
Multivariate tests of mean-variance efficiency with possibly
non-Gaussian errors: an exact simulation-based approach∗

Marie-Claude Beaulieu†

Université Laval
Jean-Marie Dufour‡

Université de Montréal
Lynda Khalaf§

Carleton University

First version: March 2002
Revised: June 2004, July 2005, February 2006, May 2006

This version: February 19, 2008
Compiled: February 19, 2008, 11:52pm

This paper has been published in theJournal of Business and Economic Statistics, 25 (2007), 4,
398-410.

∗The authors thank Christian Gouriéroux, Raymond Kan, BlakeLeBaron, Mathilda Yared, Guofu Zhou, two anony-
mous referees, an Associate Editor, the Editor Torben Andersen, as well as seminar participants at the 2000 EC2 meetings,
CREST (Paris), the University of British Columbia, the University of Toronto, the 2001 Canadian Economic Associa-
tion meetings, CIRANO, and the Deutsche Bundesbank for several useful comments. This work was supported by the
Canada Research Chair Program (Chair in Econometrics, Université de Montréal, and Chair in Environmental and Fi-
nancial Econometric Analysis, Université Laval), the Alexander-von-Humboldt Foundation (Germany), the Institut de
finance mathématique de Montréal (IFM2), the Canadian Network of Centres of Excellence [program onMathematics
of Information Technology and Complex Systems(MITACS)], the Canada Council for the Arts (Killam Fellowship), the
Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council
of Canada, the Fonds de recherche sur la société et la culture(Québec), and the Fonds de recherche sur la nature et les
technologies (Québec). This paper was also partly written at the Centre de recherche en Économie et Statistique (INSEE,
Paris) and the Institut für Wirtschaftsforschung Halle (Germany).

† CIRANO and Département de finance et assurance, Université Laval. Mailing address: Département de finance et
assurance, Pavillon Palasis-Prince, Université Laval, Ste-Foy, Québec, Canada G1K 7P4. TEL: 1 (418) 656-2926, FAX:
1 (418) 656-2624; e-mail: Marie-Claude.Beaulieu@fas.ulaval.ca

‡ William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des
organisations (CIRANO), and Centre interuniversitaire derecherche en économie quantitative (CIREQ). Mailing address:
Department of Economics, McGill University, Leacock Building, Room 519, 855 Sherbrooke Street West, Montréal,
Québec H3A 2T7, Canada. TEL: (1) 514 398 8879; FAX: (1) 514 3984938; e-mail: jean-marie.dufour@mcgill.ca . Web
page: http://www.jeanmariedufour.com

§ Canada Research Chair in Environmental and Financial Econometric Analysis (Université Laval), Economics De-
partment, Carleton University, CIREQ, and Groupe de recherche en économie de l’énergie, de l’environnement et des
ressources naturelles (GREEN), Université Laval. Mailingaddress: Economics Department, Carleton University, Loeb
Building 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada. TEL: 1 (613) 520 2600 ext. 8697; FAX: 1 (613)
520 3906; e-mail: Lynda_Khalaf@carleton.ca



ABSTRACT

In this paper, we propose exact likelihood-based mean-variance efficiency tests of the market port-
folio in the context of the capital asset pricing model (CAPM), allowing for a wide class of error
distributions which include normality and multivariatet as special cases. Both unconditional and
conditional versions of the CAPM are considered. These tests are developed in the framework of
multivariate linear regressions (MLR). It is well known that, despite their simple statistical struc-
ture, standard asymptotically justified MLR-based tests are unreliable in finite samples. In financial
econometrics, exact tests have been proposed only for a few specific hypotheses [Jobson and Ko-
rkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987),
Gibbons, Ross and Shanken (Econometrica, 1989)], most of which depend on normality. For the
Gaussian unconditional model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance
efficiency tests. Our framework casts more evidence on whether the normality assumption is too
restrictive when testing the CAPM. We also apply exact multivariate goodness-of-fit tests and diag-
nostic checks, and obtain a set estimate for the interveningnuisance parameters. Our results show
the following: (i) multivariate normality is rejected; (ii) multivariate residual checks suggest tempo-
ral instabilities, for both the unconditional and the conditional models; (iii) although mean-variance
efficiency is rejected over several subperiods, using finite-sample methods and allowing for non-
normal errors reduces the number of subperiods for which efficiency is rejected and the strength of
the evidence against it; (iv) the use of conditioning information has non-negligible effects on tests
of mean-variance efficiency and substantially reduces the number of rejections.

Key words: capital asset pricing model; CAPM; conditional CAPM; mean-variance efficiency;
non-normality; multivariate linear regression; uniform linear hypothesis; exact test; Monte Carlo
test; bootstrap; nuisance parameters; specification test;diagnostics; GARCH; variance ratio test.
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RÉSUMÉ

Dans cet article nous proposons des tests exacts, basés sur la vraisemblance, de l’efficience du
portefeuille de marché dans l’espace moyenne-variance. Ces tests, utilisés ici dans le contexte
du modèle du CAPM (Capital Asset Pricing Model), permettentde considérer diverses classes de
distributions incluant la loi normale. Les tests sont développés dans le cadre de modèles de régres-
sion linéaires multivariés (RLM). Il est, par ailleurs, bien établi que, malgré leur structure simple,
les écart-types et tests usuels asymptotiques de ces modèles ne sont pas fiables. En économétrie
financière, des tests en échantillons finis ont été proposés seulement pour quelques hypothèses spé-
cifiques, lesquels dépendent pour la plupart de l’hypothèsede normalité [Jobson et Korkie (Journal
of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gibbons, Ross
et Shanken (Econometrica, 1989)]. Dans le contexte gaussien, nos tests d’efficience correspondent à
ceux de Gibbons, Ross et Shanken. Dans un contexte non-gaussien, nous reconsidérons l’efficience
moyenne-variance du portefeuille de marché en permettant des distributions multivariées de Stu-
dent et des « mélanges de lois normales ». Notre démarche nouspermet d’évaluer si l’hypothèse
de normalité est trop restrictive lorsque l’on teste le CAPM. Nous appliquons aussi des tests diag-
nostiques multivariés (incluant des tests pour les effets d’hétéroscédasticité conditionnelle et une
généralisation multivariée des tests de ratio de variance), des tests de spécification, et nous obtenons
aussi un estimateur ensembliste pour les paramètres de nuisance pertinents. Nos résultats montrent
que: (i) l’hypothèse de normalité multivariée est rejetée sur la plupart des sous-périodes; (ii) les
tests diagnostiques suggèrent la présence de changement structurel à la fois pour le modèle incon-
ditionnel et le modèle conditionel; (iii) bien que l’hypothèse d’efficience du portefeuille de marché
soit rejetée sur plusieurs sous-périodes, l’utilisation de méthodes exactes et la prise en compte de la
non-normalité des erreurs réduit le nombre de périodes pourlesquelles l’efficience est rejetée ainsi
que la force de l’évidence contre celle-ci; (iv) l’utilisation de variables conditionnantes a des effets
notables sur les tests d’efficience et réduit substantiellement le nombre des rejets.

Mots-clefs: modèle d’évaluation d’actifs financiers; CAPM; efficience de portefeuille; non-
normalité; modèle de régression multivarié; hypothèse linéaire uniforme; test exact; test de Monte
Carlo; bootstrap; paramètres de nuisance; test de spécification; tests diagnostiques; GARCH; test
de ratio des variances.

Classification du Journal of Economic Literature: C3; C12; C33; C15; G1; G12; G14.
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1. Introduction

The capital asset pricing model (CAPM) is one of the most commonly used models in theoretical
and applied finance; for reviews and references, see Campbell, Lo and MacKinlay (1997), Shanken
(1996), Cochrane (2001), DeRoon and Nijman (2001), and Famaand French (2004). Since the
work of Gibbons (1982), empirical tests on the CAPM are oftenconducted within amultivariate
linear regression(MLR). In this context, standard asymptotic theory provides a poor approximation
to the finite-sample distribution of test statistics, even with fairly large samples; see Shanken (1996,
Section 3.4.2), Campbell et al. (1997, Chapter 5), and Dufour and Khalaf (2002b). In particular, test
size distortions grow quickly when the number of equations increases. As a result, the conclusions of
MLR-based empirical studies on the CAPM can be strongly affected and lead to spurious rejections.

Consequently, several exact and Bayesian methods have beenproposed to assess mean-variance
efficiency; see Jobson and Korkie (1982), MacKinlay (1987),Gibbons, Ross and Shanken (1989,
henceforth GRS), Stewart (1997), MacKinlay (1995) and Kandel, McCulloch and Stambaugh
(1995). These methods typically require Gaussian distributional assumptions. However, it has long
been recognized that financial returns exhibit non-normalities [Fama (1965)]. Though the CAPM
can be derived from expected utility maximization under various non-Gaussian assumptions on the
return cross-sectional distribution, such as the multivariate t [see Ingersoll (1987) or Berk (1997)],
finite-sample tests for mean-variance efficiency in non-Gaussian CAPM’s are unavailable as yet.

Indeed, mean-variance efficiency tests which relax normality include: (i) large-sample GMM
or bootstrap techniques [Affleck-Graves and McDonald (1989), MacKinlay and Richardson (1991),
Fama and French (1993), Jagannathan and Wang (1996), Fersonand Harvey (1999), Groenwold and
Fraser (2001)]; (ii) semiparametric asymptotic procedures specific to elliptical distributions [Hodg-
son, Linton and Vorkink (2002), Vorkink (2003), Hodgson andVorkink (2003)]; (iii) parametric
procedures based on postulating a non-Gaussian distribution, such as the multivariatet [Fiorentini,
Sentana and Calzolari (2003), Zhou (1993)]; (iv) non-Gaussian Bayesian procedures [Tu and Zhou
(2004)]. In all these approaches, the distributional theory of test statistics is either approximate
or does not formally take into account nuisance-parameter uncertainty in a fitted parametric dis-
tribution. In particular, Hodgson et al. (2002) report sizeproblems on high-dimensional systems
and restrict their analysis to systems with 3 or 4 portfolios, while Vorkink (2003) proceeds on a
portfolio-by-portfolio basis, not the whole system. In theparametric case, Zhou (1993) proposes
simulation-basedp-values for the GRS statistic given a few elliptical distributions, while selecting
their tail area parameter by trial and error.

In this paper, we propose finite-sample unconditional and conditional multivariate mean-
variance efficiency tests in possibly non-Gaussian CAPM’s.The conditional specifications allow
model coefficients to vary as functions of a number of instruments, as described by Shanken (1996,
section 2.3.4), Cochrane (2001, Chapter 8) and DeRoon and Nijman (2001). Conditional testing
is important because portfolios that are conditionally efficient might be unconditionally inefficient
[see Hansen and Richard (1987) and Cochrane (2001, Chapter 8)].

We use finite-sample results from Dufour and Khalaf (2002b) on testinguniform linear (UL)
restrictions in MLR models with a given, possibly non-Gaussian, disturbance distribution: for such
hypotheses, the null distributions of standard test statistics areinvariant to MLR coefficients and
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error variances and covariances. In this case, Monte Carlo (MC) test techniques [see Dufour (2006)]
can be applied to obtain exactp-values. On observing that mean-variance efficiency restrictions
take the UL form when the risk-free rate is observable, we show that efficiency can be testedexactly
under general distributional assumptions which include the Gaussian and a wide spectrum of non-
Gaussian distributions, both elliptically symmetric and non-elliptical. Single and multi-beta models
are covered by these results.

To control for the parameters that define the hypothesized non-Gaussian distribution, such as
the degrees of freedom for the multivariatet [a problem not considered by Dufour and Khalaf
(2002b)], we use a two-stage procedure as follows: (1) we build an exact confidence set (with level
1−α1) for the nuisance parameter, through “inversion” of a distributionalgoodness-of-fit(GF) test;
(2) we maximize thep-value for the mean-variance efficiency test (which dependson the nuisance
parameter) over this confidence set. Referring the lattermaximizedMC [MMC] p-value to anα2

cut-off provides a test with exact levelα1+ α2 [see Dufour and Kiviet (1996) and Dufour (2006)].
We stick here to the original notion of test level in the presence of nuisance parameters [Lehmann
(1986, Chapter 3)]: a test haslevelα if the probability of rejecting the null hypothesis is not greater
thanα for any data generating process compatible with the null hypothesis.

Furthermore, we evaluate the specification of the model using: (1) GF tests on the error distri-
bution, and (2) serial dependence tests. All procedures rely on properly standardized multivariate
ordinary least squares (OLS) residuals, which provides statistics invariant to MLR coefficients and
error variances and covariances; this allows an easy application of MC tests. The GF tests compare
multivariate skewness and kurtosis criteria with a simulation-based estimate of their expected value
under the hypothesized (normal or non-normal) distribution, which can be viewed as extensions of
Mardia’s (1970) procedures. The diagnostic checks combine[as in Shanken (1990)] standardized
individual-equation versions of the GARCH tests suggestedby Engle (1982) and Lee and King
(1993), and the variance-ratio tests of Lo and MacKinlay (1988); we also test for heteroskedasticity
linked to conditioning on market returns [Vorkink (2003)].Our exact combination method relies
on simulation [as in Dufour and Khalaf (2002a) and Dufour, Khalaf, Bernard and Genest (2004)]
to avoid the Bonferroni bounds applied by Shanken (1990). Such bounds require one to divide the
level of each individual test by the number of tests, leadingto possibly large power losses if the
MLR includes many equations (i.e., many portfolios). All tests are performed under normal and
non-normal error distributions.

The tests proposed are applied to an unconditional and a conditional CAPM with observ-
able risk-free rates, and multivariate normal as well as multivariate t distributions. We consider
monthly returns on New York Stock Exchange (NYSE) portfolios, constructed from the University
of Chicago Center for Research in Security Prices (CRSP) data base (1926-1995). Our results show
the following: (i) multivariate normality is rejected; (ii) multivariate residual checks suggest tempo-
ral instabilities, for both the unconditional and the conditional models; (iii) although mean-variance
efficiency is rejected over several subperiods, using finite-sample methods and allowing for non-
normal errors reduces the number of subperiods for which efficiency is rejected and the strength of
the evidence against it; (iv) the use of conditioning information has non-negligible effects on tests
of mean-variance efficiency and substantially reduces the number of rejections.

The paper is organized as follows. Section 2 sets the framework. In Section 3, we describe
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existing tests and propose extensions for non-normal distributions. In Section 4, we discuss how
to deal with nuisance parameters in the error distribution.GF and diagnostic tests are described in
Section 5. In Section 6, we report the empirical results. We conclude in Section 7.

2. Framework

Let Rit, i = 1, . . . , n, be returns onn securities for periodt, andR̃Mt the return on a benchmark
portfolio (t = 1, . . . , T ). Following Gibbons et al. (1989), the (unconditional) CAPMwhich
assumes time-invariantbetascan be assessed by testing:

HE : ai = 0 , i = 1, . . . , n, (2.1)

in the context of the MLR model

rit = ai + βir̃Mt + εit , t = 1, . . . , T, i = 1, . . . , n, (2.2)

whererit = Rit − Rft, r̃Mt = R̃Mt − Rft, Rft is the riskless rate of return andεit is a random
disturbance.

In general, the CAPM also allows for the possibility of time varying betas. As discussed in
Shanken (1996, section 2.3.4), Cochrane (2001, Chapter 8) and DeRoon and Nijman (2001), this
can be accommodated by using conditioning information, such as lagged variables (or instruments,
known at timet). In particular, model parameters can be viewed as linear functions ofq conditioning
variablesz1t, . . . , zqt : depending on whether only thebetasor both the intercepts and the betas
are allowed to vary, this leads to alternative specifications:

rit = āi + βitr̃Mt + εit , βit = β̄i +
q∑

j=1
djizjt , (2.3)

rit = ait + βitr̃Mt + εit , ait = āi +
q∑

j=1
cjizjt , βit = β̄i +

q∑
j=1

djizjt , (2.4)

t = 1, . . . , T, i = 1, . . . , n. Model (2.3) entails the expanded regression

rit = āi + β̄ir̃Mt +
q∑

j=1
dji (r̃Mtzjt) + εit , t = 1, . . . , T, i = 1, . . . , n. (2.5)

On assuming that the regressor matrix has full rank for eachi, efficiency can be assessed by testing

H̄E1 : āi = 0 , i = 1, . . . , n. (2.6)

Similarly, (2.4) leads to the following equation:

rit = āi + β̄ir̃Mt +
q∑

j=1
cjizjt +

q∑
j=1

dji (r̃Mtzjt) + εit , t = 1, . . . , T, i = 1, . . . , n. (2.7)
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Assuming again that the corresponding regressor matrix hasfull column rank for eachi, efficiency
can be assessed by testingait = 0 for all i andt, or equivalently

H̄E2 : āi = 0 , cji = 0, i = 1, . . . , n, j = 1, . . . , q. (2.8)

For further reference, we setO(l, m) to be thel × m zero matrix and

ιT = (1, . . . , 1)′ , r̃M = (r̃1M , . . . , r̃T M)′, ri = (r1i, . . . , rT i)
′ , (2.9)

z = [z1, . . . , zq] , zj = (zj1, . . . , rjT )′ , j = 1, . . . , q. (2.10)

We also use the∗ symbol to denote element by element row-wise matrix multiplication; for example,
if A = [A1, . . . , AT ]′ is aT × l matrix andD = [D1, . . . , DT ]′ is anT × m matrix, thenA ∗ D
is theT × (lm) matrix with t-th row equal toA′

t ⊗ D′
t, i.e.A ∗ D = [A1 ⊗ D1, . . . , AT ⊗ DT ]′.

The foregoing models are special cases of the MLR model:

Y = XB + U (2.11)

whereY = [Y1, . . . , Yn] is aT × n matrix of dependent variables,X is aT × k full-column rank
matrix of regressors, andU = [U1, . . . , Un] = [V1, . . . , VT ]′ is aT × n matrix of disturbances.
Furthermore, the hypothesesHE, H̄E1 andH̄E2 belong to the UL class,i.e. they have the form:

H0 : HB = O(h, n) (2.12)

whereH is a fixedh × k matrix of rankh. Indeed, (2.1) - (2.2), (2.5) - (2.6) and (2.7) - (2.8) each
constitute a special case of (2.11) - (2.12) obtained by taking respectively one of the following defi-
nitions:

Y = [r1, . . . , rn], X = [ιT , r̃M ] , H = (1, 0) , (2.13)

Y = [r1, . . . , rn] , X = [ιT , r̃M , r̃M ∗ z] , H = [1, O(1, q + 1)] , (2.14)

Y = [r1, . . . , rn] , X = [ιT , z, r̃M , r̃M ∗ z] , H = [Iq+1, O(q + 1, q + 1)]. (2.15)

In this context, we apply a formal statistical approach to obtain simple finite-sample tests under
alternative error distributions (assuming we can condition on X, i.e. we can takeX as fixed for
statistical analysis). More precisely, we consider the general case:

Vt ≡ (ε1t, . . . , εnt)
′ = JWt , t = 1, . . . , T , (2.16)

whereJ is an unknown, non-singular matrix and the distribution of the vectorw = vec (W ),
W = [W1, . . . , WT ]′ is either: (i) known (hence, free of nuisance parameters), or (ii) specified
up to an unknown finite dimensional nuisance-parameter (denotedν); we callw the vector ofnor-
malized disturbancesand its distribution thenormalized disturbance distribution. Let Σ = JJ ′ so
det(Σ) 6= 0. For example, we assume thatWt ∼ F(ν) , t = 1, . . . , T , whereF(.) represents a
known distribution function. Below, we consider both the case where the error distribution does not
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involve nuisance parameters,

Wt ∼ F(ν0) whereν0 is specified, (2.17)

and the one where it does,
Wt ∼ F(ν) whereν is unknown. (2.18)

This assumption includes as special cases the Gaussian distribution,

V1, . . . , VT
i.i.d.
∼ N [0, Σ] , (2.19)

all elliptically symmetric distributions, such as the multivariate t, and cases whereW1, . . . , WT

are independent identically distributed (i.i.d.) according to any given non-elliptical distribution. In
this regard, conditioning on further instruments [as in models (2.5) and (2.7)] – rather than only the
market portfolio – can make thei.i.d. error hypothesis more plausible.

3. Mean-variance efficiency tests with a known normalized distur-
bance distribution

In this section, we consider testingHE, H̄E1 andH̄E2 [in (2.1), (2.6) or (2.8)] under the distribu-
tional assumption (2.16). The test statistics used are Gaussian likelihood ratios:

LR = T ln(Λ), Λ = |Σ̂0|/|Σ̂|, Σ̂ = Û ′Û/T, Σ̂0 = Û ′
0Û0/T , (3.20)

Û = Y − XB̂, B̂ = (X ′X)−1X ′Y, Û0 = Y − XB̂0 , (3.21)

B̂0 = B̂ −
(
X ′X

)−1
H ′
[
H
(
X ′X

)−1
H ′
]−1

HB̂ , (3.22)

whereY, X and H are defined as in (2.13), (2.14) or (2.15), depending on the null hypothesis
(HE , H̄E1 or H̄E2). On using the results in Dufour and Khalaf (2002b, section 3 and Appendix),
the null distribution ofLR can be characterized as follows (under a possibly non-Gaussian error
distribution).

Theorem 3.1 NULL DISTRIBUTION OF GAUSSIAN LR STATISTICS FOR MEAN-VARIANCE EFFI-
CIENCY. Under(2.16), theLR statistic defined in(3.20) for testingHE against the(unrestricted)
model(2.2) [resp., H̄E1 against(2.5), or andH̄E2 against(2.7)] is distributed like

L(W ) ≡ T ln
(
|W ′M0W |/|W ′MW |

)

under the null hypothesis, whereM0 = M + X(X ′X)−1H ′[H(X ′X)−1H ′]−1H(X ′X)−1X ′,
M = I − X(X ′X)−1X ′, andH is defined in(2.13) [resp., in (2.14) and (2.15)]. If furthermore
the Gaussian assumption(2.19) holds andT − k − n + 1 ≥ 1, wherek is the number of columns
in X, then[(T − k − n + 1)/n](Λ − 1) ∼ F (n, T − k − n + 1) underHE andH̄E1, and

ρτ − 2λ

n(q + 1)
(Λ1/τ − 1) ∼ F [n(q + 1), ρτ − 2λ] (3.23)
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underH̄E2 whenmin(n, q + 1) ≤ 2, whereρ = (T − k)− [(n− q)/2], λ = [n(q + 1)− 2]/4 and

τ =

{ {
[n2(q + 1)2 − 4]/[n2 + (q + 1)2 − 5]

}1/2
, if n2 + (q + 1)2 − 5 > 0 ,

1 , otherwise.

The above analysis easily extends to multi-beta models of the form

rit = ai +
s∑

j=1

βjir̃jt + εit , t = 1, . . . , T, i = 1, . . . , n, (3.24)

wherer̃jt = R̃jt − Rft andR̃jt, j = 1, . . . , s, are returns ons benchmark portfolios. In such
models, the hypothesis under test entails that there is a portfolio of the benchmark portfolios that
is mean-variance efficient [see Gibbons et al. (1989, henceforth GRS)]. Unconditional efficiency
tests follow from Theorem3.1 with X = [ιT , r̃], r̃ = [ r̃1, . . . , r̃s], r̃j = (r̃1j , . . . , r̃Tj)

′, j =
1, . . . , s, andH = [1, O(1, s)]. Furthermore, conditional efficiency tests are covered by Theorem
3.1 in the context of an expanded MLR of the form (2.11), whereY = [r1, . . . , rn], with: X =
[ιT , r̃, r̃ ∗ z] andH = [1, O(1, qs + s)] if the coefficients of̃r are assumed to be linear functions
of the instruments ,X = [ιT , z, r̃, r̃ ∗ z] andH = [Iq+1, O(q + 1, qs + s)] if the intercepts also
are linear functions of the instruments .

Theorem3.1 entails that the distribution of theLR statistic in (3.20) does not depend onB
andΣ. This property holds under conditions much more general thanelliptical symmetry (which
was emphasized in the earlier econometric literature on theCAPM). So, given draws from the
distribution of the disturbance matrixW = [W1, . . . , WT ], an exactp-value may be obtained
using the MC test technique as follows:
1. using the distributional assumption (2.16) and a given value ofν [as in (2.17)], generateN i.i.d.
replications of the disturbance matrixW ;
2. this yieldsN simulated values of the test statistic, applying the relevant pivotal transformL(W )
from Theorem3.1;
3. the exact Monte Carlop-value is then calculated from the rank of the observedLR relative to the
simulated ones [see (A.2) in Appendix A].

Further details are supplied in Appendix A. By the general theory of Monte Carlo tests, we
observe that the size of a simulation-based test can beperfectly controlledeven with a very small
number of Monte Carlo replications. For example, 19 replications are sufficient to obtain a test
of size .05. For power considerations, there is in principlean advantage in using a larger number
of replications, but the power gain from using a number of replications larger than 100 or 200 is
typically very small; for further discussion and evidence on this issue, see Dufour and Kiviet (1996),
Dufour and Khalaf (2002a, 2002b), Dufour et al. (2004), and Dufour (2006).

We shall denote bŷpN (LR0|ν) the MCp-value so obtained, whereLR0 is the observed value
of theLR statistic andν represents the distributional parameter used. We considerthe case where
ν is taken as unknown in Section 4. It is noteworthy that the latter MC test approach is useful even
with Gaussian errors, as in̄HE2, because an analytical distribution is not always available.
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Two other results follow from Theorem3.1. First, our Gaussian LR test is equivalent to the
Hotelling T 2 test proposed by MacKinlay (1987) and Gibbons et al. (1989).In the context of
(3.24), the latter apply tests based on the following distributional result:

T − s − n

n(T − s − 1)
Q ∼ F (n, T − s − n) , with Q = T â′

[
T

T − k
Σ̂

]−1

â /
[
1 + r′∆̂−1r

]
, (3.25)

whereâ is the vector of intercept OLS estimates,[T/(T − k)]Σ̂ is the OLS-based unbiased estima-
tor of Σ, r and∆̂ include respectively the time-series-means and sample covariance matrix corre-
sponding to the right-hand-side returns. On observing thatQ andΛ are related by the monotonic
transformationΛ − 1 = Q/(T − s − 1), wheres = k − 1 [see Stewart (1997)], we see that GRS’s
results follow from Theorem3.1 under normal errors.Second,it is easy to see that our results ex-
tend beyond the mean-variance efficiency hypothesis and cover any hypothesis of the form (2.12)
on a MLR of the form (2.2) describing returns. In this case, the null distribution of the LR statistic
follows from Theorem3.1 for the specificH matrix considered. For hypotheses wheremin(h, n)
> 2 (such asH̄E2), the MC approach is necessary even with Gaussian errors, since a transformation
of theLR statistic with a Fisher distribution (as for GRS statistic)does not seem to be available.

4. Mean-variance efficiency tests with an incompletely specified error
distribution

In this section, we extend the above results to the case of (2.16) whereν is unknown. To formally
account for the problem of estimatingν, we apply the following MMC approach [see Dufour and
Kiviet (1996)], which involves two stages. First we build anexact confidence set forν with level
1 − α1, which will be denoted byC(Y ) whereY refers to the return data. Next, on applying
Theorem3.1 and the MC algorithm in Appendix A (summarized above) we can obtain for each
ν0 ∈ C(Y ) a MCp-valuep̂N (LR0|ν). Setting

QU (LR0) = sup
ν0∈C(Y )

p̂N (LR0|ν0) , (4.1)

the critical region
QU (LR0) ≤ α2 (4.2)

has levelα1 + α2. In other words, if we construct the nuisance parameter confidence set with level
α1 and refer thesup p-value to the cut-off levelα2, then the global level of the two-stage test is
α = α1 + α2. In the empirical application considered next, we useα1 = α2 = α/2.

Since a procedure to derive an exact confidence set forν is not readily available (even with
multivariatet errors), we provide one here. Given the recent literature documenting the dramatically
poor performance of asymptotic Wald-type confidence intervals, we prefer to “invert” a test for the
null hypothesis (2.16) whereν = ν0 for knownν0. Specifically, suppose some test statistic [denoted
T (Y )] is available for the latter hypothesis (we provide one in Section 5.1 below). InvertingT (Y )
implies assembling theν0 values that are not rejected at a specific significance level.This may be
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carried out as follows: using for example a grid search over the relevant values ofν0, compute the
statistic associated withν = ν0 from the observed sample [denote itT0(Y )] and itsp-value [obtain
it e.g. by MC test techniques and denote itp̂N (T0(Y )|ν0)] conforming with (2.16). The confidence
set forν [which is not necessarily a bounded confidence interval] at level α1 corresponds to the
values ofν0 such that̂pN (T0(Y )|ν0) > α1; see Dufour (1990) and Dufour and Kiviet (1996).

5. Exact diagnostic checks

In this section, we present multivariate specification tests, including distributional GF tests – which
we invert to estimateν – and checks for departures from the hypothesis ofi.i.d. errors.

5.1. Goodness-of-fit tests

The null hypotheses of concern here are (2.19) [normal errors], and (2.17) or (2.18) [e.g. multi-
variatet errors with known or unknown degrees-of-freedom]. The testcriteria considered use the
multivariate skewness and kurtosis measures:

SK =
1

T 2

T∑

s=1

T∑

t=1

d̂3
st , KU =

1

T

T∑

t=1

d̂2
tt , (5.1)

whered̂st are the elements of the matrix̂D = Û ′Σ̂−1Û = T Û(Û ′Û)−1Û ′. These statistics were
introduced by Mardia (1970) in models where the regressor reduces to a vector of ones. Zhou
(1993, p. 1935, footnote 5) proposed to use them to test elliptical distributions, without however
providing a finite-sample theory for their application to residuals from MLR models. In our context,
these statistics are distributed, respectively, like1

T 2

∑T
s=1

∑T
t=1 d3

st and 1
T

∑T
t=1 d2

tt, wheredst is
the(s, t)-th element of the matrix

D = T MW
(
W ′MW

)−1
W ′M , W = [W1, . . . , WT ]′ ; (5.2)

see Dufour, Khalaf and Beaulieu (2003). This implies thatSK andKU are pivotal (invariant to
B and Σ). Two further adjustments are applied: (1) a simulation-based “centering” of the test
statistics; (2) a formal procedure for combining them into asingle test.

Centering involves using both measures in excess of expected values consistent with the hypoth-
esized error distribution. In view of (2.17), the resultingstatistics are denotedSK(ν0) andKU(ν0).
In the Gaussian case (2.19), we use the simplified notationsSK andKU. In view of the absence
of an analytical form for the expected values, the latter areevaluated by simulation, yielding the
following simulation-based statistics:

ESK(ν0) =
∣∣SK − SK(ν0)

∣∣ , EKU(ν0) =
∣∣KU − KU(ν0)

∣∣ , (5.3)

in the general case; in the Gaussian case, the test statistics are denotedESK =
∣∣SK − SK

∣∣ and
EKU =

∣∣KU − KU
∣∣ . This modification preserves pivotality. The MC technique may thus be

applied to derive exactp-values (usingN replications): the resulting simulation-basedp-values are
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denotedp̂N

(
ESK(ν0)|ν0

)
, p̂N

(
EKU(ν0)|ν0

)
in the general case, and̂pN (ESK0), p̂N (EKU0)

under the Gaussian hypothesis; see Appendix B.2 for more details. The observed and simulated
statistics have to be obtained conditional on the same average skewness and kurtosis measures; this
ensures that they remain exchangeable; see Dufour (2006).

This procedure allows to obtain exact individualp-values for each statistic. To obtain a joint
test, we propose to reject the null hypothesis if at least oneof the individualp-values is signifi-
cantly small. To avoid relying on Boole-Bonferroni rules (in defining the cut-off level), we use the
following combined statistic [see Dufour et al. (2003)]:

CSK(ν0) = 1 − min
{
p̂N

(
ESK(ν0)|ν0

)
, p̂N

(
EKU(ν0)|ν0

)}
(5.4)

or CSK = 1 − min
{
p̂N

(
ESK

)
, p̂N

(
EKU

)}
in the Gaussian case. This combination method

preserves invariance toB andΣ. So under (2.19), a MCp-value forCSK can be easily obtained.
Under (2.17), pivotality allows to obtain a MCp-value given a known valueν = ν0, which is
denotedp̂N (CSK0(ν0)|ν0) whereCSK0 refers to the observed value of the statistic. To account
for an unknownν, the values ofν0 for which p̂N (CSK0(ν0)|ν0) exceeds the desired significance
level (sayα1) are assembled in a set. This set defines the class of distributions of the form (2.18)
which are consistent with the data; if this set is empty, then(2.18) is rejected at levelα1; details of
the algorithm are given in Appendix B.3.

5.2. Multivariate checks for serial dependence and GARCH

We now present the tests we apply to assess departure fromi.i.d. errors, specifically, tests against
conditional heteroskedasticity and variance ratio tests;see Dufour, Khalaf and Beaulieu (2005). The
null hypotheses of concern are (2.17), (2.18) or (2.19).

If one pursues a univariate approach, standard diagnosticsmay be applied to each equation in
(2.2). For instance, the Engle GARCH test statistic [Engle (1982)] for equationi, denotedEi is
given by T multiplied by the coefficient of determination in the regression of the squared OLS
residualŝε2

it on a constant and̂ε2
i,t−j , j = 1, . . . , q̄. The Lee-King test [Lee and King (1993)]

exploits the one-sided nature of the problem and is based on statistics of the form:

LKi =

{
(T − q̄)

T∑
t=q̄+1

[
(ε̂2

it/σ̂
2
i − 1)

] q̄∑
j=1

ε̂2
i, t−j

}
/

{
T∑

t=q̄+1
(ε̂2

it/σ̂
2
i − 1)2

}1/2



(T − q̄)

T∑
t=q̄+1

(
q̄∑

j=1
ε̂2
i, t−j

)2

−

(
T∑

t=q̄+1

(
q̄∑

j=1
ε̂2
i, t−j

))2




1/2
(5.5)

whereσ̂2
i = 1

T

∑T
t=1 ε̂2

it, and its asymptotic null distribution is standard normal. The variance ratio
test statisticV Ri [Lo and MacKinlay (1988)] is:

V Ri = 1 + 2

K∑

j=1

(
1 −

j

K

)
ρ̂ij , ρ̂ij =

∑T
t=j+1 ε̂itε̂i, t−j
∑T

t=1 ε̂2
ti

, j = 1, . . . , K, (5.6)
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whereV Ri − 1
asy
∼ N

[
0, 2(2K − 1)(K − 1)/(3K)

]
under thei.i.d. null hypothesis.

Such univariate tests may not be appropriate in multivariate regressions. Indeed, the error co-
variance, which appears as a nuisance parameter, is typically not taken into consideration if a series
of univariate tests are applied. Furthermore, the problem of combining test decisions over all equa-
tions is not straightforward, since the individual tests are not independent [see Shanken (1990)]. In
view of this, we consider the following multivariate modification of these tests [see Dufour et al.
(2005)]. LetW̃it denote the elements of thestandardized residualsmatrix

W̃ = Û S−1

Û
(5.7)

whereSÛ is the Cholesky factor of̂U ′Û , i.e. SÛ is the (unique) upper triangular matrix such that

Û ′Û = S′
Û
SÛ . We obtain standardized versions ofEi, LKi andV Ri [denotedẼi, L̃Ki andṼ Ri]

after replacinĝεit by W̃it in the formulae for these statistics. As in Section 5.1, the test criteria from
the different equations are then combined through joint statistics of the form:

Ẽ = 1 − min
1≤i≤n

[
p(Ẽi)

]
, L̃K = 1 − min

1≤i≤n

[
p(L̃Ki)

]
, Ṽ R = 1 − min

1≤i≤n

[
p(Ṽ Ri)

]
, (5.8)

wherep(Ẽi), p(L̃Ki) andp(Ṽ Ri) refer top-values (which may be obtained by applying a MC
test method or by using asymptotic null distributions to cutexecution time). In our context,̃W has
a distribution which is completely determined by the distribution of W given X, providedJ [in
(2.16)] is lower triangular [see also Dufour et al. (2003)].Consequently, the null distributions of the
joint test statistics̃Ei, L̃Ki andṼ Ri do not depend onB andΣ, so under (2.19), MCp-values for
Ẽ, L̃K and Ṽ R are easy to obtain. Otherwise, we can derive an exact MCp-value givenν = ν0

(known), which are denoted̂pN (Ẽ|ν0), p̂N (L̃K|ν0) andp̂N (Ṽ R|ν0). The unknownν problem is
solved by applying a MMC strategy: we compute

sup
ν0∈C(Y )

p̂N (Ẽ|ν0), sup
ν0∈C(Y )

p̂N (L̃K|ν0) and sup
ν0∈C(Y )

p̂N (Ṽ R|ν0) ,

whereC(Y ) refers to the sameα1-level confidence set considered for the efficiency test, andrefer
these MMCp-values to a cut-offα2. This provides exact MMC tests with levelα1 + α2.

5.3. Conditional heteroskedasticity under elliptical distributions

Finally, we also test for irregularities that arise from modeling elliptical returns via distributional
assumptions on error terms (as we have proceeded so far), because the latter statistical approach
may lead to conditional heteroskedasticity of the following form: the variance of the vector
(r1t, r2t, . . . , rnt)

′ is proportional to a quadratic function of̃rMt, specifically, the standardized
square of the deviation of̃rMt from its time series mean which we denotez̃Mt; see Hodgson et al.
(2002), Vorkink (2003), Zhou (1993) and Kan and Zhou (2003).In multi-beta contexts,̃zMt is the
t-th element of the matrixr′∆̂−1r which appears in (3.25). For example, for the multivariatet with
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κ ≥ 2, the variance proportionality factor is

δt = (κ − 2 + z̃Mt)/(κ − 1) . (5.9)

We proceed as for the GARCH test, using the univariate Lagrange multiplier (LM) statistic for
equationi, which is equal toT multiplied by the coefficient of determination from the regression
of the squared OLS residuals on a constant andz̃Mt. This statistic is obtained from the standardized
residuals of each equation, leading ton statistics denoted̃BP i, which are combined through the
minimum approximatep-value as follows:

B̃P = 1 − min
1≤i≤n

[
p(B̃P i)

]
. (5.10)

If heteroskedasticity of the form (5.9) is accepted as the correct pattern, it is straightforward to
correct the efficiency tests described in Section 3 by simplyweighting (i.e., dividing) each obser-
vation (dependent variables and regressors) with the corresponding value ofδ1/2

t . In other words,
the model is re-estimated by using the corresponding generalized least squares estimator [leading to
weighted ML-type or quasi ML estimators (QMLE)], which can provide statistical efficiency gains
through the use of conditioning information. Some of the results presented in Section 6 use this
correction.

6. Empirical analysis

Our empirical analysis focuses on unconditional and conditional mean-variance efficiency tests of
the market portfolio [formally, tests of (2.1) in the context of (2.2), tests of (2.6) in the context of
(2.5) and tests of (2.8) in the context of (2.7)], where the errors follow multivariate normal and
Studentt distributions. For Student distributions, we assume that (2.16) holds with

Wt = Z1t/(Z2t/κ)1/2 , (6.1)

whereZ1t is multivariate normal with mean zero and covariance matrixIn, andZ2t ∼ χ2(κ) and
is independent ofZ1t.

We use nominal monthly returns from January 1926 to December1995, obtained from the
University of Chicago’s Center for Research in Security Prices (CRSP). We form 12 portfolios of
New York Stock Exchange (NYSE) firms grouped by standard two-digit industrial classification
(SIC), as in Breeden, Gibbons and Litzenberger (1989). As inBreeden et al. (1989), firms with
SIC code 39 (Miscellaneous manufacturing industries) are excluded from the data set for portfolio
formation. For each month, the industry portfolios comprise those firms for which the return, the
price per common share and the number of shares outstanding are recorded by CRSP. Furthermore,
portfolios are value-weighted in each month. In order to assess the testable implications of the
asset pricing models, we measure the market return by the value-weighted NYSE returns, also
available from CRSP. The risk-free rate is measured by the one-month Treasury bill rate, also from
CRSP. The instruments used for our conditional analysis aremost prominent in the conditional asset
pricing literature [seee.g.Ferson and Harvey (1999)] and include: the lagged value of a one-month
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Treasury bill yield, the dividend yield of the Standard and Poor’s 500 index, the spread between
Moody’s Baa and Aaa corporate bond yield, the spread betweena ten year and a one year Treasury
bond yield, and the difference between the one-month laggedreturns of a three-month and a one-
month Treasury bill. Since the instruments are not available before the mid-sixties, we restrict
our conditional analysis to the post-1965 period. Our results on efficiency tests are summarized in
Tables 1 and 2. All MC tests were applied with 999 replications. The returns for October 1987 and
January of every year are excluded from the data set; the sameanalysis including these observations
yields qualitatively similar results.

Table 1 reports tests of the unconditional CAPM over subperiods of 5 years. We also ran the
analysis with 10 year subperiods: the results are not significantly affected by such modifications. A
notable feature emerges from Table 1: test decisions (concerning MLR errors and the zero-intercept
restriction) vary consistently over time. Such effects aredocumented in empirical work on the
CAPM; see Black (1993) and Fama and French (2004). Indeed, temporal instabilities have moti-
vated subperiod model analysis and spurred further research aimed at capturing time varyingbetas.
Our results, which allow for short time spans, reveal temporal instabilities even when accounting for
non-Gaussian errors. Our analysis of the conditional model(discussed below) points out to similar
problems in the latter context.

In Table 1, we report in columns (1) - (3) thep-values of the exact multi-normality tests based
on ESK, EKU andCSK (see Section 5.1). These tests allow one to evaluate whetherobserved
residuals exhibit non-Gaussian behavior through excess skewness and kurtosis. For most subperi-
ods, normality is rejected. These results are interesting since, although it is well accepted in the
finance literature that continuously compounded returns are skewed and leptokurtic, empirical ev-
idence of non-normality is weaker for monthly data. For instance, Affleck-Graves and McDonald
(1989) reject normality in about 50% of the stocks they study. Our results, which are exact (i.e.,
cannot reject spuriously), indicate much stronger evidence against normality. This also confirms
the results of Richardson and Smith (1993) who provide evidence against multivariate normality
based on asymptotic tests; see also Fiorentini et al. (2003). Of course, this evidence provides further
motivation for using our approach to test mean-variance efficiency under non-Gaussian errors.

In columns (4)-(7) of Table 1, we present the LR statistics for unconditional mean-variance
efficiency, the corresponding asymptoticp-values obtained from the asymptoticχ2(n) distribution
(p∞), the exact Gaussian-based MCp-values(pN ), and the maximized MCp-values based on
the Studentt error model(QU ). The confidence setC(Y ) for the number of degrees of freedom
κ appears in column (8). These results show that asymptoticp-values are quite often spuriously
significant (e.g., for 1941-55). Furthermore, the maximalp-values exceed the Gaussian-basedp-
value. It is “easier” to reject the testable implications under normality. For instance, at the 5%
level of confidence, we find ten rejections [out of the fourteen subperiods] of the null hypothesis
for the asymptoticχ2(12) test, nine for the MCp-values under normality and six under the Student
t distribution. Under the Student distribution, the testsjointly assess the mean-variance efficiency
hypothesis and the unknown degrees of freedom parameters inthe error distribution. Since the
confidence level for the nuisance parameter is0.975 (α1 = 0.025), p-values for the efficiency tests
should be compared withα2 = 0.025 to ensure the overall level of the test isα = α1 + α2 = 0.05;
see Section 4.
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Table 1. Normality and unconditional efficiency tests

Normality tests Efficiency Tests

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Sample SK KU CSK LR p∞ pN QU C(Y ) QGLS

U
C

GLS
(Y )

1927-30 .001 .001 .001 16.104 .1866 .364 .357 3 − 12 .396 3 − 15
1931-35 .001 .001 .001 16.257 .1798 .313 .322 3 − 8 .268 3 − 9
1936-40 .001 .001 .001 16.018 .1904 .319 .333 4 − 26 .483 3 − 26
1941-45 .004 .002 .004 25.869 .0112 .045 .049 ≥ 5 .049 ≥ 4
1946-50 .001 .001 .001 37.196 .0002 .003 .004 4 − 26 .004 2 − 24
1951-55 .001 .002 .001 36.510 .0003 .004 .005 5 − 31 .007 2 − 33
1956-60 .024 .003 .003 43.841 .0000 .002 .002 ≥ 5 .002 ≥ 2
1961-65 594 .479 .631 39.098 .0001 .002 .002 ≥ 7 .002 ≥ 4
1966-70 .011 .002 .004 36.794 .0002 .003 .003 ≥ 5 .003 ≥ 3
1971-75 .001 .002 .001 21.094 .0490 .120 .129 4 − 24 .112 4 − 30
1976-80 .001 .001 .001 28.373 .0049 .023 .026 4 − 17 .014 2 − 18
1981-85 .001 .001 .001 27.189 .0073 .033 .035 5 − 34 .033 2 − 30
1986-90 .028 .020 .030 35.747 .0007 .003 .005 ≥ 5 .006 ≥ 2
1991-95 .177 .311 .239 16.752 .1592 .299 .305 ≥ 15 .293 ≥ 6

Note – Numbers in bold indicate test results which are significant at level 0.05. Columns (1)-(3) reportp-values for

multinormality tests: columns (1)-(2) pertain respectively to the null hypotheses of no excess skewness and no excess

kurtosis in the residuals of each subperiod. Thep-values in column (3) correspond to the combined statisticCSK

designed to jointly test for the presence of skewness and kurtosis; individual and joint tests are obtained by applying (5.3)

and (5.4) under the assumption of multivariate normal errors in the context of (2.2). Column (4) presents the quasi-LR

statistic defined in (3.20) to testHE defined by (2.1) in the context of (2.2); columns (5), (6) and (7) are the associated

p-values using, respectively, the asymptotic chi-square distribution, the corresponding (pivotal) MC test obtained under

the assumption of multivariate normal errors, and a MMC testassuming a multivariatet(κ) error distribution where the

p-value is maximized over a confidence set forκ with level 1 − α1 = 0.975. In the latter case, the maximizedp-value

for the corresponding efficiency test is significant at level0.05 if it is not larger thanα2 = 0.025. The confidence set for

κ is reported in column (8); see Section 4 for details on its construction. Columns (9) and (10) are the GLS (weighted

QMLE) counterparts of (7)-(8), using the variance weights (5.9) to correct for heteroskedasticity.
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Table 2. Normality and conditional efficiency tests

Normality tests Conditional Efficiency Tests

(A) Model (2.7)

(1) (2) (3) (4) (5) (6) (7) (8)

Sample SK KU CSK LR p∞ pN QU C(Y )

1966-70 .085 .017 .033 122.545 .0002 .111 .125 ≥ 4
1971-75 .778 .986 .908 130.384 .0000 .057 .067 ≥ 6
1976-80 .095 .118 .137 147.084 .0000 .012 .021 ≥ 4
1981-85 .707 .095 .141 155.475 .0000 .004 .005 ≥ 4
1986-90 .114 .032 .046 109.736 .0028 .300 .344 ≥ 3
1991-95 .611 .501 .645 113.462 .0013 .207 .225 ≥ 6

1966-95 .001 .001 .001 162.050 .0000 .001 .001 3 − 16

(B) Model (2.5)

(1) (2) (3) (4) (5) (6) (7) (8)

Sample SK KU CSK LR p∞ pN QU C(Y )

1966-70 .275 .014 .025 34.344 .0006 .011 .015 ≥ 4
1971-75 .093 .139 .130 26.166 .0102 .072 .087 ≥ 5
1976-80 .013 .002 .001 31.903 .0014 .021 .023 ≥ 4
1981-85 .019 .024 .028 32.655 .0011 .019 .026 ≥ 4
1986-90 .019 .015 .028 31.932 .0014 .020 .024 ≥ 4
1991-95 .160 .381 .200 17.976 .1164 .338 .347 ≥ 11

1966-95 .001 .001 .001 39.790 .0001 .001 .001 4 − 15

Note – Numbers in bold indicate test results which are significant at level 0.05. Columns (1)-(3) reportp-values for

multinormality tests: columns (1)-(2) pertain respectively to the null hypothesis of no excess skewness and no excess

kurtosis in the residuals of each subperiod. Thep-values in column (3) correspond to the combined statisticCSK

designed to jointly test for the presence of skewness and kurtosis; individual and joint tests are obtained by applying

(5.3) and (5.4) under the assumption of multivariate normalerrors, in the context of (2.5) [in Panel B] and (2.7) [in Panel

A]. Column (4) presents the quasi-LR statistic defined in (3.20) to testHE1 defined by (2.6) [in Panel B], andHE2

defined by (2.8) [in Panel A]; columns (5), (6) and (7) are the associatedp-values using, respectively, the asymptotic

chi-square distribution, the corresponding (pivotal) MC test obtained under the assumption of multivariate normal errors,

and a MMC test assuming a multivariatet(κ) error distribution where thep-value is maximized over a confidence set for

κ with level1−α1 = 0.975. In the latter case, the maximizedp-value for the corresponding efficiency test is significant

at level0.05 if it is not larger thanα2 = 0.025. The confidence set forκ is reported in column (8); see Section 4 for

details on its construction.
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These findings differ from those of Zhou (1993), who found no change in rejection rates of
mean-variance efficiency using elliptical distributions other than the normal. This may be due to
the fact that we explicitly take into account nuisance parameter uncertainty (e.g., the fact that the
degrees-of-freedom parameter is unknown). Interestingly, whenever the results obtained under non-
Gaussian distributions differ from those obtained under the Gaussian distribution, the Gaussian
distributional assumption is strongly rejected. Our results clearly indicate that GRS-type tests are
sensitive to the hypothesized error distribution. Of course, this observation is relevant when the
hypothesized distributions are empirically consistent with the data. Focusing on thet distributions
with parameters not rejected by exact GF tests, we see that the decision of the MMC mean-variance
efficiency test can change relative to theF -based test.

It is usual to aggregate the efficiency test results over all subperiods, in some manner. For
instance, Gibbons and Shanken (1987) proposed two aggregate statistics which, in terms of our
notation, may be expressed as follows:

GS1 = −2

14∑

j=1

ln(pN [j]) , GS2 =

14∑

j=1

Ψ−1(pN [j]) , (6.2)

where[j] refers to the subperiods, andΨ−1(.) provides the standard normal deviate corresponding
to pN [j]. If the mean-variance efficiency hypothesis holds across all subperiods, thenGS1 ∼
χ2(2 × 14) whereasGS2 ∼ N(0, 14). It is worth noting that the same aggregation methods can
be applied to our test problem even under (2.16) by replacing, in (6.2),pN [j] with QU [j], the MMC
p-values obtained imposing (2.16). Indeed, as is observed byGibbons and Shanken (1987), the
F -distribution is not necessary to obtain the null distribution of these combined statistics. All that
is needed is a continuous null distribution (a hypothesis satisfied by normal and Studentt errors)
and, of course, independence across subperiods. Our results, under normal and Studentt errors
respectively, are:GS1 = 102.264 and 101.658 andGS2 = 28.476 and28.397; the associated
p-values are extremely small. If independence is upheld as inGibbons and Shanken (1987), this
implies that mean-variance efficiency is jointly rejected by our data. If one questions independence
and prefers to combine using Bonferroni-based criteria, the smallestp-value is .002 which when
referred to.025/14 ≃ 0.002 comes close to a rejection. In the context of a MC with 999 replications,
the smallest possiblep-values are .001, .002 and so forth. To allow for a fair Bonferroni test, it is
preferable to consider the level.028/14 = 0.002. This means that in every period, the pre-test
confidence set should be applied withα1 = 0.022 to allow 0.028 to the mean-variance efficiency
test. The results reported in the above tables are robust to this change in level.

Finally, Table 3 presents the results of our multivariate exact diagnostic checks for departures
from the i.i.d. assumption, namely our proposed multivariate versions of the Engle, Lee-King and
variance ratio tests; we use 12 month lags. The results show very few rejections of the null hy-
pothesis both at the 1% and 5% level of significance. This implies that, in our statistical framework
and for the time spans analyzed,i.i.d. errors provide an acceptable working assumption. Our
heteroskedasticity tests also show that analyzing mean-variance efficiency through elliptical distri-
butional assumptions on the errors is statistically valid in our sample.

An advantage of our methodology is that weighted QMLE-basedtests (i.e. tests based on
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Table 3. Multivariate diagnostics, unconditional CAPM

Normal errors Studentt errors

(1) (2) (3) (4) (5) (6) (7)

Sample Ẽ L̃K Ṽ R Ẽ L̃K Ṽ R B̃P

1927-30 .001 .356 .004 .013 .301 .004 .285
1931-35 .022 .748 .069 .082 .659 .066 .016
1936-40 .075 .612 .855 .124 .587 .867 .087
1941-45 .824 .979 .163 .843 .982 .177 .034
1946-50 .003 .804 .063 .017 .784 .068 .880
1951-55 .139 .353 .111 .168 .321 .120 .591
1956-60 .987 .628 .093 .994 .628 .095 .347
1961-65 .339 .207 .577 .375 .195 .584 .771
1966-70 .027 .274 .821 .043 .278 .847 .961
1971-75 .280 .224 .218 .316 .212 .224 .013
1976-80 .004 .011 .165 .016 .013 .183 .406
1981-85 .027 .103 .208 .050 .103 .217 .583
1986-90 .033 .453 .346 .077 .442 .366 .279
1991-95 .803 .236 .088 .821 .252 .092 .585

Note – Numbers shown arep-values associated with the combined testsẼ, L̃K andṼ R defined by (5.8), in the context

of model (2.2). Ẽ and L̃K are multivariate versions of Engle’s and Lee-King’s GARCH tests, whileṼ R is a mul-

tivariate version of Lo and MacKinlay’s variance ratio tests; see Section 5.2.̃BP [defined in (5.10)] is the conditional

heteroskedasticity test as function of the benchmark returns, which is relevant for elliptical non-normal errors; seeSection

5.3. The MCp-values in columns (1)-(3) are based on pivotal statistics,while those in columns (4)-(7) are MMCp-values

obtained by maximizing over confidence sets (with level 0.975) of distributional nuisance parameters. The confidence

sets used are those reported in Table 1 [column (8)]. Numbersin bold indicate test results which are significant at level

0.05.

weighted QMLE) may easily be conducted following the methodology we have described here,
in the context of an MLR weighted by the necessary variance correction term, for example by using
the variance weights (5.9) in the case of the multivariate-t [see also Vorkink (2003, footnote 4)] as
described at the end of Section 5. For illustrative purposes, we report the correctedp-values for
multivariatet-type tests, in columns (9) of Table 1. Results show that the decision of our tests is
not notably affected when we correct for time varying volatility. It is worth noting that the latter
GLS-based correction does use (in some form) conditioning information.

We now turn to Table 2, which reports our conditional test results for the two models (2.5) [Panel
B] and (2.7) [Panel A] over intervals of 5 years and over the whole sample. We retain the same layout
as in Table 1, except of course that the GLS approach is no longer justified and is thus not applied
in this context. The companion diagnostic tests are shown inTable 4. While the subperiod analysis
may at first sight appear unnecessary, given that the conditional model is supposed to account for
time-varyingbetas, care must be exercised in interpreting the full-sample test results. From Table
2, we see that for both models (2.5) and (2.7): (i) the efficiency hypotheses when assessed using
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Table 4. Multivariate diagnostics, conditional CAPM

Normal errors Studentt errors

(1) (2) (3) (4) (5) (6)

Sample Ẽ L̃K Ṽ R Ẽ L̃K Ṽ R

1966-70 .297 .235 .166 .333 .239 .178
1971-75 .131 .095 .924 .188 .108 .929
1976-80 .012 .740 .669 .020 .744 .683
1981-85 .137 .108 .628 .172 .110 .629
1986-90 .264 .766 .932 .338 .767 .933
1991-95 .878 .178 .473 .878 .184 .495

1966-75 .331 .083 .417 .348 .087 .425
1976-85 .290 .005 .690 .348 .008 .706
1986-95 .015 .647 .190 .038 .639 .207

1966-95 .001 .001 .392 .021 .001 .414

Note – Numbers shown arep-values associated with the combined testsẼ, L̃K, and Ṽ R, defined by (5.8), in the

context of model (2.5).Ẽ andL̃K are multivariate versions of Engle’s and Lee-King’s GARCH tests, whileṼ R is a

multivariate version of Lo and MacKinlay’s variance ratio tests; see Section 5.2.̃BP [defined in (5.10)] is the conditional

heteroskedasticity test as function of the benchmark returns, which is relevant for elliptical non-normal errors. TheMC

p-values in columns (1)-(3) are based on pivotal statistics,while those in columns (4)-(11) are MMCp-values obtained

by maximizing over confidence sets (with level 0.975) of distributional nuisance parameters. The confidence sets used

are those reported in Table 2 [column (8)]. Numbers in bold indicate test results which are significant at level 0.05.

the whole sample, are soundly rejected, using asymptotic orMC p-values, (ii) the confidence sets
on the degrees-of-freedom parameter appear dramatically tighter, and (iii) normality is definitely
rejected. Unfortunately, our diagnostic tests [refer to Table 4] reveal significant departures from
the statistical foundations underlying the latter tests (even when allowing for non-normal errors);
temporal instabilities thus cast doubt on the full sample analysis. The tests in Table 4 are applied in
the context of the conditional model (2.7); since the latternests model (2.5) and the unconditional
model as well, the results of Table 4 indicate temporal instabilities for all three models.

When we move to subperiod analysis, which appears appropriate in the present context, we
see that the test results do not differ considerably from theunconditional case.First, asymptotic
p-values are quite often spuriously significant, particularly in the case of model (2.7); indeed, as
may be seen from Panel A of Table 2, there is a large differencebetween the asymptotic and the
MC (Gaussian and non-Gaussian)p-values. Of course, the number of restrictions tested in this case
is 6 per equation (globally: 72 constraints), whereas the problem of testing intercepts involves 12
constraints. Also note that the expanded regression includes 12 regressors for 12 equations, so the
number of "effective observations" available for the test is quite small. This observation may suggest
that power considerations underlie our observed non-rejections for the shorter sub-sample, although
the simulation studies reported in Dufour and Khalaf (2002b) indicate very good power properties
for sample sizes as small as 25 observations even in high dimensional MLR models. Recall that
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anF -test (of the GRS type) is unavailable for model (2.7), so ourMC exact test approach is quite
useful even given Gaussian errors. Similar considerationshold for the diagnostic tests: simulation
results reveal good power for samples of sizes comparable tothe ones used in this paper, especially
when the system involves a large number of equations [see Dufour et al. (2005)].

Second, as in the unconditional case, the Student-t maximalp-values exceed the Gaussianp-
value. For instance, for model (2.5), at the 5% significance level, we find five rejections [out of the
six subperiods] of the null hypothesis for the asymptotic test, four for the MC test under normality
and three under the Studentt distribution. For model (2.7), at the 5% significance level,we find six
rejections [out of the six subperiods] of the null hypothesis for the asymptotic test, two for the MC
test under normality and the Studentt distribution. Not surprisingly, in the subperiods where the
conditional models are rejected, the unconditional model is also rejected. In general, model (2.7) is
rejected in fewer subperiods relative to model (2.5) and theunconditional model (over the 1966-95
sub-sample, where the data allows to estimate the conditional models).

In the case of (2.7), it might be useful to assess the significance of the intercepts only, or alter-
natively, to assess the contribution of the instruments in explaining excess returns. Interestingly, the
MC p-values for our test on the intercepts for the six subperiods. are: .759, .933, .075, .318, .617
and .485 under normality and .771, .946, .080, .339, .645 and.519 givent-errors. We thus see that
at the 5% level, our rejections of efficiency are driven by thesignificance of instruments.

In view of time instabilities, the conditional efficiency test applied to the full sample is unreli-
able. So to aggregate our subperiod analysis, we resort onceagain to the combined statistics used
by Gibbons and Shanken (1987) as in the unconditional case. Our results, under normal and Student
t errors respectively, are [p-values are reported in brackets]:GS1 = 35.572 [.00038] and33.006
[.00097] andGS2 = 9.052 [.00011] and8.415 [.00029], for model (2.7), andGS1 = 39.572
[.00001] and37.703 [.00017] andGS2 = 10.331 [.00000] and9.839 [.00000], for model (2.5). The
latterp-values imply that mean-variance efficiency is jointly rejected with our data. Once again, if
one questions independence and prefers to combine using Bonferroni-based criteria, the smallest
p-value for (2.7) is .004 under normality and .005 witht-errors; the latter when compared with
.025/6 ≃ 0.004 come close to a rejection. Efficiency on the aggregate in model (2.5) fails to be
rejected by the Bonferroni rule. Viewed collectively, our subperiod and aggregate tests indicate that
the method one uses to incorporate conditioning information has non negligible implications on
mean-variance efficiency.

These results motivate the use of alternative models which capture conditioning information
in more parsimonious approaches (i.e. with fewer degrees-of-freedom losses). Inevitably, such
approaches as well as non-linear stochastic discount factor based models, will lead to Instrumental
Variable contexts (see the above cited references on GMM-based tests of the CAPM), where the
literature on exact testing is still scarce.

7. Conclusion

In this paper, we have proposed exact mean-variance efficiency tests in the context of unconditional
and conditional CAPM’s, with Gaussian or non-Gaussian disturbances. Further, we have shown how
to deal – in finite samples – which may involve Studentt errors with possibly unknown parameters.
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Our empirical results show clearly that the normality assumption does not fit CAPM error returns,
even for monthly data. By contrast, Studentt distributions appear to be consistent with the data.
Exact unconditional mean-variance efficiency tests, whichformally account for non-normality, fail
to reject efficiency for 3 out of 9 subperiods for which Gaussian-based tests are significant. The
conditional models analyzed provide a better fit, but the efficiency restrictions are rejected on at
least half of the 6 subperiods considered. The conditional results are notably sensitive to the method
used to incorporate conditioning information. Overall, although mean-variance efficiency is rejected
for several subperiods, using finite-sample methods and allowing for non-normal errors reduces the
number of subperiods for which efficiency is rejected and thestrength of the evidence against it.

Although we focused here on mean-variance efficiency tests,it is worth noting that the pro-
posed methodology applies to several interesting asset pricing tests including problems where the
Hotelling test [exploited by GRS and MacKinlay (1987)] and Rao’sF test [see Stewart (1997) and
Dufour and Khalaf (2002b, Appendix)] have been used. In view of its fundamental importance,
mean-variance efficiency is one of the few MLR-based problems which have been approached from
an exact perspective in econometrics, but some authors haverecognized that hypotheses dealing
with the joint significance of the coefficients oftwo regression coefficients across equations can
also be tested exactly applying Rao’sF test. Examples include inter-temporal asset pricing tests
in Shanken (1990, footnote 18). Furthermore, as discussed in Shanken (1996), econometric tests
of spanning fall within this class. Indeed, spanning tests [see the survey of DeRoon and Nijman
(2001)] may be written in terms of a model of the GRS form. The hypothesis is however more
restrictive, in the sense that, in addition to the restrictions on the intercepts, the betas of each re-
gression must sum to one. These hypotheses fit into our UL framework. Alternatively, assessing the
significance of squared market returns in the context of a three-moment asset pricing model [seee.g.
Barone-Adesi, Gagliardini and Urga (2004)] can be carried out using our framework. The results
in this paper extend available exact tests of these important financial problems beyond the Gaussian
context.

The fact remains that the results presented in this paper arespecific to UL hypotheses. Not all
linear hypotheses may be cast in this form. In Beaulieu, Dufour and Khalaf (2005), we study exten-
sions to non-linear problems including tests of mean-variance efficiency in the context of Black’s
version of the CAPM. Finally, we note that an apparent shortcoming of our exact tests comes from
the fact that the right-hand-side benchmark may be observedwith errors. The development of exact
tests which correct for error-in-variable problems also appears to be an important issue, and we are
pursuing research on it.
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Appendix

This appendix summarizes the MC test method (given a right tailed test), as it applies to the test
statistics considered in this paper; for proofs and references, see Dufour (2006).

A. Monte Carlo tests

Let S(y, X) be a test statistic which can be rewritten in the form

S(y, X) = S̄ (W, X) (A.1)

under the null hypothesis, whereW is defined by (2.16) and the distribution ofW is known. For
example,S(y, X) could be the LR statistic considered in Theorem3.1. Then the conditional dis-
tribution of S(y, X), given X, is completely determined by the matrixX and the conditional
distribution ofW given X, i.e. S(y, X) is pivotal. We can then proceed as follows to obtain an
exact critical region.

1. LetS(0) be the observed test statistic (based on data).

2. By Monte Carlo methods, drawN i.i.d. replications ofW : W(j) = [W
(j)
1 , . . . , W

(j)
n ] ,

j = 1, . . . , N .

3. From each simulated error matrixW(j), compute the statisticsS(j) = S̄(W(j), X) , j =
1 , . . . , N . For instance, in the case of the QLR statistic underlying Theorem3.1, calculate
L(W(j)) = T ln

(
|W ′

(j)M0W(j)|/|W
′
(j)MW(j)|

)
, j = 1 , . . . , N .

4. Compute the MCp-valuep̂N [S] ≡ pN (S(0) ; S), where

pN (x ; S) ≡
NGN (x ; S) + 1

N + 1
, (A.2)

GN (x ; S) ≡
1

N

N∑

j=1

I[0,∞)(S
(j) − x) , I[0,∞)(x) =

{
1, if x ∈ [0, ∞) ,
0, if x /∈ [0, ∞) .

(A.3)

In other words,pN (S(0) ; S) = [NGN (S(0) ; S) + 1]/(N + 1) where NGN (S(0) ; S)
is the number of simulated values which are greater than or equal to S(0). When
S(0), S(1), . . . , S(N) are all distinct [an event with probability one when the vector(
S(0), S(1), . . . , S(N)

)′
has an absolutely continuous distribution],R̂N (S(0)) = N + 1 −

NGN (S(0) ; S) is the rank ofS(0) in the seriesS(0), S(1), . . . , S(N).

5. The MC critical region is:p̂N [S] ≤ α , 0 < α < 1 . If α(N + 1) is an integer and the
distribution ofS is continuous under the null hypothesisHE, then underHE ,

P
[
p̂N [S] ≤ α

]
= α . (A.4)
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The above algorithm is valid for any fully specified distribution of W . Consider now the case
where the distribution ofW involves a nuisance parameter as in (2.16). In this case, givenν, (A.2)
yields a MCp-value which we will denotêpN [S | ν] where the conditioning onν is emphasized for
further reference. The test defined byp̂N [S | ν] ≤ α has sizeα [in the sense of (A.4)] for knownν.
Treatingν as a nuisance parameter, the test based on

sup
ν ∈ Φ0

p̂N [S | ν] ≤ α (A.5)

whereΦ0 is a nuisance parameter set consistent withHE, is exact at levelα; see Dufour (2006).
Note that no asymptotic argument on the numberN of MC replications is required to obtain the
latter result; this is the fundamental difference between the latter procedure and the (closely related)
parametric bootstrap method, which in this context would correspond to a test based onp̂N [S | ν̂0],
whereν̂0 is anypoint estimate ofν. In Dufour and Khalaf (2002b), we call the test based on sim-
ulations using a point nuisance parameter estimate alocal MC (LMC) test. The termlocal reflects
the fact that the underlying MCp-value is based on a specific choice for the nuisance parameter.
Furthermore, we show that LMC non-rejections areexactlyconclusive in the following sense: if
p̂N [S | ν̂0] > α, then the exact MMC test is clearly not significant at levelα.

B. MC skewness and kurtosis tests

The algorithm for implementing the MC skewness and kurtosistests can be decomposed in three
wide steps. A more detailed discussion is available in Dufour et al. (2003).

B.1. Estimating expected skewness and kurtosis

A1. Draw N0 i.i.d. replications,W̄(i) = [W̄
(i)
1 , . . . , W̄

(i)
n ], i = 1, . . . , N0, according to the

hypothesized distribution withν = ν0 .

A2. From each simulated error matrix̄W(i), compute [see (5.2)]

D(i) = TMW̄(i)

[
W̄ ′

(i)MW̄(i)

]−1
W̄ ′

(i)M, i = 1, . . . , N0 , (B.1)

and compute the corresponding statisticsSK and KU, applying (5.1). This providesN0

replications of the latter statistics:SK(i) andKU (i), i = 1, . . . , N0.

A3. Compute the average values:

SK(ν0) =

N0∑

i=1

SK(i)/N0 , KU(ν0) =

N0∑

i=1

KU (i)/N0 . (B.2)

We call SK(ν0) andKU(ν0) the reference simulated moments. Two questions arise at this
stage: (i) how to obtain exact cut-off points forESK(ν0) andEKU(ν0) in (5.3), and (ii) how
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to obtain a size-correct simultaneous test which combines these two tests. Let us first address the
individual p-values issue, which may be run as in Appendix A above.

B.2. Individual excess skewness and kurtosis tests

B1. Using the valuesSK(ν0) andKU(ν0) obtained at steps A1-A3, compute the test statistics

based on the observed data:E(0) = [ESK
(0)
M (ν0), EKU

(0)
M (ν0)]

′ .

B2. Independently of the data and the draws of steps A1-A3, generateN i.i.d. realizations ofW
according to the hypothesized distribution withν = ν0 .

B3. Using the same valuesSK(ν0) and KU(ν0) as for the observed data, compute the statis-
tics ESKM(ν0) and EKUM(ν0) associated with each one of these MC samples:E(j) =

[ESK
(j)
M (ν0), EKU

(j)
M (ν0)]

′ , j = 1, . . . , N . It is easy to see that theN + 1 vectors
E(j), j = 0, 1, . . . , N are exchangeable under the null hypothesis.

B4. Compute a simulatedp-value, for any one of the test statistics inE(0) :
p̂N [ESKM(ν0)], p̂N [EKUM(ν0)], where p̂N [ · ] is defined in Appendix A for each
statistic inE [see (A.2)]. The null hypothesis is rejected at levelα by the testESKM(ν0)
if p̂N [ESKM(ν0)] ≤ α, and similarly for EKUM(ν0). By the exchangeability of
E(j), j = 0, 1, . . . , N, and providedE follows a continuous distribution, this procedure
satisfies the size constraint,i.e.

P
[
p̂N [ESKM(ν0)] ≤ α

]
= P

[
p̂N [EKUM(ν0)] ≤ α

]
= α (B.3)

under the null hypothesis.

B.3. Combined excess skewness and kurtosis test

C1. Generate a set of reference simulated moments (according to A1-A3), the observed value of
E(0) (according to B1), and theN corresponding simulated statistics.

C2. For each test statistic considered, obtain thep-value functions determined by simulated sta-
tistics (generated at step C1):pN (S(0) ; S), for S = ESKM(ν0), EKUM(ν0), where the
functionpN (S(0) ; S) is defined in Appendix A.

C3. Independently of the previous simulations and the data,generateN1 additional i.i.d. real-
izations ofW according to the hypothesized distribution withν = ν0 . N1 is chosen so that
α(N1 + 1) is an integer.

C4. Using the reference simulated values and theN1 draws generated at steps C1 and C3, com-
pute the corresponding simulated statistics:EE(l) = [ESK

(l)
M (ν0), EKU

(l)
M (ν0)]

′ , l =
1, . . . , N 1.

C5. Using thep-value functionspN (· ; ·) obtained at step C2, evaluate the simulatedp-values

for the observed and theN1 additional simulated statistics:̂p(l)
N [S] = pN(S(l) ; S), l =

0, 1, . . . , N1, for S = ESKM(ν0), EKUM(ν0).
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C6. From the latter, compute the corresponding values of thecombined test statistics:

CSK
(l)
M (ν0) = 1−min

{
p̂N [ESK

(l)
M (ν0)], p̂N [EKU

(l)
M (ν0)]

}
, l = 0, 1, . . . , N1 . (B.4)

Again, it is easy to see that the vectorsCSK
(l)
M (ν0), l = 0, 1, . . . , N1 , are exchangeable.

C7. The combined testCSKM(ν0) rejects the null hypothesis at levelα if p̂N1
[CSKM(ν0)] ≡

pN1

(
CSK

(0)
M ; CSKM(ν0)

)
≤ α, where thep-value functionpN1

(· | ·) is based on the simu-

lated variablesCSK
(l)
M (ν0), l = 0, 1, . . . , N1.

This test has levelα because the variablesCSK(l), l = 0, 1, . . . , N, are exchangeable under
the null hypothesis.
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