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ABSTRACT

In this paper, we propose exact likelihood-based meamves efficiency tests of the market port-
folio in the context of the capital asset pricing model (CARMIIowing for a wide class of error
distributions which include normality and multivariateas special cases. Both unconditional and
conditional versions of the CAPM are considered. Thesas tws developed in the framework of
multivariate linear regressions (MLR). It is well known thdespite their simple statistical struc-
ture, standard asymptotically justified MLR-based testsuareliable in finite samples. In financial
econometrics, exact tests have been proposed only for apiegifis hypotheses [Jobson and Ko-
rkie (Journal of Financial Economics, 1982), MacKinlayugdwl of Financial Economics, 1987),
Gibbons, Ross and Shanken (Econometrica, 1989)], most ichvdepend on normality. For the
Gaussian unconditional model, our tests correspond todaiklRoss and Shanken’s mean-variance
efficiency tests. Our framework casts more evidence on vendtie normality assumption is too
restrictive when testing the CAPM. We also apply exact mattate goodness-of-fit tests and diag-
nostic checks, and obtain a set estimate for the intervemitigance parameters. Our results show
the following: (i) multivariate normality is rejected; Yimultivariate residual checks suggest tempo-
ral instabilities, for both the unconditional and the cdiglial models; (iii) although mean-variance
efficiency is rejected over several subperiods, using fsatmple methods and allowing for non-
normal errors reduces the number of subperiods for whictieffity is rejected and the strength of
the evidence against it; (iv) the use of conditioning infatimn has non-negligible effects on tests
of mean-variance efficiency and substantially reduces tineber of rejections.

Key words: capital asset pricing model; CAPM; conditional CAPM; meamiance efficiency;
non-normality; multivariate linear regression; uniformear hypothesis; exact test; Monte Carlo
test; bootstrap; nuisance parameters; specificationdi@gfmostics; GARCH; variance ratio test.
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RESUME

Dans cet article nous proposons des tests exacts, basés @waidemblance, de I'efficience du
portefeuille de marché dans I'espace moyenne-variances t€3s, utilisés ici dans le contexte
du modéle du CAPM (Capital Asset Pricing Model), permetticonsidérer diverses classes de
distributions incluant la loi normale. Les tests sont déppks dans le cadre de modéles de régres-
sion linéaires multivariés (RLM). Il est, par ailleurs, biétabli que, malgré leur structure simple,
les écart-types et tests usuels asymptotiqgues de ces rmauekont pas fiables. En économétrie
financiére, des tests en échantillons finis ont été prop@sdsmsent pour quelques hypothéses spé-
cifiques, lesquels dépendent pour la plupart de I'hypotdesgormalité [Jobson et Korkie (Journal
of Financial Economics, 1982), MacKinlay (Journal of Fio@ahEconomics, 1987), Gibbons, Ross
et Shanken (Econometrica, 1989)]. Dans le contexte gayssis tests d’efficience correspondent a
ceux de Gibbons, Ross et Shanken. Dans un contexte noneggussus reconsidérons I'efficience
moyenne-variance du portefeuille de marché en permetntdistributions multivariées de Stu-
dent et des « mélanges de lois normales ». Notre démarcheppaugt d'évaluer si I'hypothése
de normalité est trop restrictive lorsque I'on teste le CARMus appliquons aussi des tests diag-
nostiques multivariés (incluant des tests pour les effététéroscédasticité conditionnelle et une
généralisation multivariée des tests de ratio de variades)tests de spécification, et nous obtenons
aussi un estimateur ensembliste pour les parameétres denpaipertinents. Nos résultats montrent
qgue: (i) I'nypothése de normalité multivariée est rejetéela plupart des sous-périodes; (ii) les
tests diagnostiques suggéerent la présence de changemettrsl & la fois pour le modeéle incon-
ditionnel et le modéle conditionel; (iii) bien que I'hypétbe d’efficience du portefeuille de marché
soit rejetée sur plusieurs sous-périodes, I'utilisatienméthodes exactes et la prise en compte de la
non-normalité des erreurs réduit le nombre de périodeslpsguelles I'efficience est rejetée ainsi
gue la force de I'évidence contre celle-ci; (iv) I'utiligat de variables conditionnantes a des effets
notables sur les tests d’efficience et réduit substantieltd le nombre des rejets.

Mots-clefs: modéle d'évaluation d’actifs financiers; CAPM; efficience gortefeuille; non-
normalité; modeéle de régression multivarié; hypothésésiire uniforme; test exact; test de Monte
Carlo; bootstrap; paramétres de nuisance; test de spéoffictests diagnostiqgues; GARCH; test
de ratio des variances.

Classification du Journal of Economic Literature: C3; C12; C33; C15; G1; G12; G14.
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1. Introduction

The capital asset pricing model (CAPM) is one of the most comiynused models in theoretical
and applied finance; for reviews and references, see Campbeind MacKinlay (1997), Shanken
(1996), Cochrane (2001), DeRoon and Nijman (2001), and FamdaFrench (2004). Since the
work of Gibbons (1982), empirical tests on the CAPM are oftenducted within anultivariate
linear regression(MLR). In this context, standard asymptotic theory progidgpoor approximation
to the finite-sample distribution of test statistics, evethairly large samples; see Shanken (1996,
Section 3.4.2), Campbell et al. (1997, Chapter 5), and Dndad Khalaf (2008). In particular, test
size distortions grow quickly when the number of equatioiesgases. As a result, the conclusions of
MLR-based empirical studies on the CAPM can be stronglyctgittand lead to spurious rejections.

Consequently, several exact and Bayesian methods havehm®msed to assess mean-variance
efficiency; see Jobson and Korkie (1982), MacKinlay (19&ipbons, Ross and Shanken (1989,
henceforth GRS), Stewart (1997), MacKinlay (1995) and KndicCulloch and Stambaugh
(1995). These methods typically require Gaussian digtdbal assumptions. However, it has long
been recognized that financial returns exhibit non-notieal{Fama (1965)]. Though the CAPM
can be derived from expected utility maximization undeio@s non-Gaussian assumptions on the
return cross-sectional distribution, such as the multiat [see Ingersoll (1987) or Berk (1997)],
finite-sample tests for mean-variance efficiency in nongsmun CAPM'’s are unavailable as yet.

Indeed, mean-variance efficiency tests which relax notynaiclude: (i) large-sample GMM
or bootstrap techniques [Affleck-Graves and McDonald (J98®&cKinlay and Richardson (1991),
Fama and French (1993), Jagannathan and Wang (1996), kedétarvey (1999), Groenwold and
Fraser (2001)]; (ii) semiparametric asymptotic procedwgecific to elliptical distributions [Hodg-
son, Linton and Vorkink (2002), Vorkink (2003), Hodgson aviatkink (2003)]; (iii) parametric
procedures based on postulating a non-Gaussian distriugiich as the multivariatgFiorentini,
Sentana and Calzolari (2003), Zhou (1993)]; (iv) non-GiamsBayesian procedures [Tu and Zhou
(2004)]. In all these approaches, the distributional themfrtest statistics is either approximate
or does not formally take into account nuisance-parameteertainty in a fitted parametric dis-
tribution. In particular, Hodgson et al. (2002) report seblems on high-dimensional systems
and restrict their analysis to systems with 3 or 4 portfgliehile Vorkink (2003) proceeds on a
portfolio-by-portfolio basis, not the whole system. In th@ametric case, Zhou (1993) proposes
simulation-baseg-values for the GRS statistic given a few elliptical disotibns, while selecting
their tail area parameter by trial and error.

In this paper, we propose finite-sample unconditional andditmnal multivariate mean-
variance efficiency tests in possibly non-Gaussian CAPNMse conditional specifications allow
model coefficients to vary as functions of a number of insgote, as described by Shanken (1996,
section 2.3.4), Cochrane (2001, Chapter 8) and DeRoon gntbNi(2001). Conditional testing
is important because portfolios that are conditionallycedfit might be unconditionally inefficient
[see Hansen and Richard (1987) and Cochrane (2001, Chapter 8

We use finite-sample results from Dufour and Khalaf (2§)0@n testinguniform linear (UL)
restrictions in MLR models with a given, possibly non-Gaassdisturbance distribution: for such
hypotheses, the null distributions of standard test siegigreinvariant to MLR coefficients and



error variances and covariances. In this case, Monte Qi) (est techniques [see Dufour (2006)]
can be applied to obtain exagtvalues. On observing that mean-variance efficiency s
take the UL form when the risk-free rate is observable, wevdhat efficiency can be testesactly
under general distributional assumptions which incluge@aussian and a wide spectrum of non-
Gaussian distributions, both elliptically symmetric amh+elliptical. Single and multi-beta models
are covered by these results.

To control for the parameters that define the hypothesizedGaussian distribution, such as
the degrees of freedom for the multivariatg¢a problem not considered by Dufour and Khalaf
(2002)], we use a two-stage procedure as follows: (1) we build atezonfidence set (with level
1— ay) for the nuisance parameter, through “inversion” of a distional goodness-of-fi{GF) test;

(2) we maximize the-value for the mean-variance efficiency test (which depeamdthe nuisance
parameter) over this confidence set. Referring the latt@ximizedMC [MMC] p-value to anas
cut-off provides a test with exact level + a- [see Dufour and Kiviet (1996) and Dufour (2006)].
We stick here to the original notion of test level in the preseof nuisance parameters [Lehmann
(1986, Chapter 3)]: a test hvel« if the probability of rejecting the null hypothesis is hoegter
thana for any data generating process compatible with the nulbthgsis.

Furthermore, we evaluate the specification of the modelgugit) GF tests on the error distri-
bution, and (2) serial dependence tests. All procedurgsorelproperly standardized multivariate
ordinary least squares (OLS) residuals, which providdssttas invariant to MLR coefficients and
error variances and covariances; this allows an easy apiplicof MC tests. The GF tests compare
multivariate skewness and kurtosis criteria with a simafabased estimate of their expected value
under the hypothesized (normal or non-normal) distrilbytishich can be viewed as extensions of
Mardia’s (1970) procedures. The diagnostic checks comasisén Shanken (1990)] standardized
individual-equation versions of the GARCH tests suggestedEngle (1982) and Lee and King
(1993), and the variance-ratio tests of Lo and MacKinlayBg)9we also test for heteroskedasticity
linked to conditioning on market returns [Vorkink (2003YPur exact combination method relies
on simulation [as in Dufour and Khalaf (2082and Dufour, Khalaf, Bernard and Genest (2004)]
to avoid the Bonferroni bounds applied by Shanken (1990¢h$wunds require one to divide the
level of each individual test by the number of tests, leadmgossibly large power losses if the
MLR includes many equations.€., many portfolios). All tests are performed under normal and
non-normal error distributions.

The tests proposed are applied to an unconditional and aitimoved CAPM with observ-
able risk-free rates, and multivariate normal as well astivaulate ¢ distributions. We consider
monthly returns on New York Stock Exchange (NYSE) portfelioonstructed from the University
of Chicago Center for Research in Security Prices (CRSR)lke (1926-1995). Our results show
the following: (i) multivariate normality is rejected; Ximultivariate residual checks suggest tempo-
ral instabilities, for both the unconditional and the cdimtial models; (iii) although mean-variance
efficiency is rejected over several subperiods, using fsat®ple methods and allowing for non-
normal errors reduces the number of subperiods for whicbiefity is rejected and the strength of
the evidence against it; (iv) the use of conditioning infatimn has non-negligible effects on tests
of mean-variance efficiency and substantially reduces tingber of rejections.

The paper is organized as follows. Section 2 sets the framkewla Section 3, we describe



existing tests and propose extensions for non-normalilalisions. In Section 4, we discuss how
to deal with nuisance parameters in the error distribut®R.and diagnostic tests are described in
Section 5. In Section 6, we report the empirical results. Weclude in Section 7.

2. Framework

LetRy,i =1, ..., n, be returns om securities for period, and Ry the return on a benchmark
portfolio (t = 1, ..., T). Following Gibbons et al. (1989), the (unconditional) CARMhich
assumes time-invariatetascan be assessed by testing:

HE:ai:0, izl,...,n, (21)
in the context of the MLR model
rie =a; + B;rme e, t=1,...,T, i=1 ... n, (2.2)

wherer;; = Ry — Ry, ™wme = Rt — Ry, Ry is the riskless rate of return amrg is a random
disturbance.

In general, the CAPM also allows for the possibility of timarying betas. As discussed in
Shanken (1996, section 2.3.4), Cochrane (2001, ChapterdBpaRoon and Nijman (2001), this
can be accommodated by using conditioning informationh sisclagged variables (or instruments,
known at timer). In particular, model parameters can be viewed as lingantions ofg conditioning
variableszy¢, ... , zg : depending on whether only thetasor both the intercepts and the betas
are allowed to vary, this leads to alternative specification

_ q
Tit = @ + Bume + €t B = Bi + Y djizje, (2.3)
j=1

5 _ q _ q
Tit = Qi + BuTme + i, i = Qi + Y Ciizje, By = B + 2 djizje, (2.4)

j=1 j=1

t=1,...,T, i=1, ..., n. Model (2.3) entails the expanded regression

_ q
Tit:di—i_/ai?:Mt—i_Zdji(?:Mtht)+€it7 t=1,...,T, i=1,...,n. (25)
j=1

On assuming that the regressor matrix has full rank for éaefficiency can be assessed by testing
Hpi1:a;, =0, i=1,...,n. (2.6)

Similarly, (2.4) leads to the following equation:

_ q9 q
T‘Z't:@i—l-ﬂifMt—l-ZCjith-i-Zdji(?:Mtht)-i-Eit, t=1,...,T, i=1,...,n. (27)
=1 j=1



Assuming again that the corresponding regressor matriutlasolumn rank for eachi, efficiency
can be assessed by testiyg = 0 for all 7 and¢, or equivalently

ﬂEQZELi:O, le':O, 1=1,...,n, 73=1,...,q. (2.8)
For further reference, we sé(l, m) to be thel x m zero matrix and

L = (1, ceey 1),, ’FM = (’FlMy ceey fTM)/a T, = (?”1,‘, ey ’I”TZ‘),, (29)

z:[zl,...,zq], Zj:(Zjl,...,TjT),, jzl,...,q. (210)

We also use the symbol to denote element by element row-wise matrix mutgion; for example,

if A=[Ay, ..., Ap)isaT x I matrixandD = [D;, ... , Dp|' isanT x m matrix, thenA x D

is theT' x (Im) matrix with ¢-th row equal tod} @ D}, i.e. Ax D = [A; ® Dy, ..., Ar ® Dr].
The foregoing models are special cases of the MLR model:

Y =XB+U (2.11)

whereY = [Y7, ..., Y,]isaT x n matrix of dependent variableX’ is aT" x k full-column rank
matrix of regressors, and = [Uy, ... , U,] = [V4, ... , Vr] isaT x n matrix of disturbances.
Furthermore, the hypotheses:, H 1 andH g, belong to the UL class,e. they have the form:

Ho: HB = O(h, n) (2.12)

whereH is a fixedh x k matrix of rankh. Indeed, (2.1)-(2.2), (2.5)-(2.6) and (2.7) - (2.8) each
constitute a special case of (2.11) - (2.12) obtained bytpkespectively one of the following defi-
nitions:

Y=1[r,...,m, X=[rm™], H=(,0)), (2.13)
Y=1[r,...,m), X=[r ™ mx*xz], H=I1, 01,q+1)], (2.14)
Y=1[r,....m), X=w, 2z ™, tm*xz], H=[I1, O(¢+1,q+1)]. (2.15)

In this context, we apply a formal statistical approach tawbsimple finite-sample tests under
alternative error distributions (assuming we can conditim X, i.e. we can takeX as fixed for
statistical analysis). More precisely, we consider theegaircase:

‘/tE(Elt,...,Ent),:JWt,tzl,...,T, (216)

where J is an unknown, non-singular matrix and the distribution fé wectorw = vec (W),

W = [Wy, ... , Wp|"is either: (i) known (hence, free of nuisance parameters{ii)ospecified
up to an unknown finite dimensional nuisance-parameterofde); we callw the vector ofnor-
malized disturbanceand its distribution th@ormalized disturbance distributioLet X = J.J' so
det(X) # 0. For example, we assume tHé} ~ F(v), t =1, ..., T ,where(.)represents a
known distribution function. Below, we consider both theeavhere the error distribution does not



involve nuisance parameters,
Wy ~ F(vy) wherev, is specified, (2.17)

and the one where it does,
Wy ~ F(v) wherev is unknown. (2.18)

This assumption includes as special cases the Gaussidghutisn,

Vi, ..., Vp "&E N, ], (2.19)
all elliptically symmetric distributions, such as the niwdriatet, and cases wher@, ... , Wrp

are independent identically distributeid.¢l.) according to any given non-elliptical distribution. In
this regard, conditioning on further instruments [as in Bied2.5) and (2.7)] — rather than only the
market portfolio — can make thig.d. error hypothesis more plausible.

3. Mean-variance efficiency tests with a known normalized ditur-
bance distribution

In this section, we consider testiftdz, H 1 andHz. [in (2.1), (2.6) or (2.8)] under the distribu-
tional assumption (2.16). The test statistics used are <&aulkelihood ratios:

LR=TIn(A), A=|%|/|2|, 2=00U)T, %5=UU,/T, (3.20)
U=Y—-XB, B=XX)"'X'Y, Uy=Y - XBy, (3.21)
Bo=B- (X'X)""H'[H(X'X) 'H| 'HB, (3.22)

whereY, X and H are defined as in (2.13), (2.14) or (2.15), depending on thiehypothesis

(HEg, HEg1 or Hgs). On using the results in Dufour and Khalaf (2@03ection 3 and Appendix),
the null distribution of LR can be characterized as follows (under a possibly non-Gaugsror

distribution).

Theorem 3.1 NULL DISTRIBUTION OF GAUSSIAN LR STATISTICS FOR MEANVARIANCE EFFI-
CIENCY. Under(2.16), the LR statistic defined iri3.20) for testing{ i against theunrestricted
model(2.2) [resp, H g1 against(2.5), or andH g against(2.7)] is distributed like

LW)=T In(|WMW|/|[WMW|)

under the null hypothesis, whefdy, = M + X(X'X)'H'[H(X'X)'H'|7'H(X' X))~ 1 X,
M =1-X(X'X)"'X’ andH is defined in(2.13) [resp, in (2.14) and (2.15)]. If furthermore
the Gaussian assumptig®.19) holds andl”’ — k — n + 1 > 1, wherek is the number of columns
in X, then[(T —k —n+1)/n](A—1) ~ F(n, T —k —n + 1) underH g and Hg;, and

pT — 2

(g +1) (AYT —1) ~ Fln(g+ 1), pT — 2)] (3.23)



underH go whenmin(n, ¢+ 1) < 2, wherep = (T — k) — [(n —q)/2], A = [n(¢+1) —2]/4 and

T:{ {[n2(g+1)2—4)/n2 + (g + 1)2 =5} [if 24 (¢+1)2=5>0,
1 , otherwise.

The above analysis easily extends to multi-beta modelseoficm

S
Tit:ai'i_ZBjifjt"’_Eitu t=1,...,T, i=1,...,n, (324)
j=1
wherer;; = Rjt — Ry, andet, j=1,...,s, are returns oz benchmark portfolios. In such

models, the hypothesis under test entails that there istéoporof the benchmark portfolios that
is mean-variance efficient [see Gibbons et al. (1989, henteGRS)]. Unconditional efficiency
tests follow from Theorem3.1with X = [vp, 7|, 7 = [ 71, ..., 7], 75 = (F1j, ..., T15), j =
1,...,s,andH = [1, O(1, s)]. Furthermore, conditional efficiency tests are covered byofém
3.1in the context of an expanded MLR of the form (2.11), wh¥re= [rq, ..., 1], with: X =
[vr, T, T x z] and H = [1, O(1, gs + s)] if the coefficients of* are assumed to be linear functions
of the instruments X = [v7, 2, 7, 7 x 2] andH = [I,41, O(q + 1, ¢s + s)] if the intercepts also
are linear functions of the instruments.

Theorem3.1 entails that the distribution of théR statistic in (3.20) does not depend éh
and Y. This property holds under conditions much more general #iigtical symmetry (which
was emphasized in the earlier econometric literature onCtAEM). So, given draws from the
distribution of the disturbance matriv” = [W1, ... , Wp|, an exactp-value may be obtained
using the MC test technique as follows:

1. using the distributional assumption (2.16) and a givenevaliw [as in (2.17)], generaté/ i.i.d.
replications of the disturbance matiik;

2. this yields N simulated values of the test statistic, applying the relepavotal transformZ(17)
from Theoren®s.1;

3. the exact Monte Carlp-value is then calculated from the rank of the obserkétirelative to the
simulated ones [see (A.2) in Appendix A].

Further details are supplied in Appendix A. By the generabtl of Monte Carlo tests, we
observe that the size of a simulation-based test cgpebfectly controlledeven with a very small
number of Monte Carlo replications. For example, 19 reglices are sufficient to obtain a test
of size .05. For power considerations, there is in princgrieadvantage in using a larger number
of replications, but the power gain from using a number oficagions larger than 100 or 200 is
typically very small; for further discussion and evidencelas issue, see Dufour and Kiviet (1996),
Dufour and Khalaf (2002, 2002), Dufour et al. (2004), and Dufour (2006).

We shall denote by (LR|v) the MCp-value so obtained, wheteR, is the observed value
of the L R statistic andv represents the distributional parameter used. We considarase where
v is taken as unknown in Section 4. It is noteworthy that thiefd¥1C test approach is useful even
with Gaussian errors, as iz, because an analytical distribution is not always available



Two other results follow from Theorer®.1 First, our Gaussian LR test is equivalent to the
Hotelling T2 test proposed by MacKinlay (1987) and Gibbons et al. (1988)the context of
(3.24), the latter apply tests based on the following distional result:

T—s—n

-1
m@ ~F(n,T—s—n), withQ =T4d [Lz} a/[1+7A'F], (3.25)

T—-k

whered is the vector of intercept OLS estimaté®,/ (T — k)] 2 is the OLS-based unbiased estima-
tor of ¥, 7 and A include respectively the time-series-means and samplriamce matrix corre-
sponding to the right-hand-side returns. On observing¢hahd A are related by the monotonic
transformationd — 1 = Q/(T' — s — 1), wheres = k — 1 [see Stewart (1997)], we see that GRS’s
results follow from Theoren3.1 under normal errorsSecondijt is easy to see that our results ex-
tend beyond the mean-variance efficiency hypothesis aner @w hypothesis of the form (2.12)
on a MLR of the form (2.2) describing returns. In this case,thll distribution of the LR statistic
follows from TheorenB.1 for the specificH matrix considered. For hypotheses wher(h, n)

> 2 (such ast»), the MC approach is necessary even with Gaussian errocsg aitransformation
of the L R statistic with a Fisher distribution (as for GRS statistioes not seem to be available.

4. Mean-variance efficiency tests with an incompletely spéed error
distribution

In this section, we extend the above results to the case D) 2herev is unknown. To formally
account for the problem of estimating we apply the following MMC approach [see Dufour and
Kiviet (1996)], which involves two stages. First we build exact confidence set for with level

1 — a1, which will be denoted byC(Y) whereY refers to the return data. Next, on applying
Theorem3.1 and the MC algorithm in Appendix A (summarized above) we chtaio for each
vy € C(Y) a MCp-valuepy(LRy|v). Setting

Qu(LRo) = sup pn(LRo|vo), (4.1)
vo€eC(Y)
the critical region
Qu(LRoy) < az (4.2)

has level; + 5. In other words, if we construct the nuisance parameter denfie set with level
«y and refer thesup p-value to the cut-off levetys, then the global level of the two-stage test is
a = a1 + as. In the empirical application considered next, we ase= as = «/2.

Since a procedure to derive an exact confidence set fernot readily available (even with
multivariatet errors), we provide one here. Given the recent literatuceiai@nting the dramatically
poor performance of asymptotic Wald-type confidence itsrwe prefer to “invert” a test for the
null hypothesis (2.16) where = v for knownvy. Specifically, suppose some test statistic [denoted
7(Y)]is available for the latter hypothesis (we provide one iot®a 5.1 below). Inverting (Y)
implies assembling the, values that are not rejected at a specific significance |&ugt may be



carried out as follows: using for example a grid search dvert¢levant values afy, compute the
statistic associated with = v, from the observed sample [denot&it Y )] and itsp-value [obtain
it e.g. by MC test techniques and denotgt(7y(Y")|vo)] conforming with (2.16). The confidence
set forv [which is not necessarily a bounded confidence intervalpatlla; corresponds to the
values ofvy such thapn (7o(Y)|vo) > a1; see Dufour (1990) and Dufour and Kiviet (1996).

5. Exact diagnostic checks

In this section, we present multivariate specificationstagscluding distributional GF tests — which
we invert to estimate — and checks for departures from the hypothesis.df errors.

5.1. Goodness-of-fit tests

The null hypotheses of concern here are (2.19) [normal €trand (2.17) or (2.18) [e.g. multi-
variatet errors with known or unknown degrees-of-freedom]. The ¢estria considered use the
multivariate skewness and kurtosis measures:

1 T T 1 T
_ 73 _ 72
SK_E;;CZS“ KU—T;dtt, (5.1)

whered,; are the elements of the matrix = U'X 10U = T U(U'U)"'U’. These statistics were
introduced by Mardia (1970) in models where the regressduaes to a vector of ones. Zhou
(1993, p. 1935, footnote 5) proposed to use them to testiedlipdistributions, without however
providing a finite-sample theory for their application teickuals from MLR models. In our context,
these statistics are distributed, respectively, lke>"T | >°7 % and & 3"/, d?, whered,; is
the (s, t)-th element of the matrix

D=TMW (WMW) ‘WM, W=[W,...,K W] (5.2)

see Dufour, Khalaf and Beaulieu (2003). This implies thaf and KU are pivotal (invariant to
B and X)). Two further adjustments are applied: (1) a simulatioseh“centering” of the test
statistics; (2) a formal procedure for combining them ingirgyle test.

Centering involves using both measures in excess of exppgataes consistent with the hypoth-
esized error distribution. In view of (2.17), the resultstgtistics are denoteflK (o) and KU (vg).
In the Gaussian case (2.19), we use the simplified notaignsand KU In view of the absence
of an analytical form for the expected values, the latteremauated by simulation, yielding the
following simulation-based statistics:

ESK(vg) = |SK — SK(vg)

, EKU(vg) = |KU — KU (v)

: (5.3)

in the general case; in the Gaussian case, the test smbséadenotedd SK = \SK - S—K| and
EKU = |KU — K—U\ . This modification preserves pivotality. The MC techniqueyrtfaus be
applied to derive exagt-values (usingV replications): the resulting simulation-basedalues are



denotedpn (ESK (vo)|vo), v (EKU (vg)|vo) in the general case, anidi (ESKy), pn(EKUy)
under the Gaussian hypothesis; see Appendix B.2 for moeglslefThe observed and simulated
statistics have to be obtained conditional on the same geesleewness and kurtosis measures; this
ensures that they remain exchangeable; see Dufour (2006).

This procedure allows to obtain exact individyalalues for each statistic. To obtain a joint
test, we propose to reject the null hypothesis if at leastafn®e individual p-values is signifi-
cantly small. To avoid relying on Boole-Bonferroni rules (lefining the cut-off level), we use the
following combined statistic [see Dufour et al. (2003)]:

CSK(vg) =1 —min {pn(ESK(vo)|vo), pn (EKU (vg)|vo) } (5.4)

or CSK =1 —min {py(ESK), pn(EKU)} in the Gaussian case. This combination method
preserves invariance 8 and Y. So under (2.19), a M@-value forC'SK can be easily obtained.
Under (2.17), pivotality allows to obtain a M@-value given a known value = g, which is
denotedpy (C'SKy(vg)|vo) whereCSK) refers to the observed value of the statistic. To account
for an unknowrv, the values ot/ for which px (C'SKo(vo)|vo) exceeds the desired significance
level (saya;) are assembled in a set. This set defines the class of digiribwof the form (2.18)
which are consistent with the data; if this set is empty, t2h8) is rejected at level,; details of

the algorithm are given in Appendix B.3.

5.2. Multivariate checks for serial dependence and GARCH

We now present the tests we apply to assess departurei.frdmerrors, specifically, tests against
conditional heteroskedasticity and variance ratio teste;Dufour, Khalaf and Beaulieu (2005). The
null hypotheses of concern are (2.17), (2.18) or (2.19).

If one pursues a univariate approach, standard diagnastigsbe applied to each equation in
(2.2). For instance, the Engle GARCH test statistic [End@8@)] for equatiori, denotedFE; is
given by T multiplied by the coefficient of determination in the regries of the squared OLS
residualsz}; on a constant anéf, ;, j = 1, ... , ¢. The Lee-King test [Lee and King (1993)]
exploits the one-sided nature of the problem and is basethtistiks of the form:

o = t=q+1 (5.5)

T q 2 T q 2) 12
(0.8, (500) - (£.(82))]
t=q+1 \ j=1 t=q+1 \j=1

where&? = % Zthl é?t, and its asymptotic null distribution is standard normdieVariance ratio
test statistid/ R; [Lo and MacKinlay (1988)] is:

T q T 1/2
{<T L0 % [Ee -] e } / { S (25— 1)2}
LK.

K i X ZtT:jH Eiti 1—j .
j=1 ZtZI €t
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whereVR; —1 '~ N|0, 2(2K — 1)(K — 1)/(3K)] under thei.i.d. null hypothesis.

Such univariate tests may not be appropriate in multivanagressions. Indeed, the error co-
variance, which appears as a nuisance parameter, is fypicaltaken into consideration if a series
of univariate tests are applied. Furthermore, the probleocombining test decisions over all equa-
tions is not straightforward, since the individual tests aot independent [see Shanken (1990)]. In
view of this, we consider the following multivariate modéitn of these tests [see Dufour et al.
(2005)]. LetW;, denote the elements of tiséandardized residualmatrix

W=Us." (5.7)

whereS;; is the Cholesky factor ob'U, ie. Sy is the (unique) upper triangular matrix such that
U'U = S;A]SU . We obtain standardized versionsiof, LK; andV R; [denotedEZ-, LK; andV R;]

after replacing:;; by W;, in the formulae for these statistics. As in Section 5.1, &sé triteria from
the different equations are then combined through joinissiies of the form:

E=1- min [p(E;)], LK =1— min [p(ﬁ(l)] ., VR=1- min [p(ﬁl)} , (5.8)

1<i<n 1<i<n 1<i<n

wherep(E;), p(ﬁ(,») andp(ﬁi) refer top-values (which may be obtained by applying a MC
test method or by using asymptotic null distributions toexgcution time). In our contexty’ has

a distribution which is completely determined by the dizition of W' given X, provided.J [in
(2.16)] is lower triangular [see also Dufour et al. (2008pnsequently, the null distributions of the
joint test statAis/tics@,», LK; andV R; do not depend o3 and Y, so under (2.19), M@-values for
E, LK andV R are easy to obtain. Otherwise, we can derive an exacph@lue givenv = vg
(known), which are denoteply (E|vo), pn (LK |vo) andpy(V R|vo). The unknownw problem is
solved by applying a MMC strategy: we compute

sup pn(Elvg),  sup pn(LK|vg) and  sup pn(VR|vo),
vo€eC(Y) voeC(Y) voeC(Y)

whereC(Y') refers to the same;-level confidence set considered for the efficiency test,rafet
these MMCp-values to a cut-oftv,. This provides exact MMC tests with level + as.

5.3. Conditional heteroskedasticity under elliptical digributions

Finally, we also test for irregularities that arise from ratwg elliptical returns via distributional
assumptions on error terms (as we have proceeded so fagudmethe latter statistical approach
may lead to conditional heteroskedasticity of the follogviform: the variance of the vector
(r1e, T2ty « o - s rnt)/ is proportional to a quadratic function @f,;, specifically, the standardized
square of the deviation afy; from its time series mean which we dendig;; see Hodgson et al.
(2002), Vorkink (2003), Zhou (1993) and Kan and Zhou (2008)multi-beta contextsiy; is the
t-th element of the matrix’ A~'7 which appears in (3.25). For example, for the multivartaéth

10



k > 2, the variance proportionality factor is
0p=(k—24+2w)/(k—1). (5.9)

We proceed as for the GARCH test, using the univariate Lagranultiplier (LM) statistic for
equation:z, which is equal tdI' multiplied by the coefficient of determination from the reggion

of the squared OLS residuals on a constantafd This statistic is obtained from the standardized
residuals of each equation, leadingricstatistics denoted P;, which are combined through the
minimum approximate-value as follows:

BP=1-— min [p(BP;)] . (5.10)

If heteroskedasticity of the form (5.9) is accepted as threecd pattern, it is straightforward to
correct the efficiency tests described in Section 3 by simgighting {.e., dividing) each obser-
vation (dependent variables and regressors) with the sforeling value 053/2. In other words,
the model is re-estimated by using the corresponding gierentdeast squares estimator [leading to
weighted ML-type or quasi ML estimators (QMLE)], which caropide statistical efficiency gains
through the use of conditioning information. Some of thaultsspresented in Section 6 use this
correction.

6. Empirical analysis

Our empirical analysis focuses on unconditional and camit mean-variance efficiency tests of
the market portfolio [formally, tests of (2.1) in the cont@f (2.2), tests of (2.6) in the context of
(2.5) and tests of (2.8) in the context of (2.7)], where th®rsrfollow multivariate normal and
Studentt distributions. For Student distributions, we assume tBdig) holds with

Wy = 21/ (2o /)2, (6.1)

where Zy; is multivariate normal with mean zero and covariance matyixand Zy; ~ x2(x) and
is independent of/y;.

We use nominal monthly returns from January 1926 to Decerib@b, obtained from the
University of Chicago’s Center for Research in Securityc®si(CRSP). We form 12 portfolios of
New York Stock Exchange (NYSE) firms grouped by standard dvgit-industrial classification
(SIC), as in Breeden, Gibbons and Litzenberger (1989). ABraeden et al. (1989), firms with
SIC code 39 (Miscellaneous manufacturing industries) actuded from the data set for portfolio
formation. For each month, the industry portfolios comptisose firms for which the return, the
price per common share and the number of shares outstandimgcarded by CRSP. Furthermore,
portfolios are value-weighted in each month. In order tessghe testable implications of the
asset pricing models, we measure the market return by thee-wvekighted NYSE returns, also
available from CRSP. The risk-free rate is measured by tkenoonth Treasury bill rate, also from
CRSP. The instruments used for our conditional analysiswas prominent in the conditional asset
pricing literature [see.g.Ferson and Harvey (1999)] and include: the lagged value okanoonth
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Treasury bill yield, the dividend yield of the Standard ar@bs 500 index, the spread between
Moody’s Baa and Aaa corporate bond yield, the spread betaden year and a one year Treasury
bond yield, and the difference between the one-month lagegnins of a three-month and a one-
month Treasury bill. Since the instruments are not avadldi#fore the mid-sixties, we restrict
our conditional analysis to the post-1965 period. Our tesah efficiency tests are summarized in
Tables 1 and 2. All MC tests were applied with 999 replicatiohhe returns for October 1987 and
January of every year are excluded from the data set; the @aatgsis including these observations
yields qualitatively similar results.

Table 1 reports tests of the unconditional CAPM over sulogisriof 5 years. We also ran the
analysis with 10 year subperiods: the results are not sigimtiy affected by such modifications. A
notable feature emerges from Table 1: test decisions (coimceMLR errors and the zero-intercept
restriction) vary consistently over time. Such effects doeumented in empirical work on the
CAPM,; see Black (1993) and Fama and French (2004). Indeetharl instabilities have moti-
vated subperiod model analysis and spurred further rdsaémed at capturing time varyirggetas
Our results, which allow for short time spans, reveal terapimstabilities even when accounting for
non-Gaussian errors. Our analysis of the conditional m(istussed below) points out to similar
problems in the latter context.

In Table 1, we report in columns (1) - (3) thevalues of the exact multi-normality tests based
on ESK, EKU andCSK (see Section 5.1). These tests allow one to evaluate whetiserved
residuals exhibit non-Gaussian behavior through excemssreéss and kurtosis. For most subperi-
ods, normality is rejected. These results are interestimges although it is well accepted in the
finance literature that continuously compounded returasskewed and leptokurtic, empirical ev-
idence of non-normality is weaker for monthly data. Foranse, Affleck-Graves and McDonald
(1989) reject normality in about 50% of the stocks they stu@wr results, which are exadtd,,
cannot reject spuriously), indicate much stronger evidesagainst normality. This also confirms
the results of Richardson and Smith (1993) who provide eMideagainst multivariate normality
based on asymptotic tests; see also Fiorentini et al. (2@¥3)ourse, this evidence provides further
motivation for using our approach to test mean-varianceieffcy under non-Gaussian errors.

In columns (4)-(7) of Table 1, we present the LR statistiasuioconditional mean-variance
efficiency, the corresponding asymptotievalues obtained from the asymptoié(n) distribution
(po), the exact Gaussian-based MGralues(pyr), and the maximized M@-values based on
the Student error model(Qr7). The confidence se&f(Y") for the number of degrees of freedom
x appears in column (8). These results show that asymptetmlues are quite often spuriously
significant €.g, for 1941-55). Furthermore, the maximalalues exceed the Gaussian-baged
value. It is “easier” to reject the testable implicationgdennormality. For instance, at the 5%
level of confidence, we find ten rejections [out of the founteebperiods] of the null hypothesis
for the asymptotioc?(12) test, nine for the MG-values under normality and six under the Student
t distribution. Under the Student distribution, the tgsiatly assess the mean-variance efficiency
hypothesis and the unknown degrees of freedom parametéhg iarror distribution. Since the
confidence level for the nuisance parametér.985 («; = 0.025), p-values for the efficiency tests
should be compared witt, = 0.025 to ensure the overall level of the testis= a; + as = 0.05;
see Section 4.
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Table 1. Normality and unconditional efficiency tests

Normality tests Efficiency Tests

1) | @ 3) (4) (5) ® (8) 9) (10)
Sample | SK | KU | CSK | LR Po | PN | Qu | CY) | QEE5 | Cpps(Y)

1927-30| .001 | .001 | .001 | 16.104| .1866| .364 | .357 | 3 —12 | .396 3—-15
1931-35| .001| .001| .001 | 16.257| .1798| .313| .322| 3-8 .268 3-9
1936-40| .001| .001| .001 | 16.018| .1904| .319| .333| 4 —26 | .483 3—-26
1941-45| .004 | .002 | .004 | 25.869| .0112| .045| .049| >5 .049 >4
1946-50| .001 | .001 | .001 | 37.196| .0002 | .003 | .004 | 4—26 | .004 2-24
1951-55| .001 | .002 | .001 | 36.510| .0003 | .004 | .005| 5—31 | .007 2-33
1956-60| .024 | .003 | .003 | 43.841| .0000| .002| .002| >5 .002 >2
1961-65| 594 | .479| .631 | 39.098| .0001| .002| .002| >7 .002 >4
1966-70| .011| .002 | .004 | 36.794| .0002| .003| .003| >5 .003 >3
1971-75| .001 | .002 | .001 | 21.094| .0490| .120| .129 | 4 —24 | .112 4—30
1976-80| .001 | .001 | .001 | 28.373| .0049| .023 | .026 | 4 —-17 | .014 2-18
1981-85| .001| .001| .001 | 27.189| .0073| .033| .035| 5—34 | .033 2-30
1986-90| .028 | .020 | .030 | 35.747| .0007 | .003| .005| >5 .006 >2
1991-95| .177| .311| .239 | 16.752| .1592| .299| .305| > 15 .293 > 6

Note — Numbers in bold indicate test results which are sicgnifi at level 0.05. Columns (1)-(3) repgrvalues for
multinormality tests: columns (1)-(2) pertain respedtivi® the null hypotheses of no excess skewness and no excess
kurtosis in the residuals of each subperiod. TFhealues in column (3) correspond to the combined statiStiK
designed to jointly test for the presence of skewness artdsisr individual and joint tests are obtained by applyiBg)
and (5.4) under the assumption of multivariate normal erioithe context of (2.2). Column (4) presents the quasi-LR
statistic defined in (3.20) to te$tz defined by (2.1) in the context of (2.2); columns (5), (6) anpare the associated
p-values using, respectively, the asymptotic chi-squastritution, the corresponding (pivotal) MC test obtaineder

the assumption of multivariate normal errors, and a MMC &ssuming a multivariatgx) error distribution where the
p-value is maximized over a confidence set fowith level 1 — a1 = 0.975. In the latter case, the maximizedvalue

for the corresponding efficiency test is significant at |&uéb if it is not larger tham, = 0.025. The confidence set for

k is reported in column (8); see Section 4 for details on itsstmiction. Columns (9) and (10) are the GLS (weighted
QMLE) counterparts of (7)-(8), using the variance weight8) to correct for heteroskedasticity.
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Table 2. Normality and conditional efficiency tests

Normality tests Conditional Efficiency Tests

(A) Model (2.7)
ORRCOENC) “4) ® | ® O] B
Sample | SK | KU | CSK LR Poo onv | Qu | C(Y)

1966-70 | .085| .017 | .033 | 122.545| .0002| .111| .125| >4
1971-75| .778 | .986| .908 | 130.384| .0000| .057 | .067| >6
1976-80| .095| .118 | .137 | 147.084| .0000| .012| .021| >4
1981-85| .707 | .095| .141 | 155.475| .0000| .004 | .005| >4
1986-90 | .114 | .032| .046 | 109.736| .0028| .300 | .344| >3
1991-95| .611| .501| .645 | 113.462| .0013| .207 | .225| >6

1966-95| .001 | .001| .001 | 162.050| .0000| .001| .001 | 3 —16
(B) Model (2.5)
ORNCORC) 4) G 16| O 8)
Sample | SK | KU | CSK LR Poo onv | Qu | C(Y)

1966-70 | .275| .014| .025 | 34.344 | .0006| .011| .015| >14
1971-75| .093| .139| .130 | 26.166 | .0102| .072| .087 | >5
1976-80 | .013 | .002| .001 | 31.903 | .0014| .021| .023| >4
1981-85| .019| .024| .028 | 32.655 | .0011| .019| .026| >4
1986-90 | .019 | .015| .028 | 31.932 | .0014| .020| .024| >4
1991-95| .160| .381| .200 | 17.976 | .1164| .338 | .347 | >11

1966-95| .001| .001| .001 | 39.790 | .0001| .001| .001| 4—15

Note — Numbers in bold indicate test results which are sicgnifi at level 0.05. Columns (1)-(3) repgrvalues for
multinormality tests: columns (1)-(2) pertain respedtivi® the null hypothesis of no excess skewness and no excess
kurtosis in the residuals of each subperiod. TFhealues in column (3) correspond to the combined statiStiK
designed to jointly test for the presence of skewness andiar individual and joint tests are obtained by applying
(5.3) and (5.4) under the assumption of multivariate nomnadrs, in the context of (2.5) [in Panel B] and (2.7) [in Plane
A]. Column (4) presents the quasi-LR statistic defined i2@3.to testH 1 defined by (2.6) [in Panel B], ant{ z»
defined by (2.8) [in Panel A]; columns (5), (6) and (7) are theomiatedp-values using, respectively, the asymptotic
chi-square distribution, the corresponding (pivotal) MGttobtained under the assumption of multivariate nornratgr
and a MMC test assuming a multivariaig:) error distribution where thg-value is maximized over a confidence set for
k with level 1 — a; = 0.975. In the latter case, the maximizeelvalue for the corresponding efficiency test is significant
at level0.05 if it is not larger thana, = 0.025. The confidence set fot is reported in column (8); see Section 4 for
details on its construction.
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These findings differ from those of Zhou (1993), who found hargye in rejection rates of
mean-variance efficiency using elliptical distributiorther than the normal. This may be due to
the fact that we explicitly take into account nuisance pat@muncertaintyd.g, the fact that the
degrees-of-freedom parameter is unknown). Interestingtgnever the results obtained under non-
Gaussian distributions differ from those obtained under Gaussian distribution, the Gaussian
distributional assumption is strongly rejected. Our rissalearly indicate that GRS-type tests are
sensitive to the hypothesized error distribution. Of ceuthis observation is relevant when the
hypothesized distributions are empirically consisterthuie data. Focusing on thalistributions
with parameters not rejected by exact GF tests, we see thdetision of the MMC mean-variance
efficiency test can change relative to thebased test.

It is usual to aggregate the efficiency test results overuddpsriods, in some manner. For
instance, Gibbons and Shanken (1987) proposed two aggretistics which, in terms of our
notation, may be expressed as follows:

14 14
GS1=-2) In(pylf]), GS2=> ¥ pnlil), (6.2)
j=1 Jj=1

where|[j] refers to the subperiods, add ! (.) provides the standard normal deviate corresponding
to par[j]. If the mean-variance efficiency hypothesis holds acrossudiperiods, therzS; ~
x2(2 x 14) whereasG'S; ~ N(0, 14). Itis worth noting that the same aggregation methods can
be applied to our test problem even under (2.16) by repla@in@.2), p[j] with Qy(;, the MMC
p-values obtained imposing (2.16). Indeed, as is observe@ibigons and Shanken (1987), the
F-distribution is not necessary to obtain the null distribatof these combined statistics. All that
is needed is a continuous null distribution (a hypothesiisféad by normal and Studemterrors)
and, of course, independence across subperiods. Ourstesntter normal and Studenhterrors
respectively, areGS; = 102.264 and 101.658 and GS; = 28.476 and 28.397; the associated
p-values are extremely small. If independence is upheld &ilbons and Shanken (1987), this
implies that mean-variance efficiency is jointly rejectgdooir data. If one questions independence
and prefers to combine using Bonferroni-based criteria,stimallesty-value is .002 which when
referred ta025/14 ~ 0.002 comes close to a rejection. In the context of a MC with 999%cafibns,

the smallest possiblg-values are .001, .002 and so forth. To allow for a fair Bomfier test, it is
preferable to consider the level28/14 = 0.002. This means that in every period, the pre-test
confidence set should be applied with = 0.022 to allow 0.028 to the mean-variance efficiency
test. The results reported in the above tables are robusistoltange in level.

Finally, Table 3 presents the results of our multivariataeotxdiagnostic checks for departures
from thei.i.d. assumption, namely our proposed multivariate versiont@fngle, Lee-King and
variance ratio tests; we use 12 month lags. The results skoyfew rejections of the null hy-
pothesis both at the 1% and 5% level of significance. Thisigsghat, in our statistical framework
and for the time spans analyzeid,d. errors provide an acceptable working assumption. Our
heteroskedasticity tests also show that analyzing meaane efficiency through elliptical distri-
butional assumptions on the errors is statistically validur sample.

An advantage of our methodology is that weighted QMLE-bassts {.e. tests based on
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Table 3. Multivariate diagnostics, unconditional CAPM

Normal errors Studentt errors

» @ &8 6 6 O

Sample| £ LK VR | E LK VR BP
1927-30| .001 .356 .004| .013 .301 .004 .285
1931-35| .022 .748 .069| .082 .659 .066 .016
1936-40| .075 .612 .855 .124 587 .867 .087
1941-45| .824 979 .163 .843 .982 .177 .034
1946-50| .003 .804 .063| .017 .784 .068 .880
1951-55| .139 .353 .111 .168 .321 .120 .591
1956-60| .987 .628 .093 .994 .628 .095 .347
1961-65| .339 .207 .577| .375 .195 584 .771
1966-70| .027 .274 .821| .043 .278 .847 .961
1971-75| .280 .224 .218 .316 .212 .224 .013
1976-80| .004 .011 .165| .016 .013 .183 .406
1981-85| .027 .103 .208| .050 .103 .217 .583
1986-90| .033 .453 .346| .077 .442 .366 .279
1991-95| .803 .236 .088 .821 .252 .092 .585

Note — Numbers shown agevalues associated with the combined tésts. K andV R defined by (5.8), in the context
of model (2.2). E and LK are multivariate versions of Engle’s and Lee-King's GARG3Hts, whileV R is a mul-
tivariate version of Lo and MacKinlay’s variance ratio &gesee Section 5.2BP [defined in (5.10)] is the conditional
heteroskedasticity test as function of the benchmarkmstwrhich is relevant for elliptical non-normal errors; Setion
5.3. The MCp-values in columns (1)-(3) are based on pivotal statistitele those in columns (4)-(7) are MMgvalues
obtained by maximizing over confidence sets (with level B)Qf distributional nuisance parameters. The confidence
sets used are those reported in Table 1 [column (8)]. Numbdysld indicate test results which are significant at level
0.05.

weighted QMLE) may easily be conducted following the metilody we have described here,
in the context of an MLR weighted by the necessary varianocection term, for example by using
the variance weights (5.9) in the case of the multivarigigee also Vorkink (2003, footnote 4)] as
described at the end of Section 5. For illustrative purpogesreport the correcteg-values for
multivariatet-type tests, in columns (9) of Table 1. Results show that #wstbn of our tests is
not notably affected when we correct for time varying vdikgti It is worth noting that the latter
GLS-based correction does use (in some form) conditiomiwination.

We now turn to Table 2, which reports our conditional testiltsgor the two models (2.5) [Panel
B] and (2.7) [Panel A] over intervals of 5 years and over thelelsample. We retain the same layout
as in Table 1, except of course that the GLS approach is n@fqgogtified and is thus not applied
in this context. The companion diagnostic tests are showialohe 4. While the subperiod analysis
may at first sight appear unnecessary, given that the condltmodel is supposed to account for
time-varyingbetas care must be exercised in interpreting the full-sampleresults. From Table
2, we see that for both models (2.5) and (2.7): (i) the effiyelmypotheses when assessed using
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Table 4. Multivariate diagnostics, conditional CAPM

Normal errors Studeriterrors

1 @ B3| @ 6 (®

Sample | E LK VR | E LK VR
1966-70 | .297 .235 .166| .333 .239 .178
1971-75| .131 .095 .924] .188 .108 .929
1976-80| .012 .740 .669| .020 .744 .683
1981-85| .137 .108 .628 .172 .110 .629

1986-90 | .264 .766 .932 .338 .767 .933
1991-95| .878 .178 .473 .878 .184 .495

1966-75 | .331 .083 .417| .348 .087 .425
1976-85| .290 .005 .690| .348 .008 .706
1986-95| .015 .647 .190| .038 .639 .207

1966-95 | .001 .001 .392| .021 .001 .414

Note — Numbers shown anpevalues associated with the combined t@gtsi\}/{, and X//\}/%, defined by (5.8), in the
context of model (2.5).F and LK are multivariate versions of Engle’s and Lee-King's GARGsts, whileV R is a
multivariate version of Lo and MacKinlay’s variance ratists; see Section 5.BP [defined in (5.10)] is the conditional
heteroskedasticity test as function of the benchmark msfwhich is relevant for elliptical non-normal errors. THE
p-values in columns (1)-(3) are based on pivotal statistitgle those in columns (4)-(11) are MMg-values obtained

by maximizing over confidence sets (with level 0.975) ofrilisttional nuisance parameters. The confidence sets used
are those reported in Table 2 [column (8)]. Numbers in botticiate test results which are significant at level 0.05.

the whole sample, are soundly rejected, using asymptotid@ip-values, (ii) the confidence sets
on the degrees-of-freedom parameter appear dramatiggtiiiet, and (iii) normality is definitely
rejected. Unfortunately, our diagnostic tests [refer tbl@ad] reveal significant departures from
the statistical foundations underlying the latter test®ifewhen allowing for non-normal errors);
temporal instabilities thus cast doubt on the full samplalysis. The tests in Table 4 are applied in
the context of the conditional model (2.7); since the latiests model (2.5) and the unconditional
model as well, the results of Table 4 indicate temporal lriktiees for all three models.

When we move to subperiod analysis, which appears apptegriahe present context, we
see that the test results do not differ considerably fromutih@nditional caseFirst, asymptotic
p-values are quite often spuriously significant, partidylam the case of model (2.7); indeed, as
may be seen from Panel A of Table 2, there is a large differbeteeen the asymptotic and the
MC (Gaussian and non-Gaussianyalues. Of course, the number of restrictions tested sdhse
is 6 per equation (globally: 72 constraints), whereas tloblpm of testing intercepts involves 12
constraints. Also note that the expanded regression iasld@ regressors for 12 equations, so the
number of "effective observations" available for the tesjuite small. This observation may suggest
that power considerations underlie our observed nondiejexfor the shorter sub-sample, although
the simulation studies reported in Dufour and Khalaf (4f)d8dicate very good power properties
for sample sizes as small as 25 observations even in highndioreal MLR models. Recall that
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an F-test (of the GRS type) is unavailable for model (2.7), soM@ exact test approach is quite
useful even given Gaussian errors. Similar consideratimhd for the diagnostic tests: simulation
results reveal good power for samples of sizes comparafetones used in this paper, especially
when the system involves a large number of equations [seeuDet al. (2005)].

Second as in the unconditional case, the Studentaximal p-values exceed the Gaussign
value. For instance, for model (2.5), at the 5% significaeeel| we find five rejections [out of the
six subperiods] of the null hypothesis for the asymptotst, teour for the MC test under normality
and three under the Studendistribution. For model (2.7), at the 5% significance lewa, find six
rejections [out of the six subperiods] of the null hypotkdsir the asymptotic test, two for the MC
test under normality and the Studendistribution. Not surprisingly, in the subperiods where th
conditional models are rejected, the unconditional maglalso rejected. In general, model (2.7) is
rejected in fewer subperiods relative to model (2.5) andutimnditional model (over the 1966-95
sub-sample, where the data allows to estimate the conditrondels).

In the case of (2.7), it might be useful to assess the signifieaf the intercepts only, or alter-
natively, to assess the contribution of the instrumentxplagning excess returns. Interestingly, the
MC p-values for our test on the intercepts for the six subperi@ds: .759, .933, .075, .318, .617
and .485 under normality and .771, .946, .080, .339, .645%(fl givent-errors. We thus see that
at the 5% level, our rejections of efficiency are driven bystgmificance of instruments.

In view of time instabilities, the conditional efficiencysteapplied to the full sample is unreli-
able. So to aggregate our subperiod analysis, we resortagaia to the combined statistics used
by Gibbons and Shanken (1987) as in the unconditional casereSults, under normal and Student
t errors respectively, arg{values are reported in bracketg}S; = 35.572 [.00038] and33.006
[.00097] andGS; = 9.052 [.00011] and8.415 [.00029], for model (2.7), and?S; = 39.572
[.00001] and37.703 [.00017] and5.S, = 10.331 [.00000] and.839 [.00000], for model (2.5). The
latter p-values imply that mean-variance efficiency is jointly cégsl with our data. Once again, if
one guestions independence and prefers to combine usinigriBam-based criteria, the smallest
p-value for (2.7) is .004 under normality and .005 witlerrors; the latter when compared with
.025/6 ~ 0.004 come close to a rejection. Efficiency on the aggregate in @ds) fails to be
rejected by the Bonferroni rule. Viewed collectively, oubperiod and aggregate tests indicate that
the method one uses to incorporate conditioning informakias non negligible implications on
mean-variance efficiency.

These results motivate the use of alternative models whaghuce conditioning information
in more parsimonious approaches (i.e. with fewer degréégedom losses). Inevitably, such
approaches as well as non-linear stochastic discountrfaaged models, will lead to Instrumental
Variable contexts (see the above cited references on GMddebtests of the CAPM), where the
literature on exact testing is still scarce.

7. Conclusion

In this paper, we have proposed exact mean-variance effictests in the context of unconditional
and conditional CAPM'’s, with Gaussian or non-Gaussianudistnces. Further, we have shown how
to deal — in finite samples — which may involve Studeetrors with possibly unknown parameters.
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Our empirical results show clearly that the normality agstiom does not fit CAPM error returns,
even for monthly data. By contrast, Studerdistributions appear to be consistent with the data.
Exact unconditional mean-variance efficiency tests, wkachally account for non-normality, fail

to reject efficiency for 3 out of 9 subperiods for which Gaasdbased tests are significant. The
conditional models analyzed provide a better fit, but theciefficy restrictions are rejected on at
least half of the 6 subperiods considered. The conditiamllts are notably sensitive to the method
used to incorporate conditioning information. Overallhalugh mean-variance efficiency is rejected
for several subperiods, using finite-sample methods andlty for non-normal errors reduces the
number of subperiods for which efficiency is rejected andstnength of the evidence against it.

Although we focused here on mean-variance efficiency tésis,worth noting that the pro-
posed methodology applies to several interesting assghgriests including problems where the
Hotelling test [exploited by GRS and MacKinlay (1987)] andd® F' test [see Stewart (1997) and
Dufour and Khalaf (2002 Appendix)] have been used. In view of its fundamental inguure,
mean-variance efficiency is one of the few MLR-based problesnich have been approached from
an exact perspective in econometrics, but some authorsreavgnized that hypotheses dealing
with the joint significance of the coefficients tio regression coefficients across equations can
also be tested exactly applying Rad’stest. Examples include inter-temporal asset pricing tests
in Shanken (1990, footnote 18). Furthermore, as discuss&hanken (1996), econometric tests
of spanning fall within this class. Indeed, spanning tesée[the survey of DeRoon and Nijman
(2001)] may be written in terms of a model of the GRS form. Tlpdthesis is however more
restrictive, in the sense that, in addition to the restitdi on the intercepts, the betas of each re-
gression must sum to one. These hypotheses fit into our Ulefranrk. Alternatively, assessing the
significance of squared market returns in the context ofeetimoment asset pricing model [seg.
Barone-Adesi, Gagliardini and Urga (2004)] can be carrietlusing our framework. The results
in this paper extend available exact tests of these impidiiteancial problems beyond the Gaussian
context.

The fact remains that the results presented in this papespaafic to UL hypotheses. Not all
linear hypotheses may be cast in this form. In Beaulieu, huémd Khalaf (2005), we study exten-
sions to non-linear problems including tests of mean-wagaefficiency in the context of Black’s
version of the CAPM. Finally, we note that an apparent slooniag of our exact tests comes from
the fact that the right-hand-side benchmark may be obsevitacerrors. The development of exact
tests which correct for error-in-variable problems alspesys to be an important issue, and we are
pursuing research on it.

19



Appendix

This appendix summarizes the MC test method (given a riglktttest), as it applies to the test
statistics considered in this paper; for proofs and refeensee Dufour (2006).

A.

Monte Carlo tests

Let S(y, X) be a test statistic which can be rewritten in the form

S(y, X) =S (W, X) (A.1)

under the null hypothesis, whel® is defined by (2.16) and the distribution @f is known. For
example,S(y, X) could be the LR statistic considered in Theor8rh Then the conditional dis-
tribution of S(y, X), given X, is completely determined by the matriX and the conditional
distribution of W given X, i.e. S(y, X) is pivotal. We can then proceed as follows to obtain an
exact critical region.

1.
2.

Let S be the observed test statistic (based on data).

By Monte Carlo methods, draw i.i.d. replications ofW : W;) = [Wl(j), ey W,(Lj)],
j=1,...,N.

. From each simulated error matfiX;), compute the statistic§\/) = S’(W(j), X), j=
1,..., N.Forinstance, in the case of the QLR statistic underlyingoféua 3.1, calculate
L(W(j) =T In (|W(;, MoWl/IW(y MWpl) , j=1...., N.

. Compute the MG@-valuepy[S] = py(S© ; S), where

) . NGN(ZC; S) +1
pn(z; S) = Nl , (A.2)
N
1 , 1, if z €0, c0)
. = (]) _ _ ) 9 bl
GN(J:aS)— Nz;I[O,oo)(S 13)7 I[O,oo)(dj)_{ 0, Zfl’¢ [O, OO) (A3)
j:

In other words,py (S ; S) = [NGN(S©; S) + 1]/(N + 1) where NGy (S ; )
is the number of simulated values which are greater than omletp S(®©. When
SO s . SIN) are all distinct [an event with probability one when the wect
(8O, sM .. SM) has an absolutely continuous distributiofiy (S(©) = N + 1 —
NGn (SO S)is the rank ofS(® in the seriess(®), s .. V),

. The MC critical region ispy[S] < a, 0 < a < 1.If a(N + 1) is an integer and the

distribution of S is continuous under the null hypothegis;, then undefH g,

P[ﬁ [9] < a] =«. (A.4)
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The above algorithm is valid for any fully specified disttiloen of /7. Consider now the case
where the distribution ofV involves a nuisance parameter as in (2.16). In this casengiv(A.2)
yields a MCp-value which we will denotgy [S | v] where the conditioning on is emphasized for
further reference. The test definedby[S | v] < « has sizex [in the sense of (A.4)] for known.
Treatingr as a nuisance parameter, the test based on

sup py[S|v] <« (A.5)
v E dg

wheredy is a nuisance parameter set consistent #ith is exact at levely; see Dufour (2006).
Note that no asymptotic argument on the numbeof MC replications is required to obtain the
latter result; this is the fundamental difference betwdenatter procedure and the (closely related)
parametric bootstrap method, which in this context wouldespond to a test based R[S | 7],
wherer is anypoint estimate ofv. In Dufour and Khalaf (2002), we call the test based on sim-
ulations using a point nuisance parameter estimdtea MC (LMC) test. The termocal reflects

the fact that the underlying M@-value is based on a specific choice for the nuisance paramete
Furthermore, we show that LMC non-rejections axactly conclusive in the following sense: if
PN [S | Do) > «, then the exact MMC test is clearly not significant at level

B. MC skewness and kurtosis tests

The algorithm for implementing the MC skewness and kurttesss can be decomposed in three
wide steps. A more detailed discussion is available in Duéal. (2003).
B.1. Estimating expected skewness and kurtosis

Al. Draw N i.i.d. replications,W; = [Wl(i), e I/T/T(f)], i =1,..., Ny, according to the
hypothesized distribution with = v .

A2. From each simulated error matﬂﬁ((i), compute [see (5.2)]
- 71
Dy =TMW [W('i)MW(,»)} W('Z-)M, i1=1,..., No, (B.1)

and compute the corresponding statist®&” and KU, applying (5.1). This providesV,
replications of the latter statistic§\K ;y and KU ;), i =1, ..., No.

A3. Compute the average values:

No
1=1 i=1

We call SK (v¢) and KU (vy) the reference simulated moment¥wo questions arise at this
stage: (i) how to obtain exact cut-off points féiSK (vy) and EKU (vp) in (5.3), and (ii) how
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to obtain a size-correct simultaneous test which combineset two tests. Let us first address the
individual p-values issue, which may be run as in Appendix A above.

B.2.
B1.

B2.

B3.

B4.

Individual excess skewness and kurtosis tests

Using the valuesSK (vo) and KU (v,) obtained at steps A1-A3, compute the test statistics
based on the observed dafa?) = [ESKI(V(I))(V(]), EKUISI])(VO)]’.

Independently of the data and the draws of steps Al-ASemgeeN i.i.d. realizations ofiV/
according to the hypothesized distribution with= v .

Using the same valueSK (vg) and KU (v) as for the observed data, compute the statis-
tics ESKw(vo) and EK Uy (vp) associated with each one of these MC samples?) =
[ESKM)(Z/()), EKUM)(VO)]/, j =1,..., N.Itis easy to see that th& + 1 vectors
EU), j=0,1,..., N are exchangeable under the null hypothesis.

Compute a simulatedp-value, for any one of the test statistics if(®)
PN[ESKMm(vo)], PN[EKUm(vg)], where py[-] is defined in Appendix A for each
statistic inE [see (A.2)]. The null hypothesis is rejected at leweby the testE.S Ky (vo)

if pn[ESKMm(vo)] < «, and similarly for EKUy(vg). By the exchangeability of
EUW, j =0,1,..., N, and providedE follows a continuous distribution, this procedure
satisfies the size constraing.

P[pnIESKM(v0)] < a] = P[pn[EKUM(1)] < o] = a (B.3)

under the null hypothesis.

B.3. Combined excess skewness and kurtosis test

C1.

Cc2.

Cs3.

CA4.

CsS.

Generate a set of reference simulated moments (acga@liAl1-A3), the observed value of
E© (according to B1), and th&' corresponding simulated statistics.

For each test statistic considered, obtaingthalue functions determined by simulated sta-
tistics (generated at step Cl)n (S ; S), for S = ESKwm(vg), EKUn(vg), where the
functionpy (S© ; S) is defined in Appendix A.

Independently of the previous simulations and the dgagrateN; additionali.i.d. real-
izations of W according to the hypothesized distribution with= v. N7 is chosen so that
a(N1 + 1) is an integer.

Using the reference simulated values andXhedraws generated at steps C1 and C3, com-
pute the corresponding simulated statistidE®) = [ESK (vo), EKUY (o)), 1 =
1,...,N;.

Using thep-value functionspy(-; -) obtained at step C2, evaluate the simulagedalues

for the observed and th&/; additional simulated statisticsﬁﬁ\l,)[S] = pn(SV; 8), | =
0,1,..., Ny, for S = ESKM(Z/()), EKUM(V())
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C6. From the latter, compute the corresponding values afdhebined test statistics:
CSKY (vg) = 1—min {pn[ESKL o), pn[EKUY (o))}, 1=0,1,..., Ny. (B.4)

Again, it is easy to see that the vectﬁ?§Kﬁ)(uo), [=0,1, ..., Ny, are exchangeable.

C7. The combined test'SKyi(vo) rejects the null hypothesis at levelif py, [CSKm(vo)] =

PN, (CSK&)) ; CSKwm(rvo)) < o, where thep-value functionpy, (- | -) is based on the simu-
lated variablesZ‘SK&)(uo), 1=0,1,..., Ny.

This test has levek because the variablésSK ), [ =0, 1, ..., N, are exchangeable under
the null hypothesis.
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