tests are performed under 

normal and nonnormal error distributions. 

The proposed tests are applied to an unconditional and a con 

ditional CAPM with observable risk-free rates and both mul 
tivariate normal and multivariate t distributions. We consider 

monthly returns on New York Stock Exchange (NYSE) portfo 
lios, constructed from the University of Chicago Center for Re 
search in Security Prices (CRSP) database (1926-1995). Our 
results show the following: (a) Multivariate normality is re 

jected; (b) multivariate residual checks suggest temporal insta 
bilities for both the unconditional and the conditional models; 

(c) although mean-variance efficiency is rejected over several 

subperiods, using finite-sample methods and allowing for non 

normal errors reduces the number of subperiods for which effi 

ciency is rejected and the strength of the evidence against it; and 

(d) using conditioning information has nonnegligible effects on 
tests of mean-variance efficiency and substantially reduces the 

number of rejections. 
The article is organized as follows. In Section 2 we set up the 

framework. In Section 3 we describe existing tests and propose 
extensions for nonnormal distributions. In Section 4 we discuss 
how to deal with nuisance parameters in the error distribution. 

We describe GF and diagnostic tests in Section 5 and report the 

empirical results in Section 6. We conclude in Section 7. 

2. FRAMEWORK 

Let Rit, i = l,...,w, be returns on n securities for pe 

riod t, and let Ryit be the return on a benchmark portfolio 
(f = 1,..., T). Following Gibbons et al. (1989), the (uncon 
ditional) CAPM, which assumes time-invariant betas, can be 
assessed by testing 

7?E'-cii 
= 

0, i=l,...,n, (1) 

in the context of the MLR model, 

nt = at + ?iryit + sa, t = 1,..., r, / = 1,..., n, (2) 

where r?r = R(t 
? 

Rft, ryit 
? 

RMt 
? 

Rft, Rft is me riskless rate of 

return, and en is a random disturbance. 

In general, the CAPM also allows for the possibility of time 

varying betas. As discussed by Shanken (1996, sec. 2.3.4), 
Cochrane (2001, chap. 8), and DeRoon and Nijman (2001), this 
can be accommodated using conditioning information, such as 

lagged variables (or instruments, known at time t). In particular, 
model parameters can be viewed as linear functions of q con 

ditioning variables zu, ,zqt\ depending on whether only the 

betas or both the intercepts and the betas are allowed to vary, 
this leads to alternative specifications: 

rit = ai + ?iryit + eiu 
(3) q 

?it=~?i+Y.dMt 
7=1 

and 

nt = ait + ?ithAt + ?it, 

q 

ait = ai + y^TcjiZjt, (4) 
7=1 

q 

?it = ?i+ /jdjjZjt, 
7=1 
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t ? 1,..., r, / = 1,..., n. Model (3) entails the expanded re 

gression, 

q 

rit = ai + ?ihat + ^2?dji(jutZjt) 
+ su, 

7=1 

?=i,...,r,/=i,...,w. (5) 

Assuming that the regressor matrix has full column rank, effi 

ciency can be assessed by testing 

Hex'-ai 
= 

0, i=l,... ,n. (6) 

Similarly, (4) leads to the following equation: 
q q 

rit = ai + ?ihAt + ̂ 2 c^ + X] dJi(?MtZjt) + siti 

i=i,...,r, /=i,...,w. (7) 

Assuming again that the corresponding regressor matrix has full 
column rank, efficiency can be assessed by testing au = 0 for all 
i and t or, equivalently, 

HE2:?i 
= 

0, C? 
= 

0, i=l9...,nj=l,...,q. (8) 

For further reference, we set O (I, m) to be the / x m zero matrix 
and 

ir = (l,...,D', 

hA 
= 

(riM,..-,rTM)', (9) 

rt = (ru,..., rjiY 

and 

z = [zi,..., zq], Zj 
= 

(Zj\, ..., 
rjT)f, j=l,...,q. 

(10) 

We also use "*" to denote element-by-element rowwise ma 

trix multiplication; for example, if A = [Ai,..., AjY is a T x / 
matrix and D = 

[Di,..., DjY is an T x m matrix, then A * D 

is the T x (Im) matrix with fth row equal to Aft ? Dp that is, 
A * D = [Ai <g> Di,..., Ar <g> DT]f. 

The foregoing models are special cases of the MLR model, 

Y = XB + U, (11) 

where Y = 
[Yi,..., Yn] is a T x n matrix of dependent vari 

ables, X is a T x k full-column rank matrix of regressors, and 
U = 

[Ui,..., \Jn] 
= 

[Vi,..., YtY is a T x n matrix of distur 

bances. Furthermore, the hypotheses He, Hex, and ?-?E2 be 

long to the UL class; that is, they have the form 

H0:BB = O(h,n), (12) 

where H is a fixed h x k matrix of rank h. Indeed, (l)-(2), 
(5)-(6), and (7)-(8) constitute special cases of (11)?(12) ob 
tained by taking one of the three following definitions: 

Y = [ri,...,rn], X = Ur,rM], H = (1,0); (13) 

Y = 
[n,...,rn], 

X = [?r,rM,rM*z], (14) 

H =[1, 0(1,^+1)]; 

Y = 
[ri,...,r?], 

X = [iTjz, rM,fM*z], (15) 

H=[I,+1, 0(q+l,q+l)l 

In this context we apply a formal statistical approach to ob 
tain simple finite-sample tests under alternative error distribu 

tions (assuming that we can condition on X, that is, we can take 

X as fixed for statistical analysis). More precisely, we consider 
the general case 

Yt = (elt,...,ent)'=JVrt, t=l,...,T, (16) 

where J is an unknown nonsingular matrix and the distrib 
ution of the vector w = 

vec(W), W = 
[Wj,..., WtY is ei 

ther known (hence free of nuisance parameters) or specified 
up to an unknown finite-dimensional nuisance-parameter (de 
noted by v); we call w the vector of normalized disturbances 
and its distribution the normalized disturbance distribution. Let 
E = JJ', so that det(X) ^ 0. For example, we assume that 

Wf 
~ 

F(v), t? 1,..., T, where T(-) represents a known dis 

tribution function. Later we consider both the case where the 
error distribution does not involve nuisance parameters, 

W/ 
~ 

^"(vo) where vo is specified, (17) 

and the case where it does, 

Wf 
~ 

J~(y) where v is unknown. (18) 

This assumption includes as special cases the Gaussian distrib 

ution, 

Vi,...,Vr~N[0,2]]; (19) 

all elliptically symmetric distributions, such as the multivari 
ate f; and cases where Wi,..., Wj are independent and identi 

cally distributed (iid) according to any given nonelliptical distri 
bution. In this regard, conditioning on further instruments [as in 
models (5) and (7)]?rather than only on the market portfolio? 
can make the iid error hypothesis more plausible. 

3. MEAN-VARIANCE EFFICIENCY TESTS 
WITH A KNOWN NORMALIZED 
DISTURBANCE DISTRIBUTION 

In this section we consider testing He, Hex , and He2 [in (1), 
(6), or (8)] under the distributional assumption (16). The test 
statistics used are Gaussian likelihood ratios (LRs), 

LR = Tln(A), A = |?0|/|Z|, 

i = ?,u/r, ?o^?o/r; 
(20) 

U = Y - 
XB, 

B = (X'XylX'Y, (21) 

?o = Y-XB0; 

and 

Bo = B - (X/X)-1H/[H(X/X)-1H/]-1HB, (22) 

where Y, X, and H are defined as in (13), (14), or (15), de 

pending on the null hypothesis (He, Hei, or Hei)- On using 
the results of Dufour and Khalaf (2002b, sec. 3 and the app.), 
the null distribution of the LRs can be characterized as follows 

(under a possibly non-Gaussian error distribution). 

This content downloaded from 132.216.1.36 on Mon, 24 Mar 2014 16:49:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Beaulieu, Dufour, and Khalaf: Mean-Variance Efficiency With Possibly 401 

Theorem 1 (Null distribution of Gaussian LR statistics for 

mean-variance efficiency). Under (16), the LR statistic defined 

in (20) for testing He against the (unrestricted) model (2) [resp. 
Hex against (5), or He2 against (7)] is distributed like 

L?W) = rin(|W/M0W|/|W/MW|) 

under the null hypothesis, where M0 = M + X(X/X)~1H/ x 

[H(X/X)"1H/]-1H(X/X)-1X/, M = I - X(X/X)"1X/, and H 

is defined in (13) [resp. in (14) and (15)]. If, furthermore, the 

Gaussian assumption (19) holds and T ? k ? n + 1 > 1, where k 

is the number of columns in X, then [(T 
? k ? n + l)/n](A 

? 

1) 
~ 

F(n, T ? k ? n H-1) under He and Hex , and 

P,T"2^(A1/r 
- 

l)~F[n(q+l), pz - 2k] (23) 
n(q+l)y 

under He2 when min(n, q -f 1) < 2, where p = (T 
? 

k) 
? 

[(n 
? 

$)/2],A. 
= [n($+l)-2]/4,and 

? ? 
^2( +1)2_4 

.1/2 

I 1 otherwise. 

The foregoing analysis easily extends to multi-beta models 

of the form 

s 

Ht = a>i + ^2?j^jt 
+ su, t = 1,..., T, i = 1,..., n, (24) 

;=i 

where rp 
= 

Jfy 
? 

Rft and /?;iJ 
= 1,..., s, are returns on s bench 

mark portfolios. In such models the hypothesis being tested 

entails a portfolio of the benchmark portfolios that is mean 

variance efficient (see Gibbons et al. 1989; henceforth GRS). 
Unconditional efficiency tests follow from Theorem 1 with 

X = 
[iT, ?],r=[ri,..., fs], Tj 

= 
(ry, ..., 

rTj)', 7 
= 

1,..., j, 

and H = [1, 0(1, s)]. Furthermore, conditional efficiency tests 

are covered by Theorem 1 in the context of an expanded MLR 

of the form (11), where Y = [ri,..., rn], with X = [it, f, f * z] 
and H = [1, 0(1, qs + s)] if the coefficients of f are assumed 

to be linear functions of the instruments and X = [?7,z,f,r*z] 
and H = 

[I^+i, 0(q + 1, qs + s)] if the intercepts also are linear 

functions of the instruments. 

Theorem 1 entails that the distribution of the LR statistic 

in (20) does not depend on B and ?. This property holds un 

der conditions much more general than elliptical symmetry (as 

emphasized in the earlier literature on the CAPM). Therefore, 

given draws from the distribution of the disturbance matrix 

W = 
[Wi,..., Wr], an exact p value may be obtained using 

the MC test technique as follows: 

1. Using the distributional assumption (16) and a given value 

of v [as in (17)], generate Af iid replications of the distur 

bance matrix W. 

2. This yields N simulated values of the test statistic, apply 

ing the relevant pivotal transform L(W) from Theorem 1. 

3. Calculate the exact Monte Carlo p value from the rank of 

the observed LR relative to the simulated ones [see (A.2) 
in Sec. A.l]. 

Further details are supplied in Section A.l. By the general 
theory of MC tests, we observe that the size of a simulation 

based test can be perfectly controlled even with a very small 
number of MC replications. For example, 19 replications are 

sufficient to obtain a test of size .05. For power considerations, 

there is in principle an advantage in using a larger number of 

replications, but the power gain from using more than 100 or 

200 replications is typically very small. (For further discussion 
on this issue, see Dufour and Kiviet 1996; Dufour and Khalaf 

2002a,b; Dufour et al. 2004; Dufour 2006.) 
We denote by pm(LRo\v) the MCp value so obtained, where 

LRo is the observed value of the LR statistic and v represents 
the distributional parameter used. We consider the case where v 

is taken as unknown in Section 4. It is noteworthy that the latter 
MC test approach is useful even with Gaussian errors, as in 

He2, because an analytical distribution is not always available. 

Two other results follow from Theorem 1. First, our Gaussian 
LR test is equivalent to the Hotelling T2 test proposed by 
MacKinlay (1987) and Gibbons et al. (1989). In the context 
of (24), the latter apply tests based on the following distribu 
tional result: 

T ? s ? n 

-Q 
~ 

F(n, T-s-n), 
n(T-s-\)^ 

V 

1 
^-l 

?/[l+f? r], (25) 

where ? is the vector of intercept OLS estimates, [T/(T 
? 

k)]1t 
is the OLS-based unbiased estimator of ?, r, and ? include the 
time series means and sample covariance matrix corresponding 
to the right-side returns. On observing that Q and A are re 

lated by the monotonie transformation A ? 1 = Q/(T 
? s ? 1), 

where s ? k ? 1 (see Stewart 1997), we see that GRS's results 
follow from Theorem 1 under normal errors. Second, it is easy 
to see that our results extend beyond the mean-variance effi 

ciency hypothesis and cover any hypothesis of the form (12) 
on a MLR of the form (2) describing returns. In this case, the 
null distribution of the LR statistic follows from Theorem 1 
for the specific H matrix considered. For hypotheses where 

mm(h,ri) > 2 (such as He2), the MC approach is necessary 
even with Gaussian errors, because a transformation of the LR 

statistic with a Fisher distribution (as for GRS statistic) does not 
seem to be available. 

4. MEAN-VARIANCE EFFICIENCY TESTS WITH AN 
INCOMPLETELY SPECIFIED ERROR DISTRIBUTION 

In this section we extend the foregoing results to the case 

of (16) where v is unknown. To formally account for the prob 
lem of estimating v, we apply the following MMC approach 
(see Dufour and Kiviet 1996), which involves two stages. First, 
we build an exact confidence set for v with level 1 ? ?i, which 
we denote by C(Y), with Y referring to the return data. Next, 
on applying Theorem 1 and the MC algorithm in Section A.l 

(summarized earlier), we can obtain a MC p value pm(LRo\vo) 
for each vq e C(Y). Setting 

with Q = Ta' 
T-k 

Qv(LR0)= sup pn(LR0\v0), (26) 
v0eC(Y) 
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the critical region 

Qu(LR0)<a2 (27) 
has level a\ -\- a2. In other words, if we construct the nuisance 

parameter confidence set with level ai and refer the sup p value 

to the cutoff level a2, then the global level of the two-stage test 
is a = ?i + ot2. In the empirical application considered next, we 

use ?i = a2 = 
a/2. 

Because a procedure for deriving an exact confidence set 

for y is not readily available (even with multivariate t errors), 
we provide one here. Given the recent literature documenting 
the dramatically poor performance of asymptotic Wald-type 
confidence intervals, we prefer to "invert" a test for the null 

hypothesis (16) where v ? vo for known vo. Specifically, sup 
pose that some test statistic [denoted by T(Y)] is available for 
the latter hypothesis; we provide one in Section 5.1. Invert 

ing T(Y) implies assembling the vo values that are not rejected 
at a specific significance level. This may be carried out as fol 
lows: Using, for example, a grid search over the relevant values 

of vq, compute the statistic associated with v = vo from the ob 

served sample [say 7o(Y)] and its p value [say pn(%(Y)\vo), 
obtained by MC test techniques], conforming with (16). The 
confidence set for v (which is not necessarily a bounded confi 
dence interval) at level ol\ corresponds to the values of vo such 
that /?nC7o(Y)|vo) > oli (see Dufour 1990; Dufour and Kiviet 

1996). 

5. EXACT DIAGNOSTIC CHECKS 

In this section we present multivariate specification tests, 

including distributional GF tests?which we invert to esti 
mate v?and checks for departures from the hypothesis of iid 
errors. 

5.1 Goodness-of-Fit Tests 

The null hypotheses of concern here are (19) (normal errors), 
and (17) or (18) (e.g., multivariate t errors with known or un 
known degrees of freedom). The test criteria considered use the 
multivariate skewness and kurtosis measures 

1 
t T 

1 
T 

SK=J?1lY,% 
and 

KU=jHdl (28) 
S=\ ?=l ?=l 

where dst are the elements of the matrix D = U'? U = 

T\](\]f\])~l\Jf. These statistics were introduced by Mardia 

(1970) in models in which the regressor reduces to a vec 
tor of l's. Zhou (1993, p. 1935, footnote 5) proposed using 
these statistics to test elliptical distributions, but did not provide 
a finite-sample theory for their application to residuals from 

MLR models. In our context, these statistics are distributed like 

J2 Er=i ELi dlt and T Ta=i dl> where dst is the 0, 0th ele 
ment of the matrix 

D = mW(W'MW)-1W'M, W = [Wi,..., WT]f (29) 

(see Dufour, Khalaf, and Beaulieu 2003). This implies that SK 
and KU are pivotal (i.e., invariant to B and ?). Two further 

adjustments are applied: a simulation-based "centering" of the 

test statistics and a formal procedure for combining them into a 

single test. 

Centering involves using both measures in excess of expected 
values consistent with the hypothesized error distribution. In 
view of (17), the resulting statistics are denoted by SK(vo) and 

KU(vo). In the Gaussian case (19), we use the simplified nota 
tions SK and KU. In view of the absence of an analytical form 
for the expected values, the latter are evaluated by simulation, 

yielding the following simulation-based statistics: 

ESK(v0) = \SK 
- 

SK(v0) | and 
_ (30) 

EKU(v0) = \KU-KU(vo)\ 

in the general case; in the Gaussian case, the test statistics 

are denoted by ESK = \SK 
- 

SK\ and EKU = \KU 
- 

K?\. 
This modification preserves pivotality. The MC technique thus 

may be applied to derive exact p values (using TV replica 
tions); the resulting simulation-based p values are denoted 

Pn(ESK(vo)\vo), pn(EKU(vq)\vq) in the general case and by 
Pn(ESKo), pn(EKUo) under the Gaussian hypothesis (see 
Sec. A.2.2 for more details). The observed and simulated statis 

tics must be obtained conditional on the same average skewness 

and kurtosis measures to this ensure that they remain exchange 
able (see Dufour 2006). 

This procedure allows us to obtain exact individual p values 
for each statistic. To obtain a joint test, we propose rejecting 
the null hypothesis if at least one of the individual p values is 

significantly small. To avoid relying on Boole-Bonferroni rules 
in defining the cutoff level, we use the following combined sta 
tistic (see Dufour et al. 2003): 

CSK(v0) = 1 - 
mm{pN(ESK(v0)\vo),pN(EKU(vo)\vo)}, (31) 

or CSK = 1 ? mm{pN(ESK),pn(EKU)} in the Gaussian case. 
This combination method preserves invariance to B and ?. 

Therefore, under (19), a MC p value for CSK can be eas 

ily obtained. Under (17), pivotality allows us to obtain a MC 

p value given a known value v = vo, which is denoted by 

Pn(CSKo(vo)\vq), where CSK o refers to the observed value of 
the statistic. To account for an unknown v, the values of vo for 

whichpn(CSKo(vo)\vq) exceeds the desired significance level 

(say ?i) are assembled in a set. This set defines the class of dis 
tributions of the form of (18) that are consistent with the data; 
if this set is empty, then (18) is rejected at level a\. Details of 
the algorithm are given in Section A.2.3. 

5.2 Multivariate Checks for Serial Dependence 
and Generalized Autoregressive 
Conditional Heteroscedasticity 

We now present the tests we apply to assess departure from 

iid errors, specifically, tests against conditional heteroscedas 

ticity and variance ratio tests (see Dufour et al. 2005). The null 

hypotheses of concern are (17), (18), and (19). 
When pursuing a univariate approach, standard diagnostics 

may be applied to each equation in (2). For instance, the En 

gle generalized autoregressive conditional heteroscedasticity 
(GARCH) test statistic (Engle 1982) for equation i, denoted by 
Eu is given by T multiplied by the coefficient of determination 
in the regression of the squared OLS residuals ?ft on a con 
stant and 

sft_-, j =1,... ,q. The Lee-King test (Lee and King 
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1993) exploits the one-sided nature of the problem and is based 
on statistics of the form 

LKi = 
( \(T - q) ? [(el/of - 1)] ? eftH 
VI t=q+\ 7=1 J 

l/2\ 

/I?<*/H ) 

-(Hi,(M 
(32) 

where a-2 = ^ ]Cr=i ̂ ? an<^ ^ts asymptotic null distribution is 

standard normal. The variance ratio test statistic, VRi (Lo and 

MacKinlay 1988), is 

K 
( 

' 
\ 

5Z?=/+i ^ 7+1 

vr p2 Pij= ^t ~2 J=h...,K, (33) 

where VRt 
- 1 *~ N[0, 2(2K 

- 
l)(K 

- 
l)/(3K)] under the iid 

null hypothesis. 
Such univariate tests may not be appropriate in multivariate 

regression. Indeed, the error covariance, which appears as a nui 

sance parameter, is typically not taken into consideration if a 

series of univariate tests is applied. Furthermore, the problem 
of combining test decisions over all equations is not straight 
forward, because the individual tests are not independent (see 
Shanken 1990). In view of this, we consider the following mul 
tivariate modification of these tests (see Dufour et al. 2005). 
Let Wh denote the elements of the standardized residuals ma 

trix, 

W = 
?S?1, (34) 

where S^ is the Cholesky factor of U'U; that is, S^ is the 

(unique) upper-triangular matrix such that U'U = 
S'-S^. We 

obtain standardized versions of ?/, LKi, and VRi (denoted by ?;, 
LKi, and VRi) after replacing en by Wn in the formulas for these 

statistics. As in Section 5.1, the test criteria from the different 

equations are then combined through joint statistics of the form 

? ? 1 ? min [p(Ei)], 
\<i<n 

LK=1- min [p(LKi)l (35) 
l<i<n 

Vk=l- mm[p(VRi)l 
\<i<n 

where /?(?;), p(LKi), and p(VRi) refer to p values that may be 

obtained by applying a MC test method or using asymptotic null 
distributions to decrease execution time. In our context, W has 

a distribution that is completely determined by the distribution 
of W given X, provided that J [in (16)] is lower triangular (see 

also Dufour et al. 2003). Consequently, the null distributions of 

the joint test statistics Eu LK?, and VR? do not depend on B and 

X; thus, under (19), MC p values for ?, LK, and VR are easy 
to obtain. Otherwise, we can derive an exact MC p value given 

v = vo (known), which are denoted by pn(E\vc>), pn(LK\vo), 

andpN(VR\vo). The unknown v problem is solved by applying 
a MMC strategy, we compute 

sup pN(?\v0), sup pN(LK\v0), 
v0eC(Y) v0eC(Y) 

and 

sup pN(VR\v0), 
v0eC(Y) 

where C(Y) refers to the same a \ -level confidence set consid 

ered for the efficiency test, and refer these MMC p values to a 

cutoff o?2. This provides exact MMC tests with level ot\ + o?2 

5.3 Conditional Heteroscedasticity Under 

Elliptical Distributions 

Finally, we also test for irregularities arising from model 

ing elliptical returns through distributional assumptions on er 

ror terms (as we have proceeded so far), because the latter sta 

tistical approach may lead to conditional heteroscedasticity of 

the following form: The variance of the vector (r\t, rit, , rnt)r 

is proportional to a quadratic function of ry[t?specifically, the 

standardized square of the deviation of ry[t from its time se 

ries mean, which we denote by lut (see Hodgson et al. 2002; 
Vorkink 2003; Zhou 1993; Kan and Zhou 2003). In multi-beta 

contexts, ZMt is the ith element of the matrix r ? r, which ap 

pears in (25). For example, for the multivariate t with k > 2, the 

variance proportionality factor is 

S, = (k-2 + 5m,)/(k-1). (36) 

We proceed as for the GARCH test, using the univariate LM 

statistic for equation /, which is equal to T multiplied by the 

coefficient of determination from the regression of the squared 
OLS residuals on a constant and zut- This statistic is obtained 
from the standardized residuals of each equation, leading to n 

statistics denoted by BPu which are combined through the min 

imum approximate p value as 

BP=l- min [p(BPi)l (37) 
X<i<n 

If heteroscedasticity of the form (36) is accepted as the cor 

rect pattern, it is straightforward to correct the efficiency tests 

described in Section 3 by simply weighting (i.e., dividing) each 

observation (dependent variables and regressors) with the cor 
1/2 

responding value of 8/ 
. In other words, the model is reesti 

mated by using the corresponding generalized least squares es 

timator [leading to weighted maximum likelihood (ML)-type or 

quasi-ML estimators (QMLEs)], which can provide statistical 

efficiency gains through the use of conditioning information. 

Some of the results presented in Section 6 use this correction. 
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6. EMPIRICAL ANALYSIS 

Our empirical analysis focuses on unconditional and condi 
tional mean-variance efficiency tests of the market portfolio 

[formally, tests of (1) in the context of (2), tests of (6) in the 
context of (5), and tests of (8) in the context of (7)], where the 
errors follow multivariate normal and Student-i distributions. 

For the Student distributions, we assume that (16) holds with 

(Z2t/K)1/2 

where Z\t is multivariate normal with mean 0 and covariance 
matrix I? and Z2t 

~ 
x2(K) and is independent of Z\t. 

We use nominal monthly returns for January 1926-December 

1995, obtained from the University of Chicago's CRSR We 
formed 12 portfolios of NYSE firms grouped by standard two 

digit industrial classification (SIC), as done by Breeden, Gib 

bons, and Litzenberger (1989). As done by Breeden et al. 

(1989), we excluded firms with SIC Code 39 (Miscellaneous 

manufacturing industries) from the dataset for portfolio forma 
tion. For each month, the industry portfolios comprise those 
firms for which the return, the price per common share, and the 

number of shares outstanding are recorded by the CRSR Fur 

thermore, portfolios are value-weighted each month. To assess 

the testable implications of the asset pricing models, we mea 
sure the market return by the value-weighted NYSE returns, 
also available from the CRSR We measure the risk-free rate 

by the 1-month Treasury Bill rate, also from the CRSR The 
instruments used for our conditional analysis are most promi 

nent in the conditional asset pricing literature (see, e.g., Ferson 

and Harvey 1999) and include the lagged value of a 1-month 

Treasury Bill yield, the dividend yield of the Standard & Poor 
500 index, the spread between Moody's Baa and Aaa corpo 
rate bond yields, the spread between a 10-year and a 1-year 

Treasury Bond yield, and the difference between the 1-month 

lagged returns of a 3-month and a 1-month Treasury Bill. Be 
cause the instruments are not available before the mid-1960s, 

we restrict our conditional analysis to the post-1965 period. Our 
results on efficiency tests are summarized in Tables 1 and 2. All 

MC tests were applied with 999 replications. The returns for 
October 1987 and January of every year are excluded from the 

dataset; the same analysis including these observations yields 
qualitatively similar results. 

Table 1 reports tests of the unconditional CAPM over 5-year 
subperiods. We also ran the analysis with 10-year subperiods; 
the results are not significantly affected by such modifications. 
A notable feature emerges from Table 1 : Test decisions (con 

cerning MLR errors and the zero-intercept restriction) vary con 

sistently over time. Such effects are documented in empirical 
work on the CAPM (see Black 1993; Fama and French 2004). 
Indeed, temporal instabilities have motivated subperiod model 

analysis and spurred further research aimed at capturing time 

varying betas. Our results, which allow for short time spans, 

reveal temporal instabilities even when accounting for non 

Gaussian errors. Our analysis of the conditional model (dis 
cussed later) points out to similar problems in the latter context. 

Table 1 reports (in columns 1-3) the p values of the ex 
act multinormality tests based on ESK, EKU, and CSK (see 
Sec. 5.1). These tests allow us to evaluate whether observed 

residuals exhibit non-Gaussian behavior through excess skew 

ness and kurtosis. For most subperiods, normality is rejected. 
These results are interesting, because, although it is well ac 

cepted in the finance literature that continuously compounded 
returns are skewed and leptokurtic, empirical evidence of non 

normality is weaker for monthly data. For instance, Affleck 
Graves and McDonald (1989) rejected normality in about 50% 
of the stocks that they studied. Our results, which are exact 

(i.e., cannot reject spuriously), indicate much stronger evidence 

Table 1. Normality and unconditional efficiency tests 

Normality tests Efficiency tests 

Sample_SK 
KU CSK 

LR_Poo pM Qv C(Y) ggLS Cqls(V) 

1927-1930 .001 .001 .001 16.104 .1866 .364 .357 3-12 .396 3-15 

1931-1935 .001 .001 .001 16.257 .1798 .313 .322 3-8 .268 3-9 

1936-1940 .001 .001 .001 16.018 .1904 .319 .333 4-26 .483 3-26 

1941-1945 .004 .002 .004 25.869 .0112 .045 .049 >5 .049 >4 
1946-1950 .001 .001 .001 37.196 .0002 .003 .004 4-26 .004 2-24 
1951-1955 .001 .002 .001 36.510 .0003 .004 .005 5-31 .007 2-33 
1956-1960 .024 .003 .003 43.841 .0000 .002 .002 >5 .002 >2 
1961-1965 .594 .479 .631 39.098 .0001 .002 .002 >7 .002 >4 
1966-1970 .011 .002 .004 36.794 .0002 .003 .003 >5 .003 >3 
1971-1975 .001 .002 .001 21.094 .0490 .120 .129 4-24 .112 4-30 

1976-1980 .001 .001 .001 28.373 .0049 .023 .026 4-17 .014 2-18 
1981-1985 .001 .001 .001 27.189 .0073 .033 .035 5-34 .033 2-30 
1986-1990 .028 .020 .030 35.747 .0007 .003 .005 >5 .006 >2 
1991-1995 .177 .311 .239 16.752 .1592 .299 .305 >15 .293 >6 

NOTE: Numbers in bold indicate test results that are significant at the .05 level. Columns 1-3 report p values for multinormality tests. Columns 1 and 2 pertain to the null hypotheses 
of no excess skewness and no excess kurtosis in the residuals of each subperiod. The p values in column 3 correspond to the combined statistic CSK designed to jointly test for the 

presence of skewness and kurtosis; individual and joint tests are obtained by applying (30) and (31) under the assumption of multivariate normal errors in the context of (2). Column 4 

presents the quasi-LR statistic defined in (20) to test 7iE defined by (1) in the context of (2); columns 5, 6, and 7 are the associated p values using, respectively, the asymptotic chi-squared 
distribution, the corresponding (pivotal) MC test obtained under the assumption of multivariate normal errors, and a MMC test assuming a multivariate i(/c) error distribution where the 

p value is maximized over a confidence set for k with level 1 ? o?i = .975. In the latter case, the maximized p value for the corresponding efficiency test is significant at level .05 if it is 
not larger than a2 = .025. The confidence set for k is reported in column 8; see Section 4 for details on its construction. Columns 9 and 10 are the GLS (weighted QMLE) counterparts 
of 7-8, using the variance weights (36) to correct for heteroscedasticity. 
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Table 2. Normality and conditional efficiency tests 

Normality tests Conditional efficiency tests 

Sample SK KU CSK LR Poo PAf Qv C(Y) 

Model (7) 
1966-1970 .085 .017 .033 122.545 .0002 .111 .125 >4 

1971-1975 .778 .986 .908 130.384 .0000 .057 .067 >6 
1976-1980 .095 .118 .137 147.084 .0000 .012 .021 >4 

1981-1985 .707 .095 .141 155.475 .0000 .004 .005 >4 
1986-1990 .114 .032 .046 109.736 .0028 .300 .344 >3 
1991-1995 .611 .501 .645 113.462 .0013 .207 .225 >6 

1966-1995 .001 .001 .001 162.050 .0000 .001 .001 3-16 

Model (5) 
1966-1970 .275 .014 .025 34.344 .0006 .011 .015 >4 

1971-1975 .093 .139 .130 26.166 .0102 .072 .087 >5 
1976-1980 .013 .002 .001 31.903 .0014 .021 .023 >4 
1981-1985 .019 .024 .028 32.655 .0011 .019 .026 >4 

1986-1990 .019 .015 .028 31.932 .0014 .020 .024 >4 
1991-1995 .160 .381 .200 17.976 .1164 .338 .347 >11 

1966-1995 .001 .001 .001 39.790 .0001 .001 .001 4-15 

NOTE: Numbers in bold indicate test results that are significant at the .05 level. Columns 1-3 report p values for multinormality tests. Columns 1 and 2 pertain to the null hypothesis 
of no excess skewness and no excess kurtosis in the residuals of each subperiod. The p values in column 3 correspond to the combined statistic CSK designed to jointly test for the 

presence of skewness and kurtosis; individual and joint tests are obtained by applying (30) and (31) under the assumption of multivariate normal errors, in the context of (5) and (7). 
Column 4 presents the quasi-LR statistic defined in (20) to test 7iE] defined by (6) [for model (5)], and TiE2 defined by (8) [for model (7)]; columns 5, 6, and 7 are the associated p values 

using, respectively, the asymptotic chi-squared distribution, the corresponding (pivotal) MC test obtained under the assumption of multivariate normal errors, and a MMC test assuming 
a multivariate ?{k) error distribution where the p value is maximized over a confidence set for k with level 1 ? a, = .975. In the latter case, the maximized/? value for the corresponding 
efficiency test is significant at level .05 if it is not larger than a2 = .025. The confidence set for k is reported in column 8; see Section 4 for details on its construction. 

against normality. This also confirms the results of Richardson 
and Smith (1993), who provided evidence against multivariate 

normality based on asymptotic tests (see also Fiorentini et al. 

2003). Of course, this evidence provides further motivation for 

using our approach to test mean-variance efficiency under non 

Gaussian errors. 

Columns 4-7 of Table 1 present the LR statistics for uncon 
ditional mean-variance efficiency, the corresponding asymp 

totic p values obtained from the asymptotic x2(n) distribution 

(Poo), the exact Gaussian-based MC p values (pMf), and the 
maximized MC p values based on the Student-i error model 

(ou)- Column 8 gives the confidence set C(Y) for the number 
of degrees of freedom, k . These results show that asymptotic 

p values are quite often spuriously significant (e.g., for 1941? 

1955), and that the maximal p values exceed the Gaussian 
based p value. It is "easier" to reject the testable implications 
under normality. For instance, at the 5% level of confidence, we 

find 10 rejections (out of the 14 subperiods) of the null hypoth 
esis for the asymptotic x2(12) test, 9 for the MC p values un 

der normality, and 6 under the Student-1 distribution. Under the 
Student distribution, the tests jointly assess the mean-variance 

efficiency hypothesis and the unknown degrees of freedom pa 
rameters in the error distribution. Because the confidence level 
for the nuisance parameter is .975 (ai 

= 
.025), p values for the 

efficiency tests should be compared with a2 = .025 to ensure 
that the overall level of the test is a = cc\ + a2 = 

.05; see Sec 

tion 4. 

These findings differ from those of Zhou (1993), who found 
no change in the rejection rates of mean-variance efficiency us 

ing elliptical distributions other than the normal. This may be 
due to the fact that we explicitly take into account nuisance pa 
rameter uncertainty (e.g., the fact that the degrees-of-freedom 

parameter is unknown). Interestingly, whenever the results 

obtained under non-Gaussian distributions differ from those 
obtained under the Gaussian distribution, the Gaussian distri 
butional assumption is strongly rejected. Our results clearly 
indicate that GRS-type tests are sensitive to the hypothesized 
error distribution. Of course, this observation is relevant when 

the hypothesized distributions are empirically consistent with 
the data. Focusing on the t distributions with parameters not 

rejected by exact GF tests, we see that the decision of the 
MMC mean-variance efficiency test can change relative to 

the F-based test. 

It is usual to aggregate the efficiency test results over 

all subperiods, in some manner. For instance, Gibbons and 

Shanken (1987) proposed two aggregate statistics, which, in 
terms of our notation, may be expressed as 

14 

GSi = -2^1n(p^[j]) 
and 

;=i 
(39) 14 

7=1 

where [j] refers to the subperiods and ^-1(-) provides the 
standard normal deviate corresponding to pj\f[j]. If the mean 

variance efficiency hypothesis holds across all subperiods, then 

GS\ 
~ 

x2(2 x 14), whereas GS2 
~ 

N(0, 14). It is notewor 

thy that the same aggregation methods can be applied to our 
test problem even under (16) by replacing, in (39), p^f[j] with 

?U[;]> the MMC p values obtained imposing (16). Indeed, as 
is observed by Gibbons and Shanken (1987), the F-distribution 
is not needed to obtain the null distribution of these combined 
statistics. All that is needed is a continuous null distribution 

This content downloaded from 132.216.1.36 on Mon, 24 Mar 2014 16:49:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


406 Journal of Business & Economic Statistics, October 2007 

(a hypothesis satisfied by normal and Student-i errors) and, 
of course, independence across subperiods. Our results, under 

normal and Student-i errors, are GSi = 102.264 and 101.658 
and GS2 

= 28.476 and 28.397; the associated/? values are ex 

tremely small. If independence is upheld, as done by Gibbons 
and Shanken (1987), then this implies that mean-variance ef 

ficiency is jointly rejected by our data. If one questions inde 

pendence and prefers to combine using Bonferroni-based crite 

ria, then the smallest p value is .002, which, when referred to 

.025/14 
~ 

.002, comes close to a rejection. In the context of 

a MC with 999 replications, the smallest possible p values are 

.001, .002, and so forth. To allow for a fair Bonferroni test, it 
is preferable to consider the level .028/14 = .002. This means 
that in every period the pretest confidence set should be applied 

with a\ 
? .022 to allow .028 to the mean-variance efficiency 

test. The results reported in the foregoing tables are robust to 
this change in level. 

Finally, Table 3 presents the results of our multivariate ex 

act diagnostic checks for departures from the iid assumption? 
namely, our proposed multivariate versions of the Engle, Lee 

King, and variance ratio tests; we use 12-month lags. The re 

sults show very few rejections of the null hypothesis at both the 
1% and 5% levels of significance. This implies that in our sta 
tistical framework and for the time spans analyzed, iid errors 

provide an acceptable working assumption. Our heteroscedas 

ticity tests also show that analyzing mean-variance efficiency 

through elliptical distributional assumptions on the errors is sta 

tistically valid in our sample. 
An advantage of our methodology is that weighted QMLE 

based tests (i.e., tests based on weighted QMLE) may easily be 
conducted following the methodology that we have described 

herein, in the context of an MLR weighted by the necessary 
variance correction term, by, for example, using the variance 

Table 3. Multivariate diagnostics, unconditional CAPM 

Normal errors Student-i errors 

Sample E LK VR E LK VR BP 

1927-1930 .001 .356 .004 .013 .301 .004 .285 
1931-1935 .022 .748 .069 .082 .659 .066 .016 

1936-1940 .075 .612 .855 .124 .587 .867 .087 

1941-1945 .824 .979 .163 .843 .982 .177 .034 

1946-1950 .003 .804 .063 .017 .784 .068 .880 

1951-1955 .139 .353 .111 .168 .321 .120 .591 

1956-1960 .987 .628 .093 .994 .628 .095 .347 

1961-1965 .339 .207 .577 .375 .195 .584 .771 

1966-1970 .027 .274 .821 .043 .278 .847 .961 

1971-1975 .280 .224 .218 .316 .212 .224 .013 

1976-1980 .004 .011 .165 .016 .013 .183 .406 
1981-1985 .027 .103 .208 .050 .103 .217 .583 

1986-1990 .033 .453 .346 .077 .442 .366 .279 

1991-1995 .803 .236 .088 .821 .252 .092 .585 

NOTE: Numbers shown are p values associated with the combined tests ?, LK, and VR 
defined by (35), in the context of modd (2). ? and LK are multivariate versions of Engle's 
and Lee-King's GARCH tests, and VR is a multivariate version of Lo and MacKinlay's 
variance ratio tests; see Section 5.2. BP [defined in (37)] is the conditional heteroscedas 

ticity test as function of the benchmark returns, which is relevant for elliptical nonnormal 
errors; see Section 5.3. The MC p values in columns 1-3 are based on pivotal statistics, 
while those in columns 4-7 are MMC p values obtained by maximizing over confidence 
sets (with level .975) of distributional nuisance parameters. The confidence sets used are 
those reported in Table 1 (column 8). Numbers in bold indicate test results significant at 
level .05. 

weights (36) in the case of the multivariate-i (see also Vorkink 

2003, footnote 4) as described at the end of Section 5. For il 
lustrative purposes, we report the corrected p values for multi 

variate i-type tests, in column 9 of Table 1. Our results show 

that the decision of our tests is not notably affected when we 
correct for time-varying volatility. It is noteworthy that the lat 
ter GLS-based correction does use (in some form) conditioning 
information. 

We now turn to Table 2, which reports our conditional test 
results for the two models (5) and (7) over 5-year intervals and 
over the whole sample. We retain the same layout as in Table 1, 

except of course that the GLS approach is no longer justified 
and thus is not applied in this context. The companion diagnos 
tic tests are given in Table 4. Although at first glance, the sub 

period analysis may appear unnecessary, given that the condi 

tional model is supposed to account for time-varying betas, care 

must be exercised when interpreting the full-sample test results. 
From Table 2, we see that for both models (5) and (7): (a) the ef 

ficiency hypotheses when assessed using the whole sample are 

soundly rejected using asymptotic or MC p values, (b) the con 
fidence sets on the degrees-of-freedom parameter appear dra 

matically tighter, and (c) normality is definitely rejected. Un 

fortunately, our diagnostic tests (see Table 4) reveal significant 
departures from the statistical foundations underlying the latter 
tests (even when allowing for nonnormal errors); thus temporal 
instabilities cast doubt on the full-sample analysis. The tests in 
Table 4 are applied in the context of the conditional model (7); 
because the latter nests model (5) and the unconditional model 
as well, the results of Table 4 indicate temporal instabilities for 
all three models. 

When we move to subperiod analysis, which appears to be 

appropriate in the present context, we see that the test results 

do not differ considerably from the unconditional case. First, as 

ymptotic p values are quite often spuriously significant, particu 

larly in the case of model (7); indeed, as may be seen in Table 2, 
there is a large difference between the asymptotic and the MC 

Table 4. Multivariate diagnostics, conditional CAPM 

Normal errors Student-i errors 

Sample E LK VR E LK VR 

1966-1970 .297 .235 .166 .333 .239 .178 

1971-1975 .131 .095 .924 .188 .108 .929 

1976-1980 .012 .740 .669 .020 .744 .683 

1981-1985 .137 .108 .628 .172 .110 .629 

1986-1990 .264 .766 .932 .338 .767 .933 

1991-1995 .878 .178 .473 .878 .184 .495 

1966-1975 .331 .083 .417 .348 .087 .425 

1976-1985 .290 .005 .690 .348 .008 .706 
1986-1995 .015 .647 .190 .038 .639 .207 

1966-1995 .001 .001 .392 .021 .001 .414 

NOTE: Numbers shown are p values associated with the combined tests ?, LK, and VR, 
defined by (35), in the context of model (5). ? and LK are multivariate versions of Engle's 
and Lee-King's GARCH tests, and VR is a multivariate version of Lo and MacKinlay's 
variance ratio tests; see Section 5.2. BP [defined in (37)] is the conditional heteroscedas 
ticity test as function of the benchmark returns, which is relevant for elliptical nonnormal 
errors. The MC p values in columns 1-3 are based on pivotal statistics, whereas those in 
columns 4-11 are MMC p values obtained by maximizing over confidence sets (with level 
.975) of distributional nuisance parameters. The confidence sets used are those reported in 

Table 2 (column 8). Numbers in bold indicate test results which are significant at the .05 
level. 

This content downloaded from 132.216.1.36 on Mon, 24 Mar 2014 16:49:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Beaulieu, Dufour, and Khalaf: Mean-Variance Efficiency With Possibly 407 

(Gaussian and non-Gaussian) p values. Of course, the number 

of restrictions tested in this case is 6 per equation (globally, 72 

constraints), whereas the problem of testing intercepts involves 
12 constraints. Also note that the expanded regression includes 
12 regressors for 12 equations, so the number of "effective ob 

servations" available for the test is quite small. This observation 

may suggest that power considerations underlie our observed 

nonrejections for the shorter subsample, although the simula 

tion studies reported by Dufour and Khalaf (2002b) indicate 

very good power properties for sample sizes as small as 25 ob 
servations even in high-dimensional MLR models. Recall that 
an F-test (of the GRS type) is unavailable for model (7), so 
our MC exact test approach is quite useful even given Gaussian 
errors. Similar considerations hold for the diagnostic tests: sim 
ulation results reveal good power for samples of sizes compa 

rable to those used in this article, especially when the system 
involves a large number of equations (see Dufour et al. 2005). 

Second, as in the unconditional case, the Student-i maxi 

mal p values exceed the Gaussian p value. For instance, for 

model (5), at the 5% significance level, we find five rejections 
(out of the six subperiods) of the null hypothesis for the asymp 
totic test, four for the MC test under normality, and three under 
the Student-i distribution. For model (7), at the 5% significance 
level, we find six rejections (out of the six subperiods) of the 
null hypothesis for the asymptotic test and two for the MC test 
under normality and the Student-i distribution. Not surprisingly, 
in the subperiods in which the conditional models are rejected, 
the unconditional model is also rejected. In general, model (7) 
is rejected in fewer subperiods relative to model (5) and the un 

conditional model (over the 1966-1995 subsample, where the 
data allow estimation of the conditional models). 

In the case of (7), it might be useful to assess the significance 
of the intercepts only or, alternatively, to assess the contribution 

of the instruments in explaining excess returns. Interestingly, 
the MC p values for our test on the intercepts for the six subpe 
riods are .759, .933, .075, .318, .617, and .485 under normality 
and .771, .946, .080, .339, .645, and .519 given i-errors. We thus 

see that at the 5% level, our rejections of efficiency are driven 

by the significance of instruments. 
In view of time instabilities, the conditional efficiency test 

applied to the full sample is unreliable. Thus, to aggregate our 

subperiod analysis, once again we resort to the combined sta 

tistics used by Gibbons and Shanken (1987) as in the uncon 
ditional case. Our results, under normal and Student-? errors 

are [p values are reported in brackets] GS\ = 35.572 [.00038] 
and 33.006 [.00097] and GS2 = 9.052 [.00011] and 8.415 

[.00029] for model (7), and GSX = 39.572 [.00001] and 37.703 

[.00017] and GS2 = 10.331 [.00000] and 9.839 [.00000] for 
model (5). The latter p values imply that mean-variance ef 

ficiency is jointly rejected with our data. Once again, if we 

question independence and prefer to combine using Bonferroni 

based criteria, then the smallest/? value for (7) is .004 under nor 

mality and .005 with i-errors; the latter, when compared with 

.025/6 2^ 0.004, comes close to a rejection. Efficiency on the 

aggregate in model (5) fails to be rejected by the Bonferroni 
rule. Viewed collectively, our subperiod and aggregate tests in 
dicate that the method used to incorporate conditioning infor 
mation has nonnegligible implications on mean-variance effi 

ciency. 

These results motivate the use of alternative models that cap 

ture conditioning information in more parsimonious approaches 

(i.e., with fewer degrees-of-freedom losses). Inevitably, such 

approaches, as well as nonlinear stochastic discount factor 

based models, will lead to instrumental variable contexts (see 
the foregoing references on GMM-based tests of the CAPM), 
for which the literature on exact testing is still scarce. 

7. CONCLUSION 

In this article we have proposed exact mean-variance ef 

ficiency tests in the context of unconditional and conditional 
CAPMs with Gaussian or non-Gaussian disturbances. We have 

also shown how to deal with?in finite samples?Student-i er 

rors which may involve unknown parameters. Our empirical 
results clearly show that the normality assumption does not 

fit CAPM error returns, even for monthly data. In contrast, 

Student-r distributions appear to be consistent with the data. 
Exact unconditional mean-variance efficiency tests, which for 

mally account for nonnormality, fail to reject efficiency for 
three out of nine subperiods for which Gaussian-based tests 
are significant. The conditional models analyzed herein pro 

vide a better fit, but the efficiency restrictions are rejected for 
at least half of the six subperiods considered. The conditional 
results are notably sensitive to the method used to incorporate 

conditioning information. Overall, although mean-variance ef 

ficiency is rejected for several subperiods, using finite-sample 
methods and allowing for nonnormal errors reduces the number 

of subperiods for which efficiency is rejected and the strength 
of the evidence against it. 

Although we focused here on mean-variance efficiency tests, 

it is noteworthy that the proposed methodology applies to sev 

eral interesting asset pricing tests, including problems in which 

Hotelling's test (exploited by GRS and MacKinlay 1987) and 
Rao's F test (see Stewart 1997; Dufour and Khalaf 2002b, the 

app.) have been used. In view of its fundamental importance, 
mean-variance efficiency is one of the few MLR-based prob 

lems that have been approached from an exact perspective in 

econometrics, but some authors have recognized that hypothe 
ses dealing with the joint significance of the coefficients of two 

regression coefficients across equations can also be tested by 

applying Rao's F test. Examples include intertemporal asset 

pricing tests by Shanken (1990, footnote 18). Furthermore, as 
discussed by Shanken (1996), econometric tests of spanning 
also fall within this class. Indeed, spanning tests (see the sur 

vey in DeRoon and Nijman 2001) may be written in terms of a 

model of GRS form. However, the hypothesis is more restric 
tive in the sense that, in addition to the restrictions on the in 

tercepts, the betas of each regression must sum to 1. These hy 

potheses fit into our UL framework. Alternatively, assessing the 

significance of squared market returns in the context of a three 

moment asset pricing model (see, e.g., Barone-Adesi, Gagliar 

dini, and Urga 2004) can be carried out using our framework. 
The results in this article extend available exact tests of these 

important financial problems beyond the Gaussian context. 
The fact remains that the results presented in this article are 

specific to UL hypotheses. Not all linear hypotheses may be 
cast in this form. In earlier work (Beaulieu, Dufour and Khalaf 

2005), we studied extensions to nonlinear problems, including 
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tests of mean-variance efficiency in the context of Black's ver 

sion of the CAPM. Finally, we note that an apparent shortcom 

ing of our exact tests comes from the fact that the right-side 
benchmark may be observed with errors. The development of 
exact tests that correct for errors-in-variables problems also ap 

pears to be an important issue, and we are currently pursuing 
research on it. 
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APPENDIX: TESTS 

This appendix summarizes the MC test method (given a 

right-tailed test) as it applies to the test statistics considered in 
this article. (For proofs and references, see Dufour 2006.) 

A.1 Monte Carlo Tests 

Let S(y, X) be a test statistic that can be rewritten in the form 

S(y, X) = S(W, X) (A.l) 

under the null hypothesis, where W is defined by (16) and the 
distribution of W is known. For example, S(y, X) could be the 
LR statistic considered in Theorem 1. Then the conditional dis 
tribution of S(y, X), given X, is completely determined by the 

matrix X and the conditional distribution of W given X; that is, 
S(y, X) is pivotal. We can then proceed as follows to obtain an 
exact critical region: 

1. Let S^ be the observed test statistic (based on data). 
2. By Monte Carlo methods, draw N iid replications of 

W:\V{j) 
= 

[W[j\...Mj)],j=l,...,N. 
3. From each simulated error matrix 

W(;), compute the sta 

tistics S{j) = 
S(W(j),X)J 

= l,...,N. For instance, in 
the case of the QLR statistic underlying Theorem 1, cal 
culate L(W(i)) 

= 
rin(|W'wMoW0-)|/|W' MW0-)|),y 

= 

l,...,N. 

4. Compute the MC p value pN[S] = pn(S(0) , S), where 

NGN(x,S) + l 
Pn(x, S) 

=- 
(A.2) 

and 

N 

1 N 
GN(x,S) = 

-Y^I[0,oo){S^-x), 
7=1 

, . . ? 1 ifxe [0, oo) /A _ 

/[0.oo)W=J0 if^^oo). 
(A-3) 

In other words,pN(S{0); S) = [NGN(S{0); S) + \]/(N+ 1), 
where NGn(S^ ; S) is the number of simulated values that 
are greater than or equal to S(0). When S(0), S(1),..., Sm 

are all distinct [an event with probability 1 when the vec 
tor (S(0), 5(1),..., SmY has an absolutely continuous dis 

tribution], RN(S{0)) = N + 1 - NGN(S{0) ; S) is the rank of 

S<?> in the series S??,^1), ...,S 

5. The MC critical region is pN[S] < a, 0 < a < 1. If a(N + 

1) is an integer and the distribution of 5 is continuous un 
der the null hypothesis He, then, under He, 

P[pN[S]<a]=a. (A.4) 

The foregoing algorithm is valid for any fully specified dis 
tribution of W. Now consider the case in which the distribu 
tion of W involves a nuisance parameter as in (16). In this case, 

given v, (A.2) yields an MC p value that we denote by Pn[S\ v], 
where the conditioning on v is emphasized for further refer 
ence. The test defined by pn[S\v] <a has size a [in the sense 
of (A.4)] for known v. Treating v as a nuisance parameter, the 

test based on 

sup/>#[S|v] <a, (A.5) 
veOo 

where Oo is a nuisance parameter set consistent with He, is 

exact at level a (see Dufour 2006). Note that no asymptotic ar 

gument on the number N of MC replications is required to ob 
tain the latter result; this is the fundamental difference between 
the latter procedure and the (closely related) parametric boot 

strap method, which in this context would correspond to a test 
based onp^[S\vo\, where vo is any point estimate of v. In earlier 
work (Dufour and Khalaf 2002b), we call the test based on sim 
ulations using a point nuisance parameter estimate a local MC 

(LMC) test. The term "local" reflects the fact that the underly 
ing MC p value is based on a specific choice for the nuisance 

parameter. Furthermore, we show that LMC nonrejections are 

exactly conclusive in the following sense: \?p^[S\vo\ > a, then 
the exact MMC test is clearly not significant at level a. 

A.2 MC Skewness and Kurtosis Tests 

The algorithm for implementing the MC skewness and kurto 
sis tests can be decomposed in three wide steps. A more detailed 
discussion has been given by Dufour et al. (2003). 
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A.2.1 Estimating Expected Skewness and Kurtosis. 

Al. Draw N0 iid replications, W(0 
= 

[W(/\ ..., w?'}], i = 

l,...,7Vo, according to the hypothesized distribution 
with v = v>n 

A2. From each simulated error matrix W(?), compute [see 

(29)] 

D(0 = IMW^^MW^^W^M, 
i=l,...,N0, (A.6) 

and compute the corresponding statistics SK and KU, 

applying (28). This provides No replications of the latter 

statistics, SK(i) and KU^, i=l, ...,Nq. 

A3. Compute the average values, 

n0 _ 

SK(vo) = J2SKi0/N0 and 
1=1 

(A'7) 
N0 

K?(vo) = J^K?ii)/No. 
i=i 

We call SK(vq) and KU(vo) the reference simulated mo 

ments. Two questions arise at this stage: (a) how to obtain exact 

cutoff points for ESK(vo) and EKU(vo) in (30), and (b) how to 

obtain a size-correct simultaneous test that combines these two 

tests. We first address the individual p values issue, which may 
be run as in Section A.l. 

A.2.2 Individual Excess Skewness and Kurtosis Tests. 

Bl. Using the values SK(vq) and KU(vo) obtained at steps 
A1-A3, compute the test statistics based on the ob 

served data, ?(0) = 
[ESK$(yo),EKU$(v0)]'. 

B2. Independent of the data and the draws of steps A1-A3, 

generate TV iid realizations of W according to the hy 
pothesized distribution with v = vo. 

B3. Using the same values SK(vo) and KU(vo) as for the 
observed data, compute the statistics ESKm(vo) and 

EKUm(vo) associated with each one of these MC sam 

ples: EM = 
[ESK$(v0),EKU$(vo)Yj=l,...,N. It 

is easy to see that the TV + 1 vectors E^\j 
? 0, 1,..., N, 

are exchangeable under the null hypothesis. 
B4. Compute a simulated p value for any one of the test 

statistics in ?(0) : pn[ESKm(vo)],Pn[EKUm(vo)~\, where 

PmY] is defined in Section A.l for each statistic in E 

[see (A.2)]. The null hypothesis is rejected at level a 

by the test ESKm(vo) if Pn[ESKm(vq)] < ol, and simi 

larly for EKUyi(v?). By the exchangeability of E^\j 
= 

0, 1,..., N, and provided that E follows a continuous 

distribution, this procedure satisfies the size constraint, 
that is, 

P[pN[ESKM(vo)] <<*] 
= 

P[pn[EKUm(vo)] <?]=?, 
(A.8) 

under the null hypothesis. 

A.2.3 Combined Excess Skewness and Kurtosis Test. 

Cl. Generate a set of reference simulated moments (accord 

ing to A1-A3), the observed value of E^ (according to 

Bl), and the TV corresponding simulated statistics. 
C2. For each test statistic considered, obtain the p value 

functions determined by simulated statistics (generated 
at step Cl), pn(S(0); S), for S = ESKM(v0), EKUM(vo), 
where the functionpn(S^\ S) is defined in Section A.l. 

C3. Independent of the previous simulations and the data, 

generate N\ additional iid realizations of W according 
to the hypothesized distribution with v = vo. Choose N\ 
so that a(N\ + 1) is an integer. 

C4. Using the reference simulated values and the N\ draws 

generated at steps Cl and C3, compute the corres 

ponding simulated statistics EE? = 
[ESK^(vo), 

EKU^(v0)Y,l^l,...,Nx. 
C5. Using the p value functions pn(-', ) obtained at step C2, 

evaluate the simulated p values for the observed and the 

N\ additional simulated statistics, pN[S] 
= 

p^?(S^; S), 
I = 0, 1,..., Nu for S = ESKM(vo), EKUM(vo). 

C6. From the latter, compute the corresponding values of the 

combined test statistics 

CSK^(vo) 
= 1 -mm{pN[ESK^(v0)lpN[EKU^(v0)]}, 

I = 0,1,...,Nu (A.9) 

Again, it is easy to see that the vectors CSK^(vo), I = 

0,1,..., Nx, are exchangeable. 
C7. The combined test CSKm(vo) rejects the null hypo 

thesis at level a if pn\[CSKm(vq)] = 
PNi(CSK\J; 

CSKm(vo)) < o?, where the p value function PN\('\-) 
is based on the simulated variables CSK^(vo),l 

= 

0,1,..., Nu 

This test has level a because the variables CSK^j), / = 

0, 1,..., TV, are exchangeable under the null hypothesis. 

[Received July 2004. Revised March 2006.] 
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